首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu Y  Wan T  Zhou X  Wang B  Yang F  Li N  Chen G  Dai S  Liu S  Zhang M  Cao X 《Cancer research》2005,65(11):4947-4954
Heat shock proteins (HSP) have been revealed to interact with antigen-presenting cells and have potent adjuvant capability to induce antigen-specific CD8+ CTL and Th1 responses. Our previous work shows how Hsp70-like protein 1 (Hsp70L1), as a new member of the Hsp70 subfamily, acts as potent Th1 adjuvant. Here, we report the efficient induction of tumor antigen-specific immune response by dendritic cells pulsed with recombinant fusion protein of Hsp70L1 and CEA(576-669) fragment of the carcinoembryonic antigen (CEA) containing CAP-1 (a HLA-A2-restricted CTL epitope). Fusion protein CEA(576-669)-Hsp70L1 can promote dendritic cell maturation and activate dendritic cells to produce cytokines, such as interleukin-12, interleukin-1beta, and tumor necrosis factor-alpha, and chemokines, such as macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, and regulated on activation, normal T expressed and secreted, indicating the adjuvant ability of Hsp70L1 in the fusion protein. CEA-specific HLA-A2.1-restricted CD8+ CTLs either from patients with CEA+/HLA-A2.1+ colon carcinoma or from splenocytes of immunized HLA-A2.1/Kb transgenic mice can be generated more efficiently after stimulations or immunizations with dendritic cells pulsed by CEA(576-669)-Hsp70L1 than with dendritic cells pulsed by CEA(576-669) alone, resulting in secreting more Th1 cytokine IFN-gamma and killing target cells more potently in an antigen-specific and HLA-A2.1-restricted manner. Adoptive transfer of splenocytes from transgenic mice immunized with CEA(576-669)-Hsp70L1-pulsed dendritic cells can inhibit tumor growth and prolong survival in nude mice bearing CEA+/HLA-A2.1+ human colon carcinoma more markedly. Therefore, Hsp70L1 has potent adjuvant effect in form of fusion protein, indicating that Hsp70L1 may be widely used as Th1 adjuvant to prepare antigenic fusion protein for the therapeutics of cancer or infectious diseases.  相似文献   

2.
A breast cancer-associated antigen, mammaglobin-A, is specifically expressed in 80% of primary breast tumors. The definition of immune responses against this highly expressed breast cancer-specific antigen should be of great value in the development of new therapeutic strategies for breast cancer. Thus, the purpose of this study was to identify HLA-A2-restricted mammaglobin-A-derived epitopes recognized by CD8+ cytotoxic T lymphocytes (CTL). We identified seven mammaglobin-A-derived candidate epitopes that bind the HLA-A2 molecule (Mam-A2.1-7) by means of a HLA class I-peptide binding computer algorithm from the Bioinformatics & Molecular Analysis Section of the National Institutes of Health. Subsequently, we determined that CD8+ CTLs from breast cancer patients reacted to the Mam-A2.1 (83–92, LIYDSSLCDL), Mam-A2.2 (2–10, KLLMVLMLA), Mam-A2.3 (4–12, LMVLMLAAL), Mam-A2.4 (66–74, FLNQTDETL), and Mam-A2.7 (32–40, TINPQVSKT) epitopes using an IFN-c ELISPOT assay. Interestingly, healthy individuals also showed high reactivity to the Mam-A2.2 epitope. Two CD8+ CTL lines generated in vitro against TAP-deficient T2 cells loaded with the candidate epitopes showed significant cytotoxic activity against the Mam-A2.1-4 epitopes. These CD8+CTL lines recognized a HLA-A2+breast cancer cell line expressing the Mam-A2.1 epitope. In addition, DNA vaccination of HLA-A2+/human CD8+ double-transgenic mice with a DNA construct encoding the Mam-A2.1 epitope and the HLA-A2 molecule induced a significant expansion of epitope-specific CD8+ CTLs that recognize the same HLA- A2+/Mam-A2.1+ breast cancer cell line. In conclusion, these results demonstrate the immunotherapeutic potential of mammaglobin-A for the treatment and prevention of breast cancer.  相似文献   

3.
PURPOSE: Hypochlorous acid, a product of neutrophil myeloperoxidase, is a powerful enhancer of antigen processing and presentation. In this study, we examine whether ovarian epithelial cells (SK-OV-3) exposed to hypochlorous acid can stimulate T cells from patients with ovarian epithelial cancer that recognize common tumor antigens as well as autologous tumor. EXPERIMENTAL DESIGN: T cells from human leukocyte antigen (HLA)-A2(+) and HLA-A2(-) patients or healthy controls were stimulated with autologous dendritic cells cocultured with the generic ovarian tumor line SK-OV-3, previously exposed to hypochlorous acid. RESULTS: Hypochlorous acid-treated SK-OV-3 cells drove expansion of CD8(+) T cells from HLA-A2(+) individuals, which recognized the HLA-A2-restricted tumor antigen epitopes of HER-2/neu (E75 and GP2) and MUC1 (M1.1 and M1.2). Up to 4.1% of the T cells were positive for the HER-2/neu KIFGSLAFL epitope using pentamer staining. Dendritic cells loaded with oxidized SK-OV-3 cells and further matured with CD40 agonistic antibody or monophosphoryl lipid A additionally induced CD4(+) class II-restricted responses. Critically, T cells stimulated with mature oxidized SK-OV-3 (but not a control oxidized melanoma cell line) directly recognized autologous tumor cells isolated from patient ascites. CONCLUSIONS: Immunization with mature dendritic cells loaded with a generic oxidized tumor cell line stimulates a polyclonal antitumor response that recognizes autologous tumor. These findings suggest a new immunotherapeutic strategy to extend remission in ovarian cancer.  相似文献   

4.
Induction of potent and sustained antitumor immunity depends on the efficient activation of CD8(+) and CD4(+) T cells. Immunization using dendritic cells loaded with tumor antigens constitute a powerful platform for stimulating cellular immunity. Our previous studies suggested that vaccination with an anti-idiotype antibody 3H1, which mimics a specific epitope of carcinoembryonic antigen (CEA), has the potential to break immune tolerance to CEA and induce anti-CEA antibody as well as CEA-specific CD4(+) T-helper responses in colon cancer patients as well as in mice transgenic for human CEA. Here, we have combined the anti-idiotype 3H1 with the CTL peptides of CEA to augment both T-helper and CTL responses in a clinically relevant mouse model, which is transgenic for both CEA and HLA-A2. We have evaluated the potential of two different HLA-A2-restricted epitopes of CEA pulsed into dendritic cells in a therapeutic setting. The overall immune responses and survival were enhanced in groups of mice immunized with agonist peptide for CEA(691) (YMIGMLVGV)-pulsed dendritic cells or CAP1-6D (YLSGADLNL, agonist peptide for CAP-1)-pulsed dendritic cells. Mice immunized with peptide-pulsed dendritic cells along with 3H1-pulsed dendritic cells resulted in significant increase in survival compared with mice immunized with peptide-pulsed dendritic cells alone (P < 0.02). IFN-gamma ELISPOT and (51)Cr-release assays showed that HLA-A2-restricted, CEA-specific CTL responses were augmented by combined dendritic cell vaccinations. The combined vaccination strategy resulted in increased antigen-specific proliferation of splenocytes and secretion of Th1 cytokines by CD4(+) T cells that correlated with increased survival. These results suggest the potential use of this vaccination strategy for future clinical applications.  相似文献   

5.
CTLs recognizing the HLA-A2.1-restricted, wild-type sequence p53 epitopes p53(149-157) and p53(264-272) were generated from CD8-enriched populations of nonadherent peripheral blood lymphocytes (PBLs) obtained from healthy donors. The PBLs were restimulated in vitro with peptide-pulsed granulocyte macrophage colony-stimulating factor- and interleukin (IL)-4-induced autologous dendritic cells in the presence of IL-6 and IL-12 and subsequently cultivated with IL-1alpha, IL-2, IL-4, IL-6, and IL-7. Bulk anti-p53(264-272) CTL populations were generated from PBLs obtained from two of five donors. Both CTL populations were cytotoxic against peptide-pulsed HLA-A2+ target cells, but not against untreated target cells. A CD8+ anti-p53 CTL clone designated p264#2 was isolated from one of the bulk populations. It was found to have an intermediate affinity of approximately 10(-9) M for the epitope and to mediate cytotoxicity against several human tumor cell lines, including the squamous cell carcinoma of the head and neck cell line SCC-9, which is known to present the wild-type sequence p53(264-272) epitope. In addition, CTLs reactive against p53(149-157)-pulsed targets as well as a HLA-A2+ tumor cell line were cloned from a bulk population of antitumor CTLs obtained from one of the five normal PBLs restimulated with this epitope. The results indicate that CTLs recognizing wild-type sequence epitopes can be generated from precursors present in PBLs obtained from some normal individuals using autologous dendritic cells as antigen-presenting cells and suggest that vaccine strategies targeting these epitopes can lead to antitumor CTL generation, thereby emphasizing the therapeutic potential of p53-based cancer vaccines.  相似文献   

6.
Bone metastases are one of the most common events in patients with prostate carcinoma. PTH-rP, a protein produced by prostate carcinoma and other epithelial cancers, is a key agent for the development of bone metastases. A PTH-rP-derived peptide, designated PTR-4 was identified, which is capable to bind HLA-A2.1 molecules and to generate PTH-rP-specific cytotoxic T cell (CTL) lines from healthy HLA-A2.1(+) individual peripheral-blood-mononuclear-cells (PBMC). In this model, we investigated the in vitro possibility of generating an efficient PTH-rP specific CTL response by cyclical stimulations with IL-2 and PTR-4 peptide-pulsed autologous dendritic cells (DC), of HLA-A2.1(+) tumour infiltrating lymphocytes (TIL) derived from a patient with metastatic prostate carcinoma. A T cell line generated in this way (called TM-PTR-4) had a CD3(+), CD5(+), CD4(-), CD8(+), CD45(Ro+), CD56(-) immunophenotype and a HLA-A2.1 restricted cytotoxic activity to PTR-4-peptide pulsed CIR-A2 (HLA-A2.1(+)) target cells, PTH-rP(+)/HLA-A2.1(+) CIR-A2 transfected with PTH-rP gene, prostate carcinoma LNCaP cells, and autologous metastatic prostate cancer cells (M-CaP). These lymphocytes were not cytotoxic to HLA-A2.1(+) targets not producing PTH-rP, such as peptide-unpulsed CIR-A2 and colon carcinoma SW-1463, cell lines. Our results provide evidence that PTR-4 peptide-pulsed autologous DC may break the tolerance of human TIL against the autologous tumour by inducing a PTH-rP-specific CTL immune reaction. In conclusion PTR-4 peptide-pulsed autologous DC may be a promising approach for vaccine-therapy and antigen-specific CTL adoptive immunotherapy of hormone-resistant prostrate cancer.  相似文献   

7.
The existence of overlapping CD8+ and CD4+ T-cell epitopes within certain tumor antigens provides an opportunity to test the hypothesis that relatively short peptides could be used to generate both CD8+ and CD4+ T cells against tumor. In this report, T-cell responses to a fragment of the tumor antigen NY-ESO-1 that contained an HLA-DP4-restricted helper T cell epitope as well as an HLA-A2-restricted cytotoxic T cell epitope were analyzed. One peptide, ESO:157-170 (SLLMWITQCFLPVF) was recognized by both NY-ESO-1-reactive CD8+ and CD4+ T-cell clones. Both CD4+ and CD8+ T cells were efficiently generated from the peripheral blood of multiple melanoma patients after in vitro stimulations using ESO:157-170. Dual-specific peptides containing both cytotoxic T-cell and helper T-cell epitopes may represent an attractive strategy of vaccine design aimed at generating tumor-reactive CD4+ and CD8+ T cells.  相似文献   

8.
The human HER-2/neu gene encodes a 185 kDa transmembrane glycoprotein recognized by MHC class I-restricted CTLs. Here, we report that HER-2/neu peptide CTL epitopes can also be recognized by cytotoxic NK-T lymphocytes. Unfractionated peptides derived from HLA-A2(+), HER-2/neu(+) tumor cells acid cell extract (ACE), collected from patients with metastatic ovarian cancer, were used as antigen to generate in vitro cytotoxic effectors. ACE was able to elicit from cancer patients' PBMCs both alphabetaTCR(+)CD3(+)CD56(-) and alphaTCR(+)CD3(+)CD56(+) (NK-T) CTLs that lysed ACE-sensitized T2 cells in an HLA-A2-restricted manner. The same CTL lines also recognized T2 cells pulsed with HER-2/neu-derived CTL peptide epitopes, a HER-2/neu-transfected HLA-A2(+) cell line and autologous tumor cells. alphaTCR(+)CD3(+)CD56(+) CTL lines also exhibited NK-like cytotoxicity against autologous tumor cells. CTL clones were isolated from alphaTCR(+)CD3(+)CD56(+) bulk cultures displaying both MHC- and non-MHC-restricted cytotoxicity, thus confirming the dual cytolytic function of such cells. Our data demonstrate that ACE from metastatic ovarian tumors can be used as multiepitope vaccines for generating in vitro, besides classical CTLs, NK-T cells exerting efficient MHC- and non-MHC-restricted cytotoxicity against autologous tumor targets. Such NK-T cells expressing dual cytotoxic activity may prove advantageous in cancer immunotherapy.  相似文献   

9.
In previous studies CD8+ T cells specific for melanocyte antigens have been frequently found in melanoma patients responding to interleukin-2 (IL-2)-based therapies. In our study we analyzed the suitability of using circulating T cells from melanoma patients with clinical response after IL-2-based therapy to identify novel T-cell epitopes from defined tumor antigens. Using unstimulated peripheral blood mononuclear cells and the interferon-gamma (IFN-gamma) ELISPOT assay, we studied CD8(+) T-cell responses against 5 peptides from the tumor antigen tyrosinase (Tyr) selected by epitope prediction using an HLA-A1-binding computer algorithm. T cells specifically secreting IFN-gamma in response to 3 of these 5 peptides, namely, Tyr (454-463), Tyr (146-156) and Tyr (243-251), could be detected in 4 of 4 HLA-A1-positive patients with clinical response. In contrast, no T-cell responses against these peptides were seen in 6 HLA-A1-positive melanoma patients with progressive disease and in 8 healthy subjects. We could generate specific cytotoxic T lymphocytes (CTL) against Tyr (454-463) using peptide-pulsed autologous dendritic cells as antigen-presenting cells. The induced CTLs efficiently killed melanoma cells that express HLA-A1 and tyrosinase. The peptides Tyr (146-156) and Tyr (243-251) had recently been identified as CTL epitopes by other groups. Further ex vivo characterization of the T cells reactive against the novel epitope Tyr (454-463) in 1 patient by multicolor flow cytometry showed specific CD3+/CD8+/IFN-gamma+ T cells with frequencies of up to 0.41% of the CD3+/CD8+ T-cell population. Most of this T-cell population also expressed granzyme B. Our data confirm that in patients with tumor regressions induced by immunotherapy or chemoimmunotherapy circulating T cells reactive with tyrosinase epitopes can frequently be detected. Peripheral blood T cells from such patients are a valuable source for screening peptides selected by epitope prediction This strategy facilitates the rapid identification of immunogenic T-cell epitopes that are probable targets of immune-mediated tumor rejection.  相似文献   

10.
Dendritic cells (DCs) phagocytose apoptotic influenza-infected monocytes and cross-present influenza antigen to CD8+ T cells, generating a specific CTL response. We investigated whether apoptotic melanoma cells, presented by this mechanism, can lead to CTL responses to tumor-associated antigens and melanoma cells. Apoptotic HLA-A2- MEL-397 melanoma cells were internalized by HLA-A2+ immature monocyte-derived DCs but failed to induce maturation of DCs. When exposed to interleukin 6, interleukin 1beta, tumor necrosis factor alpha, and prostaglandin E2, DCs containing apoptotic MEL-397 cell material matured normally [cross-presenting DCs (cp-DCs)]. Autologous CD8+ CTL lines generated with cp-DCs produced tumor necrosis factor when stimulated with HLA-A2-binding immunodominant peptides from MelanA/MART1 and MAGE-3 (expressed by MEL-397 cells) but not tyrosinase (absent in MEL-397). T2 target cells loaded with the respective peptides were lysed by these cell lines, although to a lesser extent than by CTL lines generated in the presence of mature DCs and peptides from melanoma-associated h antigens. In contrast, lines generated with cp-DCs lysed HLA-A2+ MEL-526 melanoma cells or allogenic HLA-A2+ cp-DCs efficiently, whereas the CTL generated with DCs and peptides had little lytic activity. Mature DCs containing apoptotic tumor cells may thus represent an alternative approach for the therapy of malignant tumors.  相似文献   

11.
Tumor-derived peptides presented by MHC class I molecules are targets for tumor rejection by CD8+ CTLs. MHC-restricted CD8+ CTLs are required also for the identification and characterization of tumor antigens that will be useful for immune therapy. For many human solid tumors, however, tumor antigens remain undefined because of the difficulty of generating MHC-restricted, tumor-specific CTLs required for their analysis. CD8+ CTL responses are modulated by CD4+ helper T cells and by antigen-presenting cells. In this study, highly purified CD8+ T cells were mixed with tumor cells in primary cultures in the absence of any other cells to reduce the complexity of CTL generation. Tumor cells were transfected with HLA-A1 or HLA-A2 and used to stimulate partly matched HLA-A1- or HLA-A2-positive CD8+ T cells. Partial MHC class I matching of tumor and CD8+ T cells and omission of other cells in primary culture was highly effective in generating MHC class I-restricted CTL to poorly immunogenic small cell lung carcinomas (SCLCs). Cytotoxicity was further enhanced by cotransfection of tumor cells with B7.1 (CD80). ICAM-1 (CD54) was not as effective as costimulation. SCLC cells presented tumor-specific peptides with HLA-A1 and HLA-A2 and were lysed by A1- or A2-restricted CD8+ CTLs. A1- and A2-restricted CD8+ CTLs detected shared tumor antigens on unrelated SCLC tumor lines in addition to private antigens. The use of direct antigen presentation by MHC class I-transfected tumors to MHC class I-matched CD8+ T cells is an effective way to generate MHC class I-restricted CTLs toward poorly immunogenic tumors in vitro, permitting the molecular identification of their tumor antigens.  相似文献   

12.
PURPOSE: For identification of CTL epitopes useful for cancer vaccines, it is crucial to determine whether cognate epitopes are presented on the cell surface of target cancer cells through natural processing of endogenous proteins. For this purpose, we tried to use the cellular machinery of both mice and human to define naturally processed CTL epitopes derived from two "cancer germ line" genes, MAGE-A4 and SAGE. EXPERIMENTAL DESIGN: We vaccinated newly produced HLA-A2402 transgenic mice with DNA plasmids encoding target antigens. Following screening of synthesized peptides by splenic CD8(+) T cells of vaccinated mice, we selected candidate epitopes bound to HLA-A2402. We then examined whether human CD8(+) T cells sensitized with autologous CD4(+) PHA blasts transduced by mRNA for the cognate antigens could react with these selected peptides in an HLA-A2402-restricted manner. RESULTS: After DNA vaccination, murine CD8(+) T cells recognizing MAGE-A4(143-151) or SAGE(715-723) in an HLA-A2402-restricted manner became detectable. Human CTLs specific for these two peptides were generated after sensitization of HLA-A2402-positive CD8(+) T cells with autologous CD4(+) PHA blasts transduced with respective mRNA. CTL clones were cytotoxic toward tumor cell lines expressing HLA-A2402 and cognate genes. Taken together, these CTL epitopes defined in HLA-A24 transgenic mice are also processed and expressed with HLA-A2402 in human cells. The presence of SAGE(715-723)-specific precursors was observed in HLA-A2402-positive healthy individuals. CONCLUSIONS: Two novel HLA-A2402-restricted CTL epitopes, MAGE-A4(143-151) and SAGE(715-723), were identified. Our approach assisted by cellular machinery of both mice and human could be widely applicable to identify naturally processed CTL epitopes.  相似文献   

13.
Wei S  Kryczek I  Zou L  Daniel B  Cheng P  Mottram P  Curiel T  Lange A  Zou W 《Cancer research》2005,65(12):5020-5026
To directly dissect the role of each immune component in human tumor immunopathogenesis, we have studied the interaction between dendritic cells and T cells in the tumor environment of patients with ovarian carcinoma. We previously reported that functional plasmacytoid dendritic cells, but not functionally mature myeloid dendritic cells, accumulated in tumor microenvironments. We now show that tumor ascites macrophage-derived dendritic cells induced tumor-associated antigen-specific CD8+ T cells with effector functions. Strikingly, tumor ascites plasmacytoid dendritic cells induced interleukin-10+ CCR7+ CD45RO+ CD8+ regulatory T cells. Four characteristics have been identified in tumor plasmacytoid dendritic cell-induced CD8+ regulatory T cells: (a) induction of CD8+ regulatory T cells is independent of CD4+ CD25+ T cells; (b) CD8+ regulatory T cells significantly suppress myeloid dendritic cell-mediated tumor-associated antigen-specific T cell effector functions through interleukin-10; (c) repetitive myeloid dendritic cell stimulation can recover CD8+ regulatory T cell-mediated poor T cell proliferation, but not T cell effector function; (d) CD8+ regulatory T cells express functional CCR7, and efficiently migrate with lymphoid homing chemokine MIP-3beta. Primary suppressive CCR7+ CD45RO+ CD8+ T cells are found in the tumor environment of patients with ovarian cancers. Thus, tumor-associated plasmacytoid dendritic cells contribute to the tumor environmental immunosuppressive network. Collectively, tumors manipulate tumor microenvironmental dendritic cell subset distribution and function to subvert tumor immunity. The data are relevant to understanding tumor immunopathology as well as reevaluating tumor immunotherapeutic strategies.  相似文献   

14.
The Ii-Key fragment from the MHC class II-associated invariant chain (or Ii protein) has been shown to facilitate direct charging of MHC class II epitopes to the peptide binding groove. The purpose of the present study was to test the potential of a series of Ii-Key/HER-2/neu776-790 hybrid peptides to generate increased frequencies of peptide-specific CD4+ T cells over the native peptide in mice transgenic (Tg) for a chimeric human mouse class II molecule (DR4-IE) (H-2b) as well as their antitumor potency. Following in vivo priming, such hybrid peptides induced increased proliferation and frequencies of IFN-gamma producing CD4+ T cells in response to either syngeneic dendritic cells pulsed with native peptide, or HLA-DR4+ human tumor cell lines expressing HER-2/neu. Hybrid peptides were more stable in an off-rate kinetics assay compared to the native peptide. In addition, antigen-specific CD4+ T cells from hybrid peptide immunized DR4-IE Tg mice synergized with HER-2/neu(435-443)-specific CD8+ T cells from HLA-A2.1 Tg HHD (H-2b) mice in producing antitumor immunity into SCID mice xenografted with the HER-2/neu+, HLA-A2.1+ and HLA-DR4+ FM3 human melanoma cell line. High proportions of these adoptively transferred HER-2/neu peptide-specific CD4+ and CD8+ T cells infiltrated FM3-induced tumors (tumor infiltrating lymphocytes; TIL) in SCID mice. CD8+ TIL exhibited long-lasting antitumor activity when cotransferred with CD4+ TIL, inducing regression of FM3 tumors in a group of untreated, tumor-bearing SCID mice, following adoptive transfer. Our data show that Ii-Key modified HER-2/neu776-790 hybrid peptides are sufficiently potent to provide antigen-specific CD4+ TH cells with therapeutic antitumor activity.  相似文献   

15.
16.
The aim of antitumor immunotherapy is to induce CTL responses against autologous tumors. Previous work has shown that fusion of human dendritic cells and autologous tumor cells induce CTL responses against autologous tumor cells in vitro. However, in the clinical setting of patients with colorectal carcinoma, a major difficulty is the preparation of sufficient amounts of autologous tumor cells. In the present study, autologous dendritic cells from patients with colorectal carcinoma were fused to allogeneic colorectal tumor cell line, COLM-6 (HLA-A2(-)/HLA-24(-)), carcinoembryonic antigen (CEA)(+), and MUC1(+) as an alternative strategy to deliver shared colorectal carcinoma antigens to dendritic cells. Stimulation of autologous T cells by the fusion cells generated with autologous dendritic cells (HLA-A2(+) and/or HLA-A24(+)) and allogeneic COLM-6 resulted in MHC class I- and MHC class II-restricted proliferation of CD4(+) and CD8(+) T cells, high levels of IFN-gamma production in both CD4(+) and CD8(+) T cells, and the simultaneous induction of CEA- and MUC1-specific CTL responses restricted by HLA-A2 and/or HLA-A24. Finally, CTL induced by dendritic cell/allogeneic COLM-6 fusion cells were able to kill autologous colorectal carcinoma by HLA-A2- and/or HLA-A24-restricted mechanisms. The demonstration of CTL activity against shared tumor-associated antigens using an allogeneic tumor cell line, COLM-6, provides that the presence of alloantigens does not prevent the development of CTL with activity against autologous colorectal carcinoma cells. The fusion of allogeneic colorectal carcinoma cell line and autologous dendritic cells could have potential applicability to the field of antitumor immunotherapy through the cross-priming against shared tumor antigens and provides a platform for adoptive immunotherapy.  相似文献   

17.
Antigens recognized by cytotoxic T cells (CTL) are expressed as peptides presented by MHC class I molecules. To isolate peptides from the MHC molecule HLA-A2.1 and identify epitopes that define the activity profile of ovarian CD8(+) CTL, peptides were separated by reverse-phase high-pressure liquid chromatography (HPLC), and analyzed by electrospray ionization-tandem mass spectrometry (ES-MS). HLA-A2.1-bound peptides were extracted from the ovarian tumor line SKOV3 transfected with the HLA-A2.1 (clone 1E4) and C1R.A2 cells transfected with HCA-A2.1 and HER-2 (clone HER-2.J) by immunoaffinity chromatography. At least five peaks of distinct retention times (termed 1, 2A, 2B, 2C, and 3) were recognized by an ovarian HER-2(high) (HER-2(hi)) tumor-associated HLA-A2(+), CD8(+) CTL line. ES-MS analysis was performed for peak 2B peptides from both types of cells. In the four consecutive fractions of peak 2B, at least 27 and 16 ion species of mass-to-charge (m/z) ratio between 760-1300 were detected in 1E4 and HER-2.J cells, respectively. The abundance of four 1E4 and six HER-2.J ions believed to be peptides in four consecutive HPLC fractions in this peak matched the CTL activity profile. Of these, two ions with actual m/z ratios 497.3-498.4 and 792.8-793.2, were found in the peak 2B from both types of cells. Since little is known about the tumor Ag recognized in human cancers, characterization of these ions may lead to identification of novel tumor Ag in breast and ovarian cancers. This may also be useful in developing quantitative approaches to the identification of tumor Ag and the determination of epitope density on tumor and normal cells. This may help characterize the relationship between tumor immunity and epitope tolerance in human epithelial cancers.  相似文献   

18.
Wang W  Epler J  Salazar LG  Riddell SR 《Cancer research》2006,66(13):6826-6833
Immunotherapy for breast cancer using cytotoxic T cells (CTL) is hindered by the lack of well-characterized breast cancer antigens that are expressed in most breast tumor cells and recognized by CD8+ CTL. A recently described breast tissue differentiation antigen, NY-BR-1, is expressed in >80% breast tumors and elicits a humoral response in a subset of breast cancer patients. To identify potential NY-BR-1 epitopes that are recognized by CTL, CD8+ T cells were stimulated in vitro with autologous dendritic cells pulsed with NY-BR-1 peptides that were predicted to bind to HLA-A2. In multiple normal female donors and breast cancer patients, specific CD8+ CTL responses were detected by enzyme-linked immunospot assay against several NY-BR-1 peptides after two cycles of stimulation. CD8+ CTL clones against three NY-BR-1 epitopes were isolated and recognized peptide-pulsed target cells with high avidity. T-cell clones specific for one of the NY-BR-1 epitopes (p904) also recognized breast tumor cells expressing NY-BR-1, NY-BR-1(-) cells transfected with a cDNA encoding the NY-BR-1 protein, and autologous dendritic cells pulsed with opsonized NY-BR-1+ breast tumor cells. Taken together, these results show that the p904 epitope derived from NY-BR-1 is efficiently processed and presented endogenously and identify NY-BR-1 as a promising target for T-cell-based immunotherapy for breast cancer.  相似文献   

19.
Allogeneic human histocompatibility leukocyte antigen (HLA)-matched tumor cell lines that have been made immunogenic by the transfer of genes encoding for costimulatory molecules such as CD80 are considered to be potential vaccines for the induction of systemic immune reactions in cancer patients. We used a human HLA-A2.1+ CD80-transfected breast carcinoma cell line (KS-CD80) and investigated in vitro the efficiency at which antigen (Ag)-specific responses were induced following the stimulation of allogeneic HLA-A2.1-matched T lymphocytes. The influenza matrix protein M1 was used as a model Ag. It was either endogenously expressed or exogenously loaded as a peptide (matrix protein), and the frequency of the generated specific T cells was determined. The expression of CD80 in KS cells was required for an effective activation and expansion of Ag-specific T cells. This response was augmented following the pretreatment of KS-CD80 cells with interferon-gamma and tumor necrosis factor-alpha. Interleukin-4 (IL-4), IL-7, and IL-12 further increased T-cell expansion. IL-7 was best at supporting the generation of T cells with Ag specificity. This investigation demonstrates that allogeneic CD80+ tumor cells can induce Ag-specific, HLA-restricted T lymphocytes at a high frequency. Our study supports the use of allogeneic cell lines for the induction of specific T-cell responses in tumor patients.  相似文献   

20.
Dendritic cells are professional antigen-presenting cells capable of inducing and regulating innate and antigen-specific immune responses. Therapeutic cancer vaccines using ex vivo engineered or in vivo targeted dendritic cells are being evaluated in clinical trials. T-helper type-1 (Th1)-skewed immune responses are characterized by the preferential induction of antigen-specific IFN-gamma-secreting CD4+ T cells and correlate with effector mechanisms important for tumor and viral immunity. Methods to "polarize" human monocyte-derived dendritic cells for the preferential induction of Th1-skewed immune responses have been developed, and polarized dendritic cells (DC1s) are being evaluated in preclinical and clinical studies. Here, we show that stimulation of bone marrow-derived murine dendritic cell populations with poly(I:C) and CpGs results in phenotypic maturation of dendritic cells and synergistic induction of durable, high-level IL-12p70 secretion characteristic of human type-1 polarized dendritic cells. Functionally, these dendritic cells induce antigen-specific Th1-type CD4+ T-cell activation in vitro and in vivo. Dendritic cell maturation and polarization are not inhibited by the presence of live B16 melanoma tumor cells, and tumor-loaded DC1s induce delayed-type hypersensitivity responses in vivo. DC1s loaded with B16 melanoma cells and injected into tumor-bearing mice induce Th1-skewed tumor-specific CD4+ T cells and a significant reduction in tumor growth. Tumor infiltrates in DC1-immunized animals are characterized by the presence of CD4+ T cells and activated macrophages. These results show a murine model of DC1 function and suggest an important role for CD4+ T cells and macrophages in DC1-induced antitumor immune responses. They have implications for the future development of DC1-based immunotherapies and strategies for clinical immune monitoring of their effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号