首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of humans to toxic compounds occurs mostly in the form of complex mixtures. Leachates, consisting of mixtures of many chemicals, are a potential risk to human health. In the present study, leachates of solid wastes from a polyfiber factory (PFL), an aeronautical plant (AEL), and a municipal sludge leachate (MSL) were assessed for their ability to induce DNA damage in human peripheral blood lymphocytes using the alkaline Comet assay. The leachates also were examined for their physical and chemical properties. Lymphocytes were incubated with 0.5-15.0% concentrations (pH range 7.1-7.4) of the test leachates for 3 hr at 37 degrees C, and treatment with 1 mM ethyl methanesulfonate served as a positive control. All three leachates induced significant (P < 0.05), concentration-dependent increases in DNA damage compared with the negative control, as measured by increases in Olive tail moment (arbitrary units), tail DNA (%), and tail length (mum). A comparison of these variables among the treatment groups indicated that the MSL induced the most DNA damage. Inductively coupled plasma emission spectrometry analysis of the leachates indicated that they contained high concentrations of heavy metals, viz. iron, manganese, nickel, zinc, cadmium, chromium, and lead. The individual, synergistic, or antagonistic effects of these chemicals in the leachates may be responsible for the DNA damage. Our data indicate that the ever-increasing amounts of leachates from waste landfill sites have the potential to induce DNA damage and suggest that the exposure of human populations to these leachates may lead to adverse health effects.  相似文献   

2.
Obstructive sleep apnea (OSA) syndrome is a respiratory disease that is linked to heart attacks and high blood pressure. In the present study, we used the Comet assay to compare basal DNA damage and DNA damage induction by hydrogen peroxide, ethanol, and gamma-irradiation in lymphocytes from 35 OSA patients and 35 controls. We also measured the apoptosis and necrosis produced by these agents and the ability of the lymphocytes to repair the induced DNA damage. It was found that lymphocytes isolated from OSA patients had higher basal levels of DNA damage and were more sensitive to the effects of the DNA-damaging agents than lymphocytes from controls. OSA patients also had a reduced capacity to repair the DNA damage induced by the three agents, but apoptosis and necrosis were similar in OSA patients and the controls.  相似文献   

3.
A major concern of the adverse effects of exposure to non-ionizing electromagnetic field (EMF) is cancer induction. Since the majority of cancers are initiated by damage to a cell's genome, studies have been carried out to investigate the effects of electromagnetic fields on DNA and chromosomal structure. Additionally, DNA damage can lead to changes in cellular functions and cell death. Single cell gel electrophoresis, also known as the ‘comet assay’, has been widely used in EMF research to determine DNA damage, reflected as single-strand breaks, double-strand breaks, and crosslinks. Studies have also been carried out to investigate chromosomal conformational changes and micronucleus formation in cells after exposure to EMF. This review describes the comet assay and its utility to qualitatively and quantitatively assess DNA damage, reviews studies that have investigated DNA strand breaks and other changes in DNA structure, and then discusses important lessons learned from our work in this area.  相似文献   

4.
The Comet assay has found wide acceptance in monitoring human genotoxicity caused by lifestyle and occupational and environmental factors. In the present study, we have used the Comet assay to measure the DNA damage in a population of rural Indian women cooking with biomass fuels (BMFs; fire wood and cow dung cakes). Out of 144 volunteers, 70 used BMFs for domestic cooking, while the remaining 74 used liquefied petroleum gas (LPG) and served as a reference population. All the individuals had comparable socioeconomic backgrounds and were between 20 and 55 years of age. Significantly higher levels of DNA damage were observed for BMF users than for LPG users. For BMF users in comparison with the reference population, Olive tail moment was 3.83 +/- 0.15 (arbitrary units) vs. 2.77 +/- 0.07 (P < 0.001); % tail DNA was 11.19 +/- 0.35 vs. 8.29 +/- 0.20 (P < 0.001); and comet tail length (microm) was 51.15 +/- 1.37 vs. 40.26 +/- 0.88 (P < 0.001). Similar significant differences were found when the groups were stratified by age and length of exposure. This study suggests that exposure to BMF smoke leads to greater levels of DNA damage than exposure to LPG combustion products.  相似文献   

5.
Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4 GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4 GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar–Albino rats. The rats in the experimental group (n = 8) were exposed to 2.4 GHz frequency radiation for over a year. The rats in the sham control group (n = 8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat’s brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p > 0.05). However the increase of the DNA damage in rat testes tissue was significant (p < 0.01).In conclusion, long-term exposure to 2.4 GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF radiation.  相似文献   

6.
7.
Folate plays an essential role as a methyl donor for the synthesis of DNA nucleotides such as thymine and, via S-adenosylmethionine, for maintenance of methylation of cytosine which is required for control of gene expression and for chromatin structure in critical regions of the genome such as centromeres and the subtelomere. If folate is deficient, damage to nuclear and mitochondrial DNA increases and regenerative potential of normal tissues declines. Folate deficiency may contribute to the high burden of DNA damage consistently observed in neurodegenerative disease by causing excessive incorporation of uracil into the genome and increasing susceptibility to DNA damage by causative agents such as Aβ42 and reactive oxygen species. In this brief review the current evidence that folate deficiency and associated metabolites, such as homocysteine, may accelerate DNA damage and aging of the brain is explored and important knowledge gaps are identified.  相似文献   

8.
Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the induction of oxidative DNA damage by acrylonitrile.  相似文献   

9.
Nonmelanoma skin cancer (NMSC) is the most frequent type of cancer in humans. Exposure to UV radiation is a major risk factor for NMSC, and oxidative DNA damage, caused either by UV radiation itself or by other agents, may be involved in its induction. Increased sensitivity to oxidative damage and an altered DNA repair capacity (DRC) increase the risk of many types of cancer; however, sensitivity to oxidizing agents has not been evaluated for NMSC, and results regarding DRC in NMSC are inconclusive. In the present study, we evaluated DNA damage and repair in leukocytes from 41 NMSC patients and 45 controls. The Comet assay was used to measure basal and H(2)O(2)-induced DNA damage, as well as the DRC, while the cytokinesis-block micronucleus assay was used to measure the basal level of chromosome damage. Although basal DNA damage was higher for the controls than for the patients, this finding was mainly due to sampling more controls in the summer, which was associated with longer comet tails. In contrast, H(2)O(2)-induced DNA damage was significantly higher in cases than in controls, and this parameter was not influenced by the season of the year. The DRC for the H(2)O(2)-induced damage was similar for cases and controls and unrelated to seasonality. Finally, the frequency of binucleated lymphocytes with micronuclei was similar for cases and controls. The results of this study indicate that NMSC patients are distinguished from controls by an increased sensitivity to oxidative DNA damage.  相似文献   

10.
Nijmegen breakage syndrome (NBS) patients and carriers are predisposed to malignancy and are often treated with X-irradiation. In the present study, the single-cell gel electrophoresis (Comet) assay was used to examine radiation-induced DNA damage and repair in peripheral blood mononuclear cells from NBS patients (n=13) and carriers (n=36) of six unrelated families. Cells from apparently healthy donors (n=10) and from breast cancer patients with normal clinical radiosensitivity (n=10) served as controls. Cells were irradiated with 5 Gy of X-rays and assayed for initial DNA damage and for residual DNA damage after 40 min of repair; the kinetics of DNA repair also was estimated. In addition, the nuclear area of unirradiated cells was extracted from the Comet data. The initial radiation-induced DNA fragmentation indicated that cells from members of two out of six NBS families were significantly more sensitive to X-irradiation than cells from the controls. Cells from four NBS families had longer DNA repair half-time values, while cells from five NBS families had significantly increased residual DNA damage following repair. The mean nuclear area of unirradiated cells processed in the Comet assay was 1.3-fold higher in cells from all NBS families than in the controls (P<0.05). Notably, the Comet assay parameters (initial and residual DNA damage and the repair kinetics) of irradiated NBS cells predicted the carrier status of the majority (86%) of blindly tested individuals. The prediction of NBS status was higher if the nuclear area of unirradiated cells was used as the endpoint. The results of this study suggest that the impaired radiation response of NBS cells should be taken into account if radiotherapy of NBS patients and carriers is required.  相似文献   

11.
Spontaneous DNA damage in peripheral blood cells was studied in healthy donors of different age (23–70 years). Alkaline comet assay was used to evaluate total DNA damage in individual cells. The individual variability in venous blood samples was higher than in capillary blood samples. The advantage of analysis of DNA damage in nucleated cells from the whole blood is more preferable compared to experiments with isolated lymphocytes because all cell populations in the sample are analyzed. Study of blood cells from healthy donors showed that the mean percent of DNA in the comet tail tended to decrease with age. However, correlation analysis revealed no relationship was found between donor age and degree of spontaneous DNA damage. __________ Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 145, No. 2, pp. 154–157, February, 2008  相似文献   

12.
The aim of this study was to evaluate the effect of a mixture of vitamins and minerals on oxidative DNA damage and the resistance of DNA to H(2)O(2)-induced DNA strand breaks in lymphocytes from 80 elderly volunteers ex vivo by means of Comet assay. The intervention with vitamin complex decreased significantly the levels of DNA damage. Our results demonstrate that the vitamin complex was able to decrease H(2)O(2)-induced DNA breakage. Our data suggest that the consumption of some vitamins may reduce the effects of oxidative DNA damage and may be useful for attaining healthy aging.  相似文献   

13.
Mesothelioma is induced almost exclusively by exposure to asbestos fibers. We have investigated whether the induction of DNA damage in human bronchial epithelial BEAS 2B cells and human mesothelial MeT 5A cells by crocidolite asbestos (2 microg/cm2) requires the presence of asbestos fibers in the cells. DNA damage was measured microscopically by the Comet assay, and the presence of fibers in the same cells was assessed using bright-field illumination. After treatment times of 6-72 hr, damage levels were, on the average, two times higher in cells with fibers than in cells without fibers. It was further found that DNA damage decreased with time in BEAS 2B cells both with and without fibers. No decrease in damage with time was seen in MeT 5A cells, suggesting that these mesothelial cells repair the initial damage poorly, lack induction of protective systems, or constantly produce high levels of damaging species. Our results indicate that crocidolite-treated human mesothelial MeT 5A and bronchial epithelial BEAS 2B cells show an elevated level of DNA damage if they contain a fiber. In comparison with epithelial BEAS 2B cells, mesothelial MeT 5A cells have more DNA damage after the crocidolite treatment and the damage is more persistent.  相似文献   

14.
Genomic stability requires that error-free genetic information be transmitted from generation to generation, a process that is dependent upon efficient DNA repair. Industrial leachates which contain mixtures of diverse chemicals are a major environmental concern. The interaction between these chemicals may have synergistic, antagonistic, or simply additive effects on biological systems. In the present study, the Comet assay was used to measure the DNA damage produced by leachates of solid wastes from flashlight battery, pigment, and tanning factories in the midgut cells and brain ganglia of Drosophila melanogaster mutants deficient in DNA repair proteins. Larvae were allowed to feed for 48 or 72 hr on diets containing 0.1, 0.5, and 2.0% (v/v) of the leachates. Physicochemical analysis run on the solid wastes, leachates, and treated larvae detected elevated levels of heavy metals. Leachates produced significantly greater levels of DNA damage in mutant strains mei41 (deficient in cell cycle check point protein), mus201 (deficient in excision repair protein), mus308 (deficient in postreplication repair protein), and rad54 (deficient in double strand break repair protein) than in the OregonR(+) wild-type strain. Larvae of the ligaseIV mutant (deficient in double strand break repair protein) were hypersensitive only to the pigment plant waste leachate. Conversely, the dnase2 mutant (deficient in protein responsible for degrading fragmented DNA) was more sensitive to DNA damage induction from the flashlight battery and tannery waste leachates. Our data demonstrate that repair of DNA damage in organisms exposed to leachates is dependent upon several DNA repair proteins, indicative of the involvement of multiple overlapping repair pathways. The study further suggests the usefulness of the Comet assay for studying the mechanisms of DNA repair in Drosophila.  相似文献   

15.
Arsenic (As) is a known human carcinogen; however, very little is known about the health consequences of occupational exposure to As. In the present study, we assessed the genotoxic damage in the blood cells and in the buccal cells of south Indian glass factory workers who are occupationally exposed to As. The As content in the whole blood of 200 workers and 165 controls was evaluated with inductively coupled plasma mass spectrometry. Blood leukocytes from the subjects were monitored for the level of DNA damage using the Comet assay (mean comet tail length); buccal cells were used to determine the frequency of micronuclei (MN). The mean As concentration was significantly higher in the workers (56.76 microg/L) than in the controls (11.74 microg/L) (P < 0.001). The workers also had increased frequencies of MN in the buccal cells and increased levels of DNA damage in leukocytes compared to the controls (P < 0.001). There were significant correlations between the genotoxicity endpoints that were evaluated and blood As concentration, smoking, age, and the duration of working in the factory. Also, a significant correlation was observed between the frequency of MN and comet tail-length for the worker samples. Our findings indicate that chronic occupational exposure to As is genotoxic and that the Comet assay and micronucleus test are useful assays for evaluating genotoxicity in humans occupationally exposed to As.  相似文献   

16.
Down syndrome (DS) is a chromosomal abnormality (trisomy 21) associated with a complex phenotype. Oxidative stress is known to play a major role in this pathology both due to genetic and epigenetic factors, suggesting that oxidative imbalance contributes to the clinical manifestation of DS. In particular, the implications of oxidative DNA damage in Down syndrome has been linked with neurodegeneration. Here we report the results of a double blind controlled trial aimed at investigating the protective effect of Coenzyme Q10 on DNA oxidation in this clinical setting using the single cell gel electrophoresis technique.  相似文献   

17.
Exposure to jet fuel damages DNA and results in a number of physiological changes in liver, lung, immune, and neurological tissue. In this study the single-cell gel electrophoresis assay or comet assay was used to compare the DNA damage in human peripheral lymphocytes produced by three jet propulsion fuels: JP-8, JP-5, and JP-8+100. These fuels consist of complex mixtures of aliphatic, aromatic, and substituted naphthalene hydrocarbons. Two exposure times were investigated which correspond to estimated occupational exposure times and concentrations of fuels were used that were based on previous fuel toxicity studies. Analysis of samples for the extent of DNA damage as determined by tail moment and percent tail DNA was performed on exposed cells following a brief recovery time. All fuels produced significant increases in DNA damage; however, only JP-8+100 was genotoxic at the lowest exposure concentration (1:500). At the highest exposure concentration (1:75), the mean tail moments for JP-8 and JP-8+100 (32.041 +/- 2.599 and 45.774 +/- 4.743, respectively) were significantly greater than for JP-5 (1.314 +/- 0.474). These results indicate that JP-8+100 is the most potent inducer of DNA damage in human peripheral lymphocytes and that both JP-8+100 and JP-8 are capable of damaging lymphocyte DNA to a greater extent than JP-5.  相似文献   

18.
Chlorpyrifos (O,O'-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothionate, CPF) is a broad spectrum organophosphate pesticide used to control a variety of pests. The present study was undertaken to test the in vivo genotoxic potential of CPF in rats, using the single cell gel electrophoresis (or comet) assay. The rats were administered 50 mg and 100 mg CPF/kg body weight daily for 1, 2, and 3 days as well as 1.12 mg and 2.24 mg CPF/kg body weight for 90 days. The level of DNA damage was estimated by scoring 100 cells per animal, dividing into five types: types 0, I, II, III, and IV. The results clearly indicate that exposure to CPF, acutely or chronically, caused a dose-dependent increase in DNA damage in the liver and brain of rats. From the present study, it can be concluded that CPF exhibits genotoxic potential in vivo.  相似文献   

19.
BACKGROUND: Occupational exposure to toxic agents may cause infertility, congenital anomalies or death in offspring, but few studies have evaluated DNA integrity in germ cells of male workers. We investigated sperm DNA integrity in individuals occupationally exposed to styrene. METHODS AND RESULTS: Semen samples were obtained from 46 male workers exposed to styrene and 27 unexposed controls (age range 18-45 years). Exposed individuals had worked for at least 2 years in the last 5 years and continuously for 6 months in factories producing reinforced plastics. The Comet assay was performed to evaluate DNA integrity in sperm, as well as semen quality analysis to assess sperm concentration and morphology. There were no differences in the results of the standard semen analysis between exposed subjects and the reference group. However, we found a significant difference (P < 0.001) in sperm DNA damage by the Comet assay between exposed subjects and the reference group. CONCLUSIONS: The Comet assay proved to be sensitive in detecting an alteration in DNA integrity in germ cells of workers exposed to styrene. This finding contributes towards the understanding of the importance of male occupational exposure within the context of genetic risk assessment in humans.  相似文献   

20.
DNA damage and cellular repair capacity were studied in 18 male fuel tanker drivers and 13 male filling‐station attendants exposed to low and very low concentrations of benzene, respectively, and compared to 20 males with no occupational exposure (controls). Exposure to airborne benzene was measured using passive personal samplers, and internal doses were assayed through the biomarkers t,t‐muconic acid, S‐phenylmercapturic acid and urinary benzene. DNA damage was evaluated using tail intensity (TI) determined by the comet assay in peripheral lymphocytes. Urinary 7‐hydro‐8‐oxo‐2’‐deoxyguanosine (8‐oxodG) was measured as a biomarker of oxidative damage. DNA repair kinetics were assessed using the comet assay in lymphocytes sampled 20 and 60 min post H2O2 exposure. Benzene exposure differed significantly between the drivers (median 246.3 µg/m3), attendants (median 13.8 µg/m3), and controls (median 4.1 µg/m3). There were no differences in TI and 8‐oxodG among the three groups, or between smokers and non‐smokers. DNA repair kinetics were similar among the drivers, attendants and controls, although the comet assay on H2O2‐damaged lymphocytes after 60 min revealed significantly lower levels of TI only in drivers. The DNA repair process in smokers was similar to that observed in drivers. In conclusion, this study found no relationship between low levels of benzene exposure and DNA damage, although there was evidence that exposure interferes with DNA repair kinetics. The biological impact of this finding on the onset of genotoxic effects in exposed workers has still to be ascertained. Environ. Mol. Mutagen. 57:151–158, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号