首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction18 F-labeled amino acids are important PET radiotracers for molecular imaging of cancer. This study describes synthesis and radiopharmacological evaluation of 2-amino-5-(4-[18 F]fluorophenyl)pent-4-ynoic acid ([18 F]FPhPA) as a novel amino acid radiotracer for oncologic imaging.Methods18 F]FPhPA was prepared using Pd-mediated Sonogashira cross-coupling reaction between 4-[18 F]fluoroiodobenzene ([18 F]FIB) and propargylglycine. The radiopharmacological profile of [18 F]FPhPA was evaluated in comparison with O-(2-[18 F]fluoroethyl)-L-tyrosine ([18 F]FET) using the murine breast cancer cell line EMT6 involving cellular uptake studies, radiotracer uptake competitive inhibition experiments and small animal PET imaging.Results18 F]FPhPA was prepared in 42 ± 10% decay-corrected radiochemical yield with high radiochemical purity >95% after semi-preparative HPLC purification. Cellular uptake of L-[18 F]FPhPA reached a maximum of 58 ± 14 % radioactivity/mg protein at 90 min. Lower uptake was observed for racemic and D-[18 F]FPhPA.Radiotracer uptake inhibition studies by synthetic and naturally occurring amino acids suggested that Na+-dependent system ASC, especially ASCT2, and Na+-independent system L are important amino acid transporters for [18 F]FPhPA uptake into EMT6 cells. Small animal PET studies demonstrated similar high tumor uptake of [18 F]FPhPA in EMT6 tumor-bearing mice compared to [18 F]FET reaching a maximum standardized uptake value (SUV) of 1.35 after 60 min p.i.. Muscle uptake of [18 F]FPhPA was higher (SUV30min = 0.65) compared to [18 F]FET (SUV30min = 0.40), whereas [18 F]FPhPA showed a more rapid uptake and clearance from the brain compared to [18 F]FET.ConclusionL-[18 F]FPhPA is the first 18 F-labeled amino acid prepared through Pd-mediated cross-coupling reaction.Advances in Knowledge and Implications for patient CareL-[18 F]FPhPA displayed promising properties as a novel amino acid radiotracer for molecular imaging of system ASC and system L amino acid transporters in cancer.  相似文献   

2.
The novel thiol-group-selective bifunctional 18F-labeling agent N-[6-(4-[18F]fluoro-benzylidene)aminooxyhexyl]maleimide ([18F]FBAM) has been developed. The bifunctional labeling precursor N-(6-aminoxyhexyl)maleimide containing a thiol-reactive maleimide group and a carbonyl-group-reactive aminooxy group was prepared in only three steps in a total chemical yield of 59%. Subsequent radiolabeling with 4-[18F]fluorobenzaldehyde gave the bifunctional 18F-labeling agent [18F]FBAM in a radiochemical yield of 29%. In a typical experiment, 3.88 GBq of [18F]fluoride could be converted into 723 MBq of [18F]FBAM within 69 min. Conjugation of [18F]FBAM with thiol groups was exemplified with the cysteine-containing tripeptide glutathione and with various apolipoproteins of human low-density lipoprotein (LDL) subfractions. The latter was evaluated with respect to the uptake of [18F]FBAM-LDL subfractions in human hepatoma cells (HepG2) in vitro. In vivo biodistribution studies in rats revealed high stability for [18F]FBAM-LDL subfractions. Moreover, the metabolic fate of [18F]FBAM-LDL subfractions in vivo was delineated by dynamic positron emission tomography studies using a dedicated small animal tomograph. Data were compared to former studies that used the NH2-reactive 18F-labeling agent N-succinimidyl-4-[18F]fluorobenzoate. The compound [18F]FBAM can be considered as an excellent prosthetic group for the selective and mild 18F labeling of thiol-group-containing biomolecules suitable for subsequent investigations in vitro and in vivo.  相似文献   

3.
9-[(3-[18F]Fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG, 2) has been synthesized by nucleophilic substitution of N(2)-(p-anisyldiphenylmethyl)-9-[[1-(p-anisyldiphenylmethoxy)-3-toluenesulfonyloxy-2-propoxy]methyl]guanine (1) with potassium [18F]fluoride/Kryptofix 2.2.2 followed by deprotection with 1 N HCl and purification with different methods in variable yields. When both the nucleophilic substitution and deprotection were carried out at 90 degrees C and the product was purified by HPLC (method A), the yield of compound 2 was 5-10% and the synthesis time was 90 min from EOB. However, if both the nucleophilic substitution and deprotection were carried out at 120 degrees C and the product was purified by HPLC, the yield of compound 2 decreased to 2%. When compound 2 was synthesized at 90 degrees C and purified by Silica Sep-Pak (method B), the yield increased to 10-15% and the synthesis time was 60 min from EOB. Similarly, 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG, 4) was synthesized with method A and method B in 9% and 10-15% yield, respectively, in a synthesis time of 90 and 60 min, respectively, from EOB. Compound 2 was relatively unstable in acidic medium at 120 degrees C while compound 4 was stable under the same condition. Both compound 2 and compound 4 had low lipid/water partition coefficient (0.126 +/- 0.022, n=5 and 0.165 +/- 0.023, n=5, respectively). Although it contains non-radioactive ganciclovir ( approximately 5-30 microg) as a chemical by-product, compound 2 synthesized by method B has a similar uptake in 9L glioma cells as that synthesized by method A, and is a potential tracer for imaging herpes simplex virus thymidine kinase gene expression in tumors using PET. Similarly, compound 4 synthesized by method B contains approximately 10-25 microg of penciclovir as a chemical by-product. Thus, the simplified one pot synthesis (method B) is a useful method for synthesizing both compound 2 and compound 4 in good yield for routine clinical use, and the method is readily amenable for automation.  相似文献   

4.
The aim of this study was to develop an automated synthesis of 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) and 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) using a Scanditronix Anatech RB III robotic system. [(18)F]HF was produced via (18)O(p, n)(18)F using a Scanditronix MC17F cyclotron. On average, a typical run produced [(18)F]FHBG and [(18)F]FHPG with an uncorrected radiochemical yield of 19% and 16%, respectively, at end of synthesis (EOS) from irradiation of 95% enriched [(18)O]water. The total synthesis time was 80 min. The retention time of [(18)F]FHBG and [(18)F]FHPG (the radio-peak) was 3.9 and 4.0 min, respectively, which was consistent with the [(19)F]FHBG and [(19)F]FHPG ultraviolet peak. The radiochemical purity was greater than 97%. A robotic, automated method for [(18)F]FHBG and [(18)F]FHPG radiosynthesis is therefore feasible. The radiation burden for the operator can be reduced as much as possible. Sufficient radioactivities of [(18)F]FHBG and [(18)F]FHPG could be obtained for non-invasive monitoring the expression of transfected gene in vivo with positron emission tomography (PET).  相似文献   

5.
We prepared sigma(1)-receptor selective 1-([4-methoxy-(11)C]-3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine ([(11)C]SA4503) and its fluorinated analog 1-([4-methoxy-(11)C]3,4-dimethoxyphenethyl)-4-[3-(4-fluorophenyl)propyl]piperazine ([(11)C]SA5845), and their [(11)C]ethoxy and [(18)F]fluoroethoxy analogs, and evaluated their potential for positron emission tomography studies. [(11)C]SA4503 is most selective for sigma(1) receptors, and the other five showed affinities for sigma(1) and sigma(2) receptors with a different extent. All radioligands showed the receptor-specific binding in the brain, and visualized similar regional brain distributions by ex vivo autoradiography. The [(11)C]ethoxy analogs were relatively labile for metabolism.  相似文献   

6.
2-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380) was among the first subtype selective radioligands to visualise the in vivo distribution of alpha4beta2-containing neuronal nicotinic acetylcholine receptors (nAChRs) in human brain. We developed a one-pot synthesis for the preparation of 2-[18F]F-A-85380 in a commercially available TRACERlab FXF-N synthesis module. The synthesis comprises a nucleophilic substitution followed by hydrolysis of a t-butyloxycarbonyl (BOC)-protected intermediate. After formulation for intravenous application up to 20 G Bq 2-[18F]F-A-85380 were produced from a starting activity of 100 G Bq [18F]fluoride in 60 min with a specific activity of about 4.10(5)GBq/mmol and a mean radiochemical purity of more than 99%.  相似文献   

7.
N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM, 3) is a potent serotonin transporter (SERT) imaging agent. In order to fulfill the demand of pre-clinical studies, we have developed an automated synthesis unit to synthesize this radioligand. The 4-[(18)F]-ADAM was synthesized using TracerLab FN and FE modules and a modified module control program (TracerLab-Fx). The synthesis sequences were similar to that of the manual synthesis, i.e. nucleophilic fluorination of N,N-dimethyl-2-(2,4-dinitrophenylthio)benzylamine (1) with K[(18)F]/K(2.2.2) followed by reduction with NaBH(4)/Cu(OAc)(2) and purifications with high-performance liquid chromatography (HPLC) and solid phase extraction. The radiochemical yield of 3 was 1.5+/-0.3% (n=13, EOS). The synthesis time was 120 min and the specific activity was 1.75+/-0.77 Ci/micromol (n=13, EOS). The 4-[(18)F]-ADAM synthesized by this module was stable over 4h at room temperature and is suitable for imaging SERT in humans.  相似文献   

8.
A protected 6-trimethylstannyl dopa derivative 6 has been synthesized for the first time as a precursor for the preparation of 6-[18F]fluoro-l-dopa. The tin derivative 6 readily reacted with electrophilic radiofluorinating agents such as [18F]F2 and [18F]AcOF. The [18F]fluoro intermediate 7 was easily hydrolyzed with HBr and the product 6-[18F]fluoro-l-dopa was isolated after HPLC purification in a maximum radiochemical yield of 25%, ready for human use. The various intermediates, the stannyl precursor 6 and the final product (after 18F decay) were all fully characterized by 1H, 13C, 19F and 119Sn NMR as well as high resolution mass spectroscopy.  相似文献   

9.
2-(1,1-dicyanopropen-2-yl)-6-(2-[18F]-fluoroethyl)-methylamino-naphthalene ([18F]FDDNP) was synthesized in a single step labeling procedure. The precursor, 2-(1,1-dicyanopropen-2-yl)-6-(2-tosyloxyoethyl)-methylamino-naphthalene, was fluorinated with 18F in acetonitrile. After 15 min the reaction mixture was subjected to preparative HPLC purification. The product was isolated from the HPLC eluent with solid-phase extraction, and formulated in an ascorbic acid solution to prevent formation of side products during formulation. Quantitative sticking to tubing and filters was overcome by the addition of polysorbatum-80. This formulation yielded an isotonic, pyrogen-free and sterile solution of [18F]FDDNP. The overall decay-corrected radiochemical yield was 41+/-11% (n=22). Radiochemical purity was >98% and the specific activity was 102+/-56 GBq/micromol at the end of synthesis.  相似文献   

10.

Purpose

The aim of this study was to assess the feasibility of using 4-[18F]-ADAM as a brain SERT imaging agent in humans.

Methods

Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33?±?9?years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[18F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region.

Results

4-[18F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n?=?4, t*?=?60?min) in the RN, TH, STR and PFC were 3.00?±?0.50, 2.25?±?0.45, 2.05?±?0.31 and 1.40?±?0.13, respectively. The optimal time for imaging brain SERT with 4-[18F]-ADAM was 120?C140?min after injection. At the optimal imaging time, the SURs (n?=?15) in the MB, TH, STR, and PFC were 2.25?±?0.20, 2.28?±?0.20, 2.12?±?0.18 and 1.47?±?0.14, respectively. There were no significant differences in SERT availability between men and women (p?<?0.05).

Conclusion

The results of this study showed that 4-[18F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[18F]-ADAM may be feasible for assessing the status of brain SERT in humans.  相似文献   

11.
INTRODUCTION: 2-Amino-6-[(18)F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[(18)F]FPCV) was prepared via a one-step nucleophilic substitution and evaluated as a novel probe for imaging the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene. METHODS: Log P of 6-[(18)F]FPCV was calculated in octanol/phosphate-buffered saline (PBS). Stability studies were performed in PBS and bovine serum albumin (BSA). Cell uptake was performed at various time points in wild-type cells and transduced cells. For in vivo studies, tumors were grown in nude mice by inoculation with C6 cells, wild type and tk positive. The radiotracer was intravenously injected to animals, and micro-PET imaging was performed. Biodistribution of 6-[(18)F]FPCV was performed on another group of animals at different time points. RESULTS: Log P of 6-[(18)F]FPCV was -0.517. 6-[(18)F]FPCV was fairly stable in PBS and BSA at 6 h. The tracer uptake in C6-tk cells was 5.5-18.8 times higher than that in wild-type cells. The plasma half-life of 6-[(18)F]FPCV was as follows: alpha t(1/2)=1.2 min and beta t(1/2)=73.7 min. The average ratio of tumor uptake between the transduced tumor and the wild-type tumor was 1.69 at 15 min. CONCLUSION: Biological evaluation showed that 6-[(18)F]FPCV is a potential probe for imaging HSV1-tk gene expression. However, its in vivo defluorination may limit its application in PET imaging of gene expression.  相似文献   

12.
This investigation centers on the preparation of H18F, K18F, and KB18F4 from reactor-produced [18F]fluoride and the efficacy of anhydrous, no-carrier-added H18F in labeling aryl compounds derived from benzenediazonium-2-carboxylate. It proved possible to prepare KB18FF3 only with the addition of considerable KF carrier. A new synthetic route was developed for producing no-carrier-added 2-[18F]fluorobenzoic acid, based on the fast reaction between benzenediazonium-2-carboxylate and anhydrous H18F in benzene solution. If KF carrier is present, however, the primary product is [18F]fluorobenzene. An increase in yield of 18F by 96% is found by irradiating aqueous, rather than dry, 6LiOH·H2O (96% enriched). The yield of 2-[18F]fluorobenzoic acid is 32% of the radioactivity distilled and represents an overall radiochemical recovery of 15% of 18F activity eluted from an Al2O3 column with cone. NH4OH. The total processing time from end of irradiation is 90–95 min. Non-radioactive reactions were carried out with macro quantities of anhydrous HF gas, aqueous HF solution, and anhydrous HF distilled from KF and H2SO4. With the aqueous HF, two products were obtained: 2-fluorobenzoic acid and 2-hydroxybenzoic acid, whereas with the anhydrous HF an essentially quantitative yield of 2-fluorobenzoic acid was formed.  相似文献   

13.
INTRODUCTION: The dopamine transporter (DAT) ligand N-(3-fluoropropyl)-2 beta-carbomethoxy-3beta-(4-fluorophenyl)nortropane (beta-CFT-FP) was labeled with fluorine-18, and its biodistribution was evaluated in rats ex vivo. METHODS: The distribution of 18F radioactivity in the brain and peripheral organs and tissues was determined at several time points 5-120 min after intravenous injection of [18F]beta-CFT-FP. RESULTS: The highest brain uptake of [18F]beta-CFT-FP was localized in the striatum; limbic structures also exhibited high uptake. Low uptake was found in the cerebellum. The highest ratio of striatum-to-cerebellum uptake, already reached within 5 min, was 3.1. Pretreatment with the selective DAT inhibitor GBR12909 significantly decreased [18F]beta-CFT-FP uptake in the striatum. In most peripheral tissues, the highest uptake was found at 5 min, indicating fast washout of the radioligand. Some accumulation of (18)F radioactivity was seen in bone as a function of time, reflecting defluorination of the radioligand. CONCLUSION: The results indicate that [18F]beta-CFT-FP is a potential radioligand for studying DAT in vivo with positron emission tomography.  相似文献   

14.
Purpose4-Borono-2-[18F]fluoro-l-phenylalanine ([18F]FBPA) synthesized with [18F]F2, produced using the 18O(p, n)18F reaction, has been reported for increasing radioactivity. However, a dedicated system and complex procedure is required to reuse the costly [18O]O2 gas; also, the use of [18F]F2 as a labeling agent reduces the labeling rate and radiochemical purity. We developed a stable and practical method for [18F]FBPA synthesis by combining [18F]F2, produced using a [18O]O2 single-use system, and a [18F]CH3COOF labeling agent.MethodsThe produced [18F]F2 was optimized, and then [18F]FBPA was synthesized. For passivation of the target box, 0.5% F2 was pre-irradiated in argon. Gaseous products were discarded; the target box was filled with [18O]O2 gas, and then irradiated (first irradiation). Then, the [18O]O2 gas was discarded, 0.05–0.08% F2 in argon was fed into the target box, and it was again irradiated (second irradiation). The [18F]F2 obtained after this was passed through a CH3COONa column, converting it into the [18F]CH3COOF labeling agent, which was then used for [18F]FBPA synthesis.ResultsThe mean amount of as-obtained [18F]F2 was 55.0 ± 3.3 GBq and that of as-obtained [18F]CH3COOF was 21.6 ± 1.4 GBq after the bombardment. The radioactivity and the radiochemical yield based on [18F]F2 of [18F]FBPA were 4.72 ± 0.34 GBq and 12.2 ± 0.1%, respectively. The radiochemical purity and molar activity were 99.3 ± 0.1% and 231 ± 22 GBq/mmol, respectively.ConclusionWe developed a method for [18F]FBPA production, which is more stable and practical compared with the method using [18O]O2 gas-recycling and [18F]F2 labeling agent.  相似文献   

15.
We have studied the biodistribution of [(18)F]FAU [(1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)uracil], which previous work has shown is incorporated into DNA and functions as an inhibitor of DNA synthesis. It is being tested as a potential antineoplastic agent and imaging agent for PET. We have produced [(18)F]FAU and injected the tracer into 3 normal dogs and imaged them for up to 4 hours and removed tissues along with blood and urine samples for HPLC and activity analysis. The results showed that [(18)F]FAU evenly distributed to most of organs. In sharp contrast to our prior experience with thymidine and its analogs, marrow had less retention of [(18)F]FAU than the non-proliferating tissues.  相似文献   

16.
The synthesis of 4-[18F]fluoroguaiacol (4-[18F]fluoro-2-methoxyphenol) has been achieved in no-carrier-added form starting from 2-methoxy-4-nitrobenzaldehyde, using nucleophilic aromatic substitution by [18F]fluoride followed by Baeyer-Villiger oxidation of the benzaldehyde to the phenol. Demethylation with boron tribromide gave 4-[18F]fluorocatechol (1,2-dihydroxy-4-[18F]fluorobenzene) with an overall yield of 18–28% (EOB) in less than 2 h synthesis time. The fluorine-18 labeled intermediates and products were identical to standards of 4-fluoroguaiacol and 4-fluorocatechol prepared by the same methods. This represents a new approach to the synthesis of fluorinated phenols in fluorine-19 and fluorine-18 forms.  相似文献   

17.
OBJECTIVES: Acetylcholinesterase (AChE) is an important cholinergic marker for the diagnosis of Alzheimer's disease (AD). A recent study has demonstrated that C-labelled 5,7-dihydro-7-methyl-3-[2-[1-(phenylmethyl)-4-piperidinyl]ethyl]-6H-pyrrolo[3,2-f]-1,2-benzisoxazol-6-one (CP-126,998) shows promising results. The demethylated form of this ligand (CP-118,954) is a more potent and selective inhibitor than CP-126,998. In this study, therefore, CP-118,954 was labelled with F and evaluated for the in vivo mapping of AChE. METHODS: The 4-fluoro (1). and 2-fluoro (2). derivatives of CP-118,954 were synthesized from 4-methyl-3-nitroanisole in 11 steps. Their in vitro binding affinities to AChE were measured using Ellman's method. The preparation of [F]-1 was carried out by reductive alkylation of the piperidine precursor with 4-[F]-fluorobenzaldehyde, followed by high-performance liquid chromatography (HPLC) purification. In vitro autoradiography was performed by incubating rat brain coronal slices with [F]-1. Tissue distribution studies were performed in mouse brain and the data were expressed as the percentage of the injected dose per gram of tissue (%ID x g). RESULTS: Two fluorine-substituted AChE inhibitors were synthesized and their in vitro binding data showed that the 4-fluoro and 2-fluoro derivatives (1 and 2) had similar or superior binding affinity to that of the unsubstituted ligand, CP-118,954. The F-labelled ligand was synthesized in 20-35% radiochemical yield (EOS) and with high effective specific activity (36-42 GBq x micromol). Autoradiography showed high uptake of [F]-1 in the striatum and this striatal uptake was completely inhibited by the unlabelled ligand 1. Tissue distribution studies demonstrated that high radioactivity was accumulated in the striatum, an AChE-rich region. CONCLUSIONS: This study demonstrates that [F]-1 may hold promise as a radioligand for the in vivo mapping of AChE.  相似文献   

18.
As potential new ligands targeting the binding site of gamma-aminobutyric acid (GABA) receptor ionophore, trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1-dioxo-1,3-dithiane (1) and cis/trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1,3,3-tetroxo-1,3-dithiane (2) were selected for radiolabeling and initial evaluation as in vivo imaging agents for positron emission tomography (PET). Both compounds exhibited identical high in vitro binding affinities (K(i)=6.5 nM). Appropriate tosylate-substituted ethynyl precursors were prepared by multistep syntheses involving stepwise sulfur oxidation and chromatographic isolation of desired trans isomers. Radiolabeling was accomplished in one step using nucleophilic [(18)F]fluorination. In vivo biodistribution studies with trans-[(18)F]1 and trans-[(18)F]2 showed significant initial uptake into mouse brain and gradual washout, with heterogeneous regional brain distributions and higher retention in the cerebral cortex and cerebellum and lower retention in the striatum and pons-medulla. These regional distributions of the new radioligands correlated with in vitro and ex vivo measures of standard radioligands binding to the ionophore- and benzodiazepine-binding sites of GABA(A) receptor in rodent brain. A comparison of these results with previously prepared radiotracers for other neurochemical targets, including successes and failures as in vivo radioligands, suggests that higher-affinity compounds with increased retention in target brain tissues will likely be needed before a successful radiopharmaceutical for human PET imaging can be identified.  相似文献   

19.
18F-labeled non-sulfonylurea hypoglycemic agent (S)-2-(2-[(18)F]fluoroethoxy)-4-((3-methyl-1-(2-piperidin-1-yl-phenyl)-butylcarbamoyl)-methyl)-benzoic acid ([(18)F]repaglinide), a derivative of the sulfonylurea-receptor (SUR) ligand repaglinide, was synthesized as a potential tracer for the non-invasive investigation of the sulfonylurea 1 receptor status of pancreatic beta-cells by positron emission tomography (PET) in the context of type 1 and type 2 diabetes. [(18)F]Repaglinide could be obtained in an overall radiochemical yield (RCY) of 20% after 135 min with a radiochemical purity higher than 98% applying the secondary labeling precursor 2-[(18)F]fluoroethyltosylate. Specific activity was in the range of 50-60 GBq/micromol. Labeling was conducted by exchanging the ethoxy-moiety into a 2-[(18)F]fluoroethoxy group. To characterize the properties of fluorinated repaglinide, the affinity of the analogous non-radioactive (19)F-compound for binding to the human SUR1 isoform was assessed. [(19)F]Repaglinide induced a complete monophasic inhibition curve with a Hill coefficient close to 1 (1.03) yielding a dissociation constant (K(D)) of 134 nM. Biological activity was proven via insulin secretion experiments on isolated rat islets and was comparable to that of repaglinide. Finally, biodistribution of [(18)F]repaglinide was investigated in rats by measuring the concentration of the compound in different organs after i.v. injection. Pancreatic tissue displayed a stable accumulation of approximately 0.12% of the injected dose from 10 min to 30 min p.i. 50% of the radioactive tracer could be displaced by additional injection of unlabeled repaglinide, indicating that [(18)F]repaglinide might be suitable for in vivo investigation with PET.  相似文献   

20.
Dopamine reuptake transporter binding kinetics of 2β-carbomethoxy-3β-(4-[18F]fluoromethylphenyl)tropane (p-FWIN) and 2β-carbomethoxy-3β-(2-[18F]fluoromethylphenyl)tropane (o-FWIN) were determined in vervet monkeys using positron emission tomography (PET). Ligand localization was rapid and specific to the striatum with kinetic estimates comparable with those of 11C-labeled WIN 35,428 (CWIN). Binding was more specific with p-FWIN than with CWIN or o-FWIN. The relatively longer half-life of the 18F radiolabel enabled longer acquisition times with p-FWIN, resulting in less variability in the kinetic estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号