首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
We previously have characterized a pathogenic mtDNA mutation in the tRNAAsn gene. This mutation (G5703A) was associated with a severe mitochondrial protein synthesis defect and a reduction in steady-state levels of tRNAAsn. We now show that, although transmitochondrial cybrids harboring homoplasmic levels of the mutation do not survive in galactose medium, several galactose-resistant clones could be obtained. These cell lines had restored oxidative phosphorylation function and 2-fold higher steady-state levels of tRNAAsn when compared with the parental mutant cell line. The revertant lines contained apparently homoplasmic levels of the mutation and no other detectable alteration in the tRNAAsn gene. To investigate the origin of the suppression, we transferred mtDNA from the revertants (143B/206 TK-) to a different nuclear background (143B/207 TK-, 8AGr). These new transmitochondrial cybrids became defective once again in oxidative phosphorylation and regained galactose sensitivity. However, galactose-resistant clones could also be obtained by growing the 8AGr transmitochondrial cybrids under selection. Because the original rate of reversion was higher than that expected by a classic second site nuclear mutation, and because of the aneuploid features of these cell lines, we searched for the presence of chromosomal alterations that could be associated with the revertant phenotype. These studies, however, did not reveal any gross changes. Our results suggest that modulation of the dosage or expression of unknown nuclear-coded factor(s) can compensate for a pathogenic mitochondrial tRNA gene mutation, suggesting new strategies for therapeutic intervention.  相似文献   

2.
Mutations in mitochondrial tRNA (mt-tRNA) genes are well recognized as a common cause of human disease, exhibiting a significant degree of clinical heterogeneity. While these differences are explicable, in part, by differences in the innate pathogenicity of the mutation, its distribution and abundance, other factors, including nuclear genetic background, mitochondrial DNA (mtDNA) haplotype and additional mtDNA mutations may influence the expression of mt-tRNA mutations. We describe the clinical, biochemical and molecular findings in a family with progressive myopathy, deafness and diabetes and striking respiratory chain abnormalities due to a well-characterized heteroplasmic mt-tRNA mutation in the mt-tRNA(Ser(UCN)) (MTTS1) gene. In addition to the m.7472Cins mutation, all individuals were homoplasmic for another variant, m.7472A > C, affecting the adjacent nucleotide in the mt-tRNA(Ser(UCN)) structure. In addition to available patient tissues, we have analysed transmitochondrial cybrid clones harbouring homoplasmic levels of m.7472A > C and varying levels of the m.7472Cins mutation in an attempt to clarify the precise role of the m.7472A > C transversion in the underlying respiratory chain abnormality. Evidence from both in vivo and in vitro studies demonstrate that the m.7472A > C is able to modify the expression of the m.7472Cins mutation and would suggest that it is not a neutral variant but appears to cause a biochemical defect by itself, confirming that homoplasmic mtDNA variants can modulate the phenotypic expression of pathogenic, heteroplasmic mtDNA mutations.  相似文献   

3.
Introduction: We present a family comprising a clinically normal mother and two daughters, each with severe encephalopathy with onset in late childhood. A third daughter had died previously of an earlier onset but neuropathologically similar disease.

Methods: Sequence analysis of the entire mtDNA was carried out in muscle, fibroblasts, and lymphocytes of the affected daughters and unaffected mother. Biochemical analysis of individual respiratory chain enzymes was performed on the same tissues, and on several transmitochondrial cybrid clones containing the nucleus of a 143B.206 osteosarcoma cell line and the mutant mtDNA.

Results: Genetic analyses revealed in both daughters and mother the presence of a novel mutation in the tRNAIle gene of mtDNA, which was homoplasmic in fibroblasts, lymphocytes, and skeletal muscle of the two patients. It was also homoplasmic in fibroblast and skeletal muscle samples of the mother, and approximately 97% heteroplasmic in her lymphocytes. Combined defects of complexes I and IV of the mitochondrial respiratory chain were found not only in fibroblasts of the two probands, but surprisingly also in those of their clinically unaffected mother. The respiratory chain defect segregated in transmitochondrial cybrids containing the nucleus of a 143B.206 osteosarcoma cell line and the mutant mtDNA, indicating that the latter was responsible for the biochemical phenotype.

Discussion: Our results support the concept that homoplasmic mutations in tRNA genes can be responsible for mitochondrial disorders characterised by extremely variable penetrance. Albeit still unexplained, this phenomenon has important consequences in the nosological characterisation, clinical management, and genetic counselling of mitochondrial disorders.

  相似文献   

4.
Although over 200 pathogenic mitochondrial DNA (mtDNA) mutations have been reported to date, determining the genetic aetiology of many cases of mitochondrial disease is still not straightforward. Here, we describe the investigations undertaken to uncover the underlying molecular defect(s) in two unrelated Caucasian patients with suspected mtDNA disease, who presented with similar symptoms of myopathy, deafness, neurodevelopmental delay, epilepsy, marked fatigue and, in one case, retinal degeneration. Histochemical and biochemical evidence of mitochondrial respiratory chain deficiency was observed in the patient muscle biopsies and both patients were discovered to harbour a novel heteroplasmic mitochondrial tRNA (mt-tRNA)(Ser(AGY)) (MTTS2) mutation (m.12264C>T and m.12261T>C, respectively). Clear segregation of the m.12261T>C mutation with the biochemical defect, as demonstrated by single-fibre radioactive RFLP, confirmed the pathogenicity of this novel variant in patient 2. However, unusually high levels of m.12264C>T mutation within both COX-positive (98.4 ± 1.5%) and COX-deficient (98.2 ± 2.1%) fibres in patient 1 necessitated further functional investigations to prove its pathogenicity. Northern blot analysis demonstrated the detrimental effect of the m.12264C>T mutation on mt-tRNA(Ser(AGY)) stability, ultimately resulting in decreased steady-state levels of fully assembled complexes I and IV, as shown by blue-native polyacrylamide gel electrophoresis. Our findings expand the spectrum of pathogenic mutations associated with the MTTS2 gene and highlight MTTS2 mutations as an important cause of retinal and syndromic auditory impairment.  相似文献   

5.
Four mitochondrial DNA (mtDNA) mutations at nps 3460, 11778, 14484, and 14459 account for roughly 90% of cases of Leber hereditary optic neuropathy (LHON) and are designated as "primary" LHON mutations since they act as major predisposition factors for LHON. Although each primary mutation can arise independently on different mtDNA backgrounds during human evolution, they characteristically do not co-occur in LHON patients. We report here a family with the simultaneous occurrence of the 11778A and 14484C mutations. Neuro-ophthalmological examination of the proband, a nine-year-old Caucasian female, revealed the bilateral optic atrophy, central scotomas, and reduced visual acuity typical of LHON. Her mother had normal appearing optic discs and is today visually asymptomatic. Analysis of the proband blood mtDNA revealed that she harbored both the 11778A (heteroplasmic, 94% mutant) and the 14484C (homoplasmic mutant) mutation. This genotype was maintained in proband lymphoblasts and transmitochondrial cybrids. The mother also had both mutations, with the 14484C mutation homoplasmic in all cell types examined. However, only 31% of her blood mtDNAs carried the 11778 mutation, which segregated to essentially 100% wild-type in lymphoblast and cybrid mtDNA. Complex I-linked respiration and specific enzyme activity were consistently lowest in proband lymphoblast and cybrid mitochondria compared to those from the mother, 11778A patients, 14484C patients, or controls, thus demonstrating both a deleterious synergistic interaction between the 11778A and 14484C mutations and the magnitude of 11778A-associated complex I dysfunction. Remarkably, spontaneous vision recovery occurred in the proband, highlighting the complexities encountered when associating mtDNA genotype and complex I function with LHON expression.  相似文献   

6.
Four mitochondrial DNA (mtDNA) mutations at nps 3460, 11778, 14484, and 14459 account for roughly 90% of cases of Leber hereditary optic neuropathy (LHON) and are designated as “primary” LHON mutations since they act as major predisposition factors for LHON. Although each primary mutation can arise independently on different mtDNA backgrounds during human evolution, they characteristically do not co‐occur in LHON patients. We report here a family with the simultaneous occurrence of the 11778A and 14484C mutations. Neuro‐ophthalmological examination of the proband, a nine‐year‐old Caucasian female, revealed the bilateral optic atrophy, central scotomas, and reduced visual acuity typical of LHON. Her mother had normal appearing optic discs and is today visually asymptomatic. Analysis of the proband blood mtDNA revealed that she harbored both the 11778A (heteroplasmic, 94% mutant) and the 14484C (homoplasmic mutant) mutation. This genotype was maintained in proband lymphoblasts and transmitochondrial cybrids. The mother also had both mutations, with the 14484C mutation homoplasmic in all cell types examined. However, only 31% of her blood mtDNAs carried the 11778 mutation, which segregated to essentially 100% wild‐type in lymphoblast and cybrid mtDNA. Complex I‐linked respiration and specific enzyme activity were consistently lowest in proband lymphoblast and cybrid mitochondria compared to those from the mother, 11778A patients, 14484C patients, or controls, thus demonstrating both a deleterious synergistic interaction between the 11778A and 14484C mutations and the magnitude of 11778A‐associated complex I dysfunction. Remarkably, spontaneous vision recovery occurred in the proband, highlighting the complexities encountered when associating mtDNA genotype and complex I function with LHON expression. © 2001 Wiley‐Liss, Inc.  相似文献   

7.
Treatment of mouse LMTK cells with the toxic mitochondrial dye rhodamine 6G (R-6G) at 2.5 μg/ml for 7 days prevented cell growth while maintaining viability, with less than 10−6 cells recovering to form colonies. Pre-treatment of LMTK cells with R-6G was followed by fusion with enucleated mouse 501–1 cells harboring a homoplasmic point mutation in the mitochondrial DNA (mtDNA) 16S rRNA gene conferring chloramphenicol resistance (CAPR). Cybrids and any surviving unfused LMTK cells were selected in BrdU with or without CAP and their mtDNAs screened for the presence of the CAPR marker. Approximately 1 colony per 2×105 LMTK cells appeared in the fusion plates selected both with and without CAP. Most clones investigated were confirmed to be cybrids by showing the presence of the generally homoplasmic CAPR mutation, whether or not CAP selection was used. Hence, R-6G pre-treatment permits construction of transmitochondrial cybrid cell lines carrying a variety of mtDNAs, without the need for ρo cell lines.  相似文献   

8.
Given its relative ease, screening the entire mitochondrial DNA (mtDNA) for heteroplasmic or novel homoplasmic mutations has become part of the routine diagnostic workup for the molecular geneticist confronted with a disease case exhibiting clinical and biochemical features of mitochondrial dysfunction. "Novelty" of a given mtDNA variant is most often equated with nonregistration in the extensive MITOMAP database (www.mitomap.org). This practice has led to a number of spurious findings and wrong conclusions concerning the pathogenic status of specific mtDNA mutations, especially in the absence of proper evaluation and pathogenicity scoring. We demonstrate by way of real cases targeting the mt-tRNA(Cys) (MT-TC) gene and a stretch within the MT-ND3 gene, that a straightforward Google search can identify twice as many previously observed mutations than any MITOMAP query could achieve. Further, we reassess the recent rediscovery of m.15287T>C by listing all known occurrences and, where possible, providing the haplogroup context, shedding new light on the potential pathogenicity status of m.15287T>C.  相似文献   

9.
Respiratory complex III (CIII) is the first enzymatic bottleneck of the mitochondrial respiratory chain both in its native dimeric form and in supercomplexes. The mammalian CIII comprises 11 subunits among which cytochrome b is central in the catalytic core, where oxidation of ubiquinol occurs at the Qo site. The Qo‐ or PEWY‐motif of cytochrome b is the most conserved through species. Importantly, the highly conserved glutamate at position 271 (Glu271) has never been studied in higher eukaryotes so far and its role in the Q‐cycle remains debated. Here, we showed that the homoplasmic m.15557G > A/MT‐CYB, which causes the p.Glu271Lys amino acid substitution predicted to dramatically affect CIII, induces a mild mitochondrial dysfunction in human transmitochondrial cybrids. Indeed, we found that the severity of such mutation is mitigated by the proper assembly of CIII into supercomplexes, which may favor an optimal substrate channeling and buffer superoxide production in vitro.  相似文献   

10.
We ascertained a large North American family, LMG309, with matrilineal transmission of non-syndromic, progressive sensorineural hearing loss (SNHL). There was no history of aminoglycoside exposure, and penetrance was complete. We sequenced the entire mitochondrial genome and identified the previously reported 7510T>C transition in the tRNASer(UCN) gene. The 7510T>C was homoplasmic in all affected members. The LMG309 mitochondrial sequence belongs to an unnamed subgroup of mitochondrial haplogroup H. We demonstrate that the previously reported Spanish family S258 carries 7510T>C on a different mitochondrial sub-haplogroup, H1. We did not detect 7510T>C among 79 Caucasian haplogroup H control samples, including 11 from sub-haplogroup H1 and one from the same sub-haplogroup as LMG309. Our results provide strong genetic evidence that 7510T>C is a pathogenic mutation that causes non-syndromic SNHL.  相似文献   

11.
We studied the inheritance and cellular segregation of a maternally inherited, heteroplasmic MT‐ND5 mutation, m.13271T>C, previously shown to cause only exercise intolerance despite being present in multiple tissues. The mutation was present at low levels in early passage, bulk muscle culture, but on subcloning, only homoplasmic clones were found. Studies of transmission showed that the mutation expanded from very low levels in the patient's mother to higher levels in the patient, particularly skeletal muscle, but was not found in the placenta and umbilical cord blood of her child. Our study suggests that the m.13271T>C is either already strictly segregated (intercellular heteroplasmy), or moves rapidly to this state in cultured cells. Transmission studies suggest that intercellular heteroplasmy may also be present in the patient's germline. Although rapid shifts in heteroplasmic mitochondrial DNA mutations reflect a bottleneck in the female germline, complete segregation will accentuate the effects of this and further complicate genetic counseling.  相似文献   

12.
Objective: To analyze mutations of DYSF gene in two pedigrees affected with limb-girdle muscular dystrophy 2B (LGMD-2B). Methods: Genomic DNA was extracted from peripheral blood samples of the two probands and unaffected family members. Variant sites were screened by next-generation sequencing using gene panel as well as Sanger sequencing. Results: Four pathogenic mutations of the DYSF gene were detected, which included a de novo mutation and three mutations with uncertain significance. In pedigree 1, the proband carried compound heterozygous mutations of c. 1667T>C (p. Leu556Pro) and c. 5567T>A (p. Vall856Glu), which were respectively inherited from her mother and father. Proband of pedigree 2 carried compound heterozygous mutations of c. 4853A>G (p. Tyrl618Cys) and c. 4876G> A (p. Vall612Ile), among which c. 4876G> A (p. Vall626Ile) was also found in his father and grandfather, while c. 4853A>G (p. Tyrl618Cys) was detected in his mother and grandmother. Conclusion: The two compound heterozygous mutations of the DYSF gene probably underlie the LGMD2B in the two pedigrees. Next generation sequencing has conferred great advantage for gene diagnosis of hereditary myopathy. © 2018 MeDitorial Ltd. All rights reserved.  相似文献   

13.
线粒体DNA11778突变所致Leber遗传性视神经病变外显率分析   总被引:10,自引:0,他引:10  
目的 分析携带线粒体DNA(mitochondrialDNA,mtDNA)11778突变者视神经病变的外显率。方法 对经基因诊断确定为mtDNA11778突变的Leber遗传性视神经病变(Leber hereditary optic neuropathy,LHON)家系进行分析。确定mtDNA11778突变携带者及患者。结果 16个家系中mtDNA11778突变携带者130人,其中男65人,女65人,130人突变携带者中43人患病,外显率33.1%。男性患者34人,男性外显率52.3%,女性患者9人,女性外显率13.8%,男女患病比率3.8:1,患者中男性占79%。结论 携带纯合性mtDNA11778位点突变的中国人,LHON外显率近1/3。  相似文献   

14.
We discovered a new homoplasmic mutation in the mitochondrial cysteine tRNA of a 60-year-old Caucasian male suffering from asymmetrical pure lower motor neuron disease (MND) and temporal lobe epilepsy (TLE). Furthermore, titrations with Amytal, an inhibitor of NADH:CoQ oxidoreductase, revealed mild mitochondrial dysfunction in skeletal muscle tissue, which was described in patients with MND in an earlier report. The mutation was undetectable in 155 Caucasian controls of both sexes, in 40 MND patients and in 13 individuals suffering from TLE. It was, however, detected in a heteroplasmic state in the patient's mother, who did not suffer from a neurological disorder. Since this rare mutation affected a nonconserved base position and was not observed in MND or TLE materials, its relation to disease remains unclear.  相似文献   

15.
Mutations in mitochondrial DNA have been implicated in both, non-syndromic and aminoglycoside-induced hearing loss. In the present study, we have performed the systematic mutation screening of the COI/tRNA(Ser(UCN)) genes in 250 unrelated Polish subjects with hearing impairment. Three different homoplasmic sequence variants were identified, including one common polymorphism m.7476 C>T in tRNA(Ser(UCN)) and two mutations, m.7444 G>A and m.7445 A>G localized in the COI/precursor of tRNA(Ser(UCN)). The incidence of m.7444 G>A substitution was estimated at 1.6% (4/250), however variable penetrance of hearing loss, age of onset and hearing thresholds among m.7444 G>A carriers was observed. Two subjects had the positive history of aminoglycoside exposure and one of them harbored both m.7444 G>A and 12S rRNA m.1555 A>G mutations. Those suggest that m.7444 G>A itself is not sufficient to produce a clinical phenotype and additional modifier factors are required for pathogenic manifestation of m.7444 G>A substitution. Moreover, we have described the first Polish family with non-syndromic hearing loss, harboring m.7445 A>G mutation. The penetrance of hearing loss in this pedigree was 58% when aminoglycoside-induced hearing impairment was included, and 8% when ototoxic effect was excluded. This finding strongly suggests the possible role of m.7445 A>G in susceptibility to aminoglycoside induced-hearing loss.  相似文献   

16.
Leber hereditary optic neuropathy (LHON) has been associated with a mitochondrial mutation at position 11,778 in the ND4 gene in about 50% of families. Individuals from six Swedish families with LHON were investigated for the presence of this mutation using allele-specific oligonucleotides and a sensitive chemoluminescent detection system. The point mutation was seen in mitochondrial DNA extracted from leukocytes in five families, four of which showed a homoplasmic pattern. One family showed a heteroplasmic pattern and one family was negative for the mutation. Six adults without impaired vision from three LHON families were detected as carriers with a degree of mutated mitochondrial DNA similar to that in affected relatives. The results show that the penetrance of LHON varies remarkably among carriers of the 11,778 mutation within families. We conclude that the prognosis for carriers should be stated cautiously when interpreting results from mutation analysis of mitochondrial DNA in leukocytes.  相似文献   

17.
We studied three patients, each harboring a novel mutation at a highly conserved position in a different mitochondrial tRNA gene. The mutation in patient 1 (T5543C) was associated with isolated mitochondrial myopathy, and occurred in the anticodon loop of tRNA(Trp). In patient 2, with mitochondrial myopathy and marked retinopathy, the mutation (G14710A) resulted in an anticodon swap (Glu to Lys) in tRNA(Glu). Patient 3, who manifested mitochondrial encephalomyopathy and moderate retinal dysfunction, harbored a mutation (C3287A) in the TpsiC loop of tRNA(Leu(UUR)). The mutations were heteroplasmic in muscle in all cases, and sporadic in two cases. PCR-RFLP analysis in all patients showed much higher amounts of mutated mtDNA in affected tissue (muscle) than unaffected tissue (blood), and significantly higher levels of mutated mtDNA in cytochrome c oxidase (COX)-negative muscle fibers than in COX-positive fibers, confirming the pathogenicity of these mutations. The mutation was also detected in single hair roots from all three patients, indicating that each mutation must have arisen early in embryonic development or in maternal germ cells. This suggests that individual hair root analyses may reflect a wider tissue distribution of mutated mtDNA than is clinically apparent, and might be useful in predicting prognosis and, perhaps, the risk of transmitting the mutation to offspring. Our data suggest a correlation between clinical phenotype and distribution of mutated mtDNA in muscle versus hair roots. Furthermore, the high threshold for phenotypic expression in single muscle fibers (92-96%) suggests that therapies may only need to increase the percentage of wild-type mtDNA by a small amount to be beneficial.  相似文献   

18.
Complete sequencing of the mitochondrial genome of 13 cell lines derived from a variety of human cancers revealed nine novel mitochondrial DNA (mtDNA) variations. One of them, m.6267G>A, is a recurrent mutation that introduces the Ala122Thr substitution in the mitochondrially encoded cytochrome c oxidase I (MT-CO1): p.MT-CO1: Ala122Thr (GenBank: NP_536845.1). Biochemical analysis of the original cell lines and the transmitochondrial cybrids generated by transferring mitochondrial DNAs to a common nuclear background, indicate that cytochrome c oxidase (COX) activity, respiration, and growth in galactose are impaired by the m.6267G>A mutation. This mutation, found twice in the cancer cell lines included in this study, has been also encountered in one out of 63 breast cancer samples, one out of 64 colon cancer samples, one out of 260 prostate cancer samples, and in one out of 15 pancreatic cancer cell lines. In all instances the m.6267G>A mutation was associated to different mtDNA haplogroups. These findings, contrast with the extremely low frequency of the m.6267G>A mutation in the normal population (1:2264) and its apparent absence in other pathologies, strongly suggesting that the m.6267G>A missense mutation is a recurrent mutation specifically associated with cancer.  相似文献   

19.
Mitochondrial DNA (mtDNA) mutations are an important cause of human disease. Most mtDNA mutations are found in heteroplasmy, in which the proportion of mutant vs. wild-type species is believed to explain some of the observed high phenotypic heterogeneity. However, homoplasmic mutations also observe phenotypic heterogeneity, which may be in part due to undetected low levels of heteroplasmy. In the present report, we have developed two assays, using DHPLC and Pyrosequencing (Biotage AB, Uppsala, Sweden), for reliably and accurately detecting low-level mtDNA heteroplasmy. Using these assays we have identified a three-generation family segregating two mtDNA mutations in heteroplasmy: the deafness-related m.1555A>G mutation in the 12S rRNA gene (MTRNR1) and a new variant (m.15287T>C) in the cytochrome b gene (MTCYB). Both heteroplasmic mtDNA mutations are transmitted through generations in a random manner, thus showing differences in mutation load between siblings within the family. In addition, the developed assays were also used to screen a group of deaf subjects of unknown etiology for the presence of heteroplasmy for both mtDNA variants. Two additional heteroplasmic m.1555A>G samples, previously considered as homoplasmic, and two deaf subjects carrying m.15287T>C variant were identified, thus confirming the high specificity and reliability of the approach. The development of assays for reliably detecting low-level heteroplasmy, together with the study of heteroplasmic mtDNA transmission, are essential steps for a better knowledge and clinical management of mtDNA diseases.  相似文献   

20.
BackgroundReversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial disorder associated with variable penetrance and partial to full remission of symptoms.ObjectiveTo describe features of maternally related individuals with a novel variant associated with RIRCD.Materials and methodsNine maternally related individuals aged 23 months to 64 years are described through physical examinations, muscle biopsies, histochemical and biochemical analyses, genome sequencing, and cerebral imaging.ResultsA homoplasmic mitochondrial transfer ribonucleic acid for glutamic acid (mt-tRNAGlu) m.14701C>T variant was identified in eight tested individuals out of nine maternally related individuals. Two individuals presented with hypotonia, muscle weakness, feeding difficulties and lactic acidosis at age 3–4 months, and improvement around age 15–23 months with mild residual symptoms at last examination. One individual with less severe symptoms had unknown age at onset and improved around age 4–5 years. Five individuals developed lipoma on the upper back, and one adult individual developed ataxia, while one was unaffected.ConclusionsWe have identified a novel homoplasmic mt-tRNAGlu m.14701C>T variant presenting with phenotypic and paraclinical features associated with RIRCD as well as ataxia and lipomas, which to our knowledge are new features associated to RIRCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号