首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Clinical neurophysiology》2009,120(6):1204-1212
ObjectivePaired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far.MethodIn 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABAA and GABAB interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs.ResultsAfter PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS.ConclusionsPAS influences inhibitory circuits in M1.SignificancePAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.  相似文献   

2.
ObjectiveIntermittent theta burst stimulation (iTBS) is increasingly widely used as a means of facilitating corticospinal excitability in the human primary motor cortex. This form of facilitatory plasticity within the stimulated cortex may occur by induction of long term potentiation (LTP). In animal models, agonists of nicotinic acetylcholine receptors have been shown to modulate or induce LTP; we thus sought to test whether nicotine may modulate the effects of iTBS on corticospinal excitability in humans.MethodsA double-blind placebo-controlled cross-over design study was conducted with 10 healthy subjects. iTBS was delivered 60 min after subjects took either 4 mg nicotine or placebo lozenges, and motor-evoked potentials (MEPs) were then recorded for 40 min after the end of stimulation.ResultsIn the placebo arm, iTBS produced an increase in the amplitudes of MEPs which lasted for 5 min. In the nicotine arm, iTBS produced a more pronounced facilitation of MEPs that was still present at 40 min. In a control experiment, nicotine alone had no effect on MEP amplitudes when given in the absence of iTBS.ConclusionsThese data indicate that the effects of iTBS can be enhanced and prolonged by nicotine.SignificanceThese results are consistent with animal models demonstrating nicotinic modulation of facilitatory plasticity, and will be of interest to investigators seeking to enhance artificially induced changes in cortical excitability.  相似文献   

3.
ObjectiveTo examine whether training under visual cues could enhance motor cortical excitability and intracortical inhibition in individuals with Parkinson’s disease (PD).MethodsThis was a single blinded cross-over study. Eight individuals with PD received two sessions of 30-min pinch-grip training with and without visual cues. The visual cue was given in form of an arrow that indicated the pre-set force level on a computer screen. Outcome measures consisted of peak motor evoked potential (MEP) and cortical silent period (CSP) of the first dorsal interosseus as well as behavioural tests including Purdue pegboard test, tapping speed in 30 s, and the maximum pinch grip force exerted by the thumb and index finger.ResultsAfter cued training, there were significant increases in the peak MEP, CSP duration and tapping speed (all p < 0.05). In contrast, there was no change in all outcome measures after training under the non-cued condition.ConclusionsThirty minutes of pinch-grip training with visual cues could enhance motor cortical excitability and intracortical inhibition in individuals with PD.SignificanceThe findings on the neurophysiological changes after cued-training may inform further clinical application of visual cues to maximize motor improvement and corticomotor plasticity in people with PD.  相似文献   

4.
ObjectiveBesides its use in epilepsy, lamotrigine (LTG) is also effective as mood stabilizer. The pathophysiology of mood disorders may incorporate a dysfunction of neuronal plasticity and animal experiments suggest that mood stabilizers influence induction of long-term potentiation (LTP) and –depression (LTD), two major forms of synaptic plasticity. However, the exact modes of action of LTG and its impact on neuronal plasticity in humans remain unclear.MethodsHere, we tested the effects of a single oral dose of LTG (300 mg) on motor cortical plasticity induced by paired associative stimulation (PAS25), a protocol that typically induces LTP-like plasticity, in 26 young healthy adults in a placebo-controlled, randomized, double-blind crossover design. We stratified analysis of the LTG effects according to the individual PAS25 response in the placebo session (14 LTP-responders vs. 12 LTD-responders). Plasticity was indexed by motor evoked potential (MEP) amplitudes recorded before and for 60 min after PAS25.ResultsLTG resulted in a significant reduction of the LTP-like MEP increase in the LTP-responders and a reduction of the LTD-like MEP decrease in the LTD-responders, with the majority of LTD-responders even showing an MEP increase.ConclusionsIn summary, LTG differentially modulated cortical plasticity induced by non-invasive brain stimulation in human subjects depending on their individual intrinsic propensity for expressing LTP-like or LTD-like plasticity.SignificanceFindings contribute to our understanding of the anticonvulsant and antidepressant clinical effects of LTG, which have been suggested to occur, at least in part, through downregulation of LTP (epilepsy) and LTD (depressive disorders).  相似文献   

5.
《Brain stimulation》2014,7(2):260-268
BackgroundTheta burst stimulation (TBS) is a pattern of repetitive transcranial magnetic stimulation that has been demonstrated to facilitate or suppress human corticospinal excitability when applied intermittently (iTBS) or continuously (cTBS), respectively. While the fundamental pattern of TBS, consisting of bursts of 50 Hz stimulation repeated at a 5 Hz theta frequency, induces synaptic plasticity in animals and in vitro preparations, the relationship between TBS and underlying cortical firing patterns in the human cortex has not been elucidated.ObjectiveTo compare the effects of 5 Hz iTBS and cTBS with individualized TBS paradigms on corticospinal excitability and intracortical inhibitory circuits.MethodsParticipants received standard and individualized iTBS (iTBS 5; iTBS I) and cTBS (cTBS 5; cTBS I), and sham TBS, in a randomised design. For individualized paradigms, the 5 Hz theta component of the TBS pattern was replaced by the dominant cortical frequency (4–16 Hz; upper frequency restricted by technical limitations) for each individual.ResultsWe report that iTBS 5 and iTBS I both significantly facilitated motor evoked potential (MEP) amplitude to a similar extent. Unexpectedly, cTBS 5 and cTBS I failed to suppress MEP amplitude. None of the active TBS protocols had any significant effects on intracortical circuits when compared with sham TBS.ConclusionIn summary, iTBS facilitated MEP amplitude, an effect that was not improved by individualizing the theta component of the TBS pattern, while cTBS, a reportedly inhibitory paradigm, produced no change, or facilitation of MEP amplitude in our hands.  相似文献   

6.
ObjectiveTo test the plasticity of bilateral motor cortices (M1) in treatment-naïve (de novo) Parkinson’s disease (PD) patients and its response to single dose of L-DOPA.MethodsTwenty-one de novo PD patients with only unilateral motor symptoms were recruited to eliminate the effects of advanced disease and chronic treatment and were tested with intermittent (n = 10) and continuous theta burst stimulation (iTBS and cTBS) (n = 11) protocols to induce LTP and LTD-like plasticity on both M1 cortices. They were compared with two groups of 10 each, age-matched, healthy volunteers (HV). Severity of motor signs and effectiveness of TBS were measured bilaterally in the untreated state and after a uniform dose of L-DOPA in all patients.ResultsiTBS and cTBS induced significant LTP and LTD- like plasticity in M1 of HV. In de novo patients, there was no plasticity in both M1. Acute L-DOPA challenge did not improve plasticity in either M1 cortices, though motor signs of PD improved. There was no correlation of motor signs with M1 plasticity.ConclusionThe early, severe and bilateral loss of plasticity in M1 in de novo PD patients is a primary disease-related cortical dysfunction. The contrasting L-DOPA response of motor signs and M1 plasticity could arise from differences in neural circuits mediating them or differing effects of acute dopamine replacement on circuits recruited by specific plasticity-induction techniques, particularly in treatment naïve PD.SignificanceM1 plasticity defect occurs early in PD and might affect motor learning. Acute vs. chronic dopamine replacement could have different effects on plasticity in PD or in the networks recruited by a specific plasticity induction technique.  相似文献   

7.
ObjectiveSpike-timing dependent plasticity (STDP) usually refers to synaptic plasticity induced by near-synchronous activation of neuronal input and neuronal firing. However, some models of STDP predict effects that deviate from this tight temporal synchrony. We aimed to characterise the induction of STDP using paired associative stimulation (PAS) when the pre-synaptic input arrives in primary motor cortex (M1) at (i) intermediate intervals (50–80 ms; PAS50,..PAS80) before the post-synaptic neuron is activated and (ii) long intervals (100–450 ms; PAS?100,..PAS?450) after the post-synaptic neuron is activated. PAS at near-synchronicity (PAS25) was applied for comparison.MethodsTo characterise the physiological effects of the different PAS protocols, we examined short- and long-interval intra-cortical inhibition; intra-cortical facilitation and short- and long-latency afferent inhibition, in addition to recording MEPs in 45 healthy individuals.ResultsMEP amplitude was reduced at PAS intervals between ?250 and ?450 ms, increased with PAS25, and unaltered at the remaining intervals. There was no change in intra-cortical inhibitory or facilitatory circuits following any PAS protocol.ConclusionsThese findings provide evidence of a previously unreported temporal window in which PAS induces a depression of corticospinal excitability in human M1.SignificanceEstablishing new temporal rules for STDP broadens its applicability for therapeutic usage in future.  相似文献   

8.
《Clinical neurophysiology》2021,132(10):2685-2692
ObjectiveMotor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson’s disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD.MethodsFifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit.ResultsSICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions.ConclusionsThe facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication.SignificanceImpaired interaction between M1 circuits is a pathophysiological feature of PD.  相似文献   

9.
L-dopa variably influences transcranial magnetic stimulation (TMS) parameters of motor cortex (M1) excitability and plasticity in Parkinson's disease (PD). In patients OFF dopaminergic medication, impaired M1 plasticity and defective GABA-A-ergic inhibition can be restored by boosting gamma (γ) oscillations via transcranial alternating current stimulation (tACS) during intermittent theta-burst stimulation (iTBS). However, it is unknown whether L-dopa modifies the beneficial effects of iTBS-γ-tACS on M1 in PD. In this study, a PD patients group underwent combined iTBS-γ-tACS and iTBS-sham-tACS, each performed both OFF and ON dopaminergic therapy (four sessions in total). Motor evoked potentials (MEPs) elicited by single TMS pulses and short-interval intracortical inhibition (SICI) were assessed before and after iTBS-tACS. We also evaluated possible SICI changes during γ-tACS delivered alone in OFF and ON conditions. The amplitude of MEP elicited by single TMS pulses and the degree of SICI inhibition significantly increased after iTBS-γ-tACS. The amount of change produced by iTBS-γ-tACS was similar in patients OFF and ON therapy. Finally, γ-tACS (delivered alone) modulated SICI during stimulation and this effect did not depend on the dopaminergic condition of patients. In conclusion, boosting cortical γ oscillatory activity via tACS during iTBS improved M1 plasticity and enhanced GABA-A-ergic transmission in PD patients to the same extent regardless of dopaminergic state. These results suggest a lack of interaction between L-dopa and γ-tACS effects at the M1 level. The possible neural substrate underlying iTBS-γ tACS effects, that is, γ-resonant GABA-A-ergic interneurons activity, may explain our findings.  相似文献   

10.
OBJECTIVE: To determine the effect of globus pallidus internus (GPi) deep brain stimulation (DBS) on motor cortex plasticity in patients with primary generalised dystonia. METHODS: We studied 10 patients with primary generalised dystonia (5 DYT1+, 5 idiopathic, 5 female, mean age 42) following GPi DBS and 10 healthy subjects. Motor cortex plasticity was assessed using transcranial magnetic stimulation (TMS) paired associative stimulation (PAS) of motor cortex and median nerve, a method which has been shown in healthy subjects to produce LTP-like effects. Thresholds and TMS intensity to produce a resting motor evoked potential (MEP) of 1 mV were determined. Resting MEP amplitude and stimulus response curves were recorded before and after PAS. Patients were recorded ON and OFF DBS in separate sessions. RESULTS: The mean TMS intensity to produce a resting MEP of 1 mV was 54% of maximum stimulator output when OFF and 52% ON DBS. Fifteen minutes after PAS the resting MEP amplitude increased in patients OFF DBS and in control subjects whereas it decreased in patients ON DBS. Similarly, after PAS, the mean amplitude of the stimulus response curve increased OFF DBS, but this effect was abolished with DBS ON. Furthermore, patients who had the largest clinical response to chronic DBS also had the largest difference in the effect of PAS with DBS ON vs. OFF. CONCLUSIONS: After PAS, patients with primary generalised dystonia showed a similar pattern of increased motor cortex excitability as healthy subjects when GPi DBS was OFF but not with GPi DBS ON. These results suggest that GPi DBS may reduce LTP-like motor cortex plasticity, which could contribute to its mechanism of action in dystonia.  相似文献   

11.
ObjectiveTo evaluate changes in cortical excitability after long-term zonisamide (ZNS) administration.MethodsFifteen drug-naïve idiopathic generalized epilepsy (IGE) patients (8 male, mean age 24.9 years) were enrolled. The transcranial magnetic stimulation (TMS) parameters obtained using two Magstim 200 stimulators were resting motor threshold (RMT), motor evoked potential (MEP) amplitudes, cortical silent period (CSP), intracortical inhibition (ICI), and intracortical facilitation (ICF). TMS parameters were compared before and after ZNS administration.ResultsAll patients were administered ZNS monotherapy (200 mg/day) for 8 weeks. No patient reported seizures during the study period. After ZNS treatment MEP amplitudes were significantly reduced in right (−34.2%) and left hemispheres (−37.0%) (Wilcoxon’s signed rank test after Bonferroni’s correction for multiple comparisons, P < 0.05). Mean RMT, CSP, and ICI/ICF were not changed by ZNS (P > 0.05).ConclusionsThese findings suggest that ZNS decreases cortical excitability in patients with IGE and a MEP amplitude is a useful TMS parameter for evaluating changes in cortical excitability induced by ZNS.SignificanceThe findings in this study are helpful to understand how ZNS affects the excitability of the motor cortex in patients with IGE.  相似文献   

12.
《Clinical neurophysiology》2010,121(2):248-254
ObjectiveTo examine the neuromodulatory effect of whole-hand mesh-glove (MG) stimulation on motor cortical pathways, we explored motor cortical excitability before and after suprathreshold whole-hand MG stimulation using transcranial magnetic stimulation (TMS).MethodsTwenty-eight healthy volunteers (14 controls) were studied at baseline, immediately post and 1 h post-MG stimulation for 30 min. Motor thresholds (MTs), motor evoked potentials (MEPs) recruitment curve, short intracortical inhibition (SICI) and intracortical facilitation (ICF) after paired magnetic stimuli were evaluated.ResultsAfter MG stimulation the MTs were significantly reduced and slope of MEP recruitment curve significantly increased; furthermore, the stimulation led to a sustained decrease of SICI and increase of ICF in the contralateral motor cortex. These effects lasted for at least 60 min and were stronger 1 h post-stimulation compared with testing immediately after stimulation. A sham group did not show any differences before and after MG stimulation.ConclusionsWe provide a first demonstration that MG whole-hand stimulation induces increases in motor cortical excitability lasting at least 1 h. Both the strength of the corticospinal projections and the inhibitory and facilitatory intracortical mechanisms are involved. Synaptic modifications such as long-term potentiation mechanisms may underlie this stimulation-induced cortical plasticity changes.SignificancePresent results prove the MG stimulation to be a promising tool in neurorehabilitation.  相似文献   

13.
ObjectiveTo investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer’s disease (AD) before and after chronic therapy with rivastigmine.MethodsResting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls.ResultsAt baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients’ neuropsychological test scores and TMS measures.ConclusionsChronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS.SignificanceThe limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits.  相似文献   

14.
ObjectiveLittle is known whether and how chronic exposure to dopaminergic treatment alters physiological mechanisms in Parkinson’s disease (PD).MethodsTwo clinically similar groups of PD patients, one consisting of drug-naïve patients and another of patients already on chronic dopaminergic medication (when off medication), were compared to each other and to a control group. Plasticity and excitability of the hand primary motor cortex of the more affected side were evaluated using transcranial magnetic stimulation (TMS) techniques.ResultsThere was little difference between two patient groups, and both groups showed similar differences in comparison to controls: decreased facilitatory sensory-motor plasticity (as measured by paired associative stimulation [PAS] protocol), impaired short-interval intracortical inhibition (SICI), and diminished slope of input–output curves at higher TMS intensities. The exception was that 30 min after PAS, intracortical facilitation (ICF) was significantly reduced in drug-naïve patients, whereas it changed much less in other two groups.ConclusionsChronic exposure to dopaminergic drugs does not affect substantially the features of motor cortex excitability and plasticity in PD. There is little interaction between plasticity and excitability features of motor cortex in PD.SignificanceReduced response to facilitatory PAS protocol, reduced SICI, and reduced slope of the input–output curve at higher TMS pulse intensities, seem to be physiological markers for the presence of the pathological disease process in PD. Long term treatment does not seem to change the underlying physiology of the disease.  相似文献   

15.
BackgroundAlthough functional changes in the activation of the cerebellum in Parkinson's disease (PD) patients have been consistently described, it is still debated whether such altered cerebellar activation is a natural consequence of PD pathophysiology or rather it involves compensatory mechanisms.Objective/HypothesisWe used different forms of cerebellar transcranial magnetic stimulation to evaluate the hypothesis that altered cerebello-cortical interactions can be observed in PD patients and to evaluate the role of dopaminergic treatment.MethodsWe studied the effects of a single cerebellar magnetic pulse over the excitability of the contralateral primary motor cortex tested with motor-evoked potentials (MEPs) (cerebellar-brain inhibition—CBI) in a group of 16 PD patients with (ON) and without dopaminergic treatment (OFF), and in 16 age-matched healthy controls. Moreover, we also tested the effects of cerebellar continuous theta-burst stimulation (cTBS) on MEP amplitude, short intracortical inhibition (SICI) and short intracortical facilitation (SICF) tested in the contralateral M1 in 13 PD patients in ON and OFF and in 16 age-matched healthy controls.ResultsCBI was evident in controls but not in PD patients, even when tested in both ON and OFF conditions. Similarly, cerebellar cTBS reduced MEP amplitude and SICI in controls but not in PD patients under any condition.Conclusion(s)These results demonstrate that PD patients have deficient short-latency and long-lasting cerebellar-thalamocortical inhibitory interactions that cannot be promptly restored by standard dopaminergic medication.  相似文献   

16.
ObjectiveTo investigate the effect of modafinil on cortical excitability in patients with narcolepsy using transcranial magnetic stimulation (TMS).MethodsNineteen drug-naïve narcolepsy patients with cataplexy (10 males, 9 females, and mean age 28.5 years) and 25 age- and sex-matched healthy controls were recruited. In this double-blind, randomized, crossover study, patients and controls received a single dose of 400 mg modafinil or placebo. Modafinil and placebo administrations were separated by a 2-week washout period. TMS parameters, such as resting motor thresholds (RMT), motor-evoked potential (MEP) amplitudes, cortical silent periods (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF), were measured before and 3 h after administering modafinil or placebo. The differences of TMS parameters were statistically tested between patients and controls and between before and after modafinil or placebo administration.ResultsNarcolepsy patients had significantly increased CSP durations compared to controls (independent t-test, P < 0.05), indicating decreased excitability of cortical networks in human narcolepsy. In patients after modafinil administration, MEP amplitudes, SICI, and ICF increased, and CSP duration shortened significantly, meaning enhanced motor excitability, whereas in controls modafinil did not change TMS parameters significantly. Placebo administration did not affect TMS parameters both in patients or controls.ConclusionsNarcolepsy patients with cataplexy showed decreased cortical excitability than normal healthy controls. Single dose modafinil significantly increased motor excitability in narcolepsy patients but had no effect in healthy controls.  相似文献   

17.

Objective

Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS (‘magnetic-PAS’) on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle.

Methods

Eleven healthy subjects underwent three 10 min stimulation sessions: 10 Hz rPMS alone, applied in trains of 5 stimuli every 10 s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1 Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 ms and intracortical facilitation (ICF) at an ISI of 15 ms before and immediately after each intervention.

Results

Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle.

Conclusion

Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle.

Significance

Application of magnetic-PAS might be relevant for motor rehabilitation.  相似文献   

18.
ObjectiveTo assess the effect of a single levodopa dose (200 mg levodopa, 50 mg carbidopa = sdLD) on cortical and subcortical motor-circuit activation during bimanual grip force in patients with Parkinson's disease (PD).Patients and methodsWe studied 12 right-handed patients with PD (Hoehn–Yahr stages I–II) after a period of at least 12 h without medication (OFF state) and a second time 1 h after oral administration of sdLD (ON state) using functional magnetic resonance imaging (fMRI). Blood-oxygenation-level-dependency (BOLD) fMRI was measured while participants underwent two unilateral and two bimanual grip force movements with a defined movement amplitude and force (10 N) in a block design. 12 age matched healthy subjects were studied as controls (without administration of sdLD).ResultsBimanual grip force tasks activated a specific pattern of cortical and subcortical structures in all patients during the OFF state and after levodopa administration with statistically significant differences in putamen and thalamus comparing the OFF and ON condition. In contrast, no such significant changes were observed in cortical structures. Between-group analysis revealed higher putaminal activity in controls compared to OFF state in bimanual tasks, while these differences disappeared after administration of levodopa.ConclusionsOur results indicate that the putamen and thalamus are the regions within the cortico-subcortical motor-circuit with most prominent response to levodopa. In our study, cortical motor areas did not respond to levodopa as one could have expected from previous studies. These findings contribute to the increasing evidence that an extended model of the underlying pathophysiology of motor dysfunctions in PD is warranted.  相似文献   

19.
《Clinical neurophysiology》2014,125(11):2240-2246
ObjectiveLithium has been widely used to treat bipolar affective disorder for over 60 years. Still, its acute effects in human cerebral cortex are poorly understood. This study aimed at investigating the acute effects of lithium on motor cortex excitability as measured by transcranial magnetic stimulation (TMS).MethodsTen healthy young adults participated in a double-blind placebo-controlled randomized crossover study with four sessions, where a single oral dose of lithium carbonate (450 mg, 900 mg, or 1350 mg) or placebo was tested. Focal TMS of the hand area of left motor cortex was used to test resting and active motor thresholds, motor evoked potential input–output curve (MEP IO-curve), slope of the MEP IO-curve and paired-pulse measures of intracortical inhibition and facilitation before, and two and four hours after drug administration.ResultsTwo hours post drug administration, 450 mg of lithium carbonate increased the slope of the MEP IO-curve while 1350 mg tended to decrease it. Lithium had no effect on motor thresholds, or intracortical inhibition or facilitation.ConclusionsThe acute effects of lithium on MEP IO-curve, a marker of corticospinal excitability, are consistent with an inverted U-shaped dose–response relationship.SignificanceFindings are important for our understanding of the therapeutic and toxic effects of lithium on the human central nervous system.  相似文献   

20.
IntroductionLevodopa-induced dyskinesia in patients with Parkinson's disease (PD) has been shown to be associated with an abnormal plasticity in the motor cortex. We investigated whether changes in the excitability of inhibitory and excitatory motor circuits could underlie maladaptive mechanisms associated with dyskinesia.MethodsUsing single and paired transcranial magnetic stimulation (TMS), we studied motor threshold, silent period (SP) duration, intracortical facilitation (ICF), short intracortical inhibition (SICI) and low- and high-intensity long intracortical inhibition (LICI) in 10 dyskinetic and 10 non-dyskinetic patients, matched for disease and treatment duration, before (OFF state) and after (ON state) levodopa, and in 10 healthy controls.ResultsIn the OFF state, the two groups of patients showed similar motor cortex excitability with a reduced SICI compared to controls. LICI was weaker and increasing stimulation intensity had a lower effect on SP duration in dyskinetic patients than in controls. In dyskinetic patients, in contrast to non-dyskinetic patients, levodopa failed to increase SICI and SP duration, and potentiated to a lesser extent the effect of increasing the stimulation intensity on LICI. Although levodopa improved motor symptoms to a similar extent in both dyskinetic and non-dyskinetic patients, it failed to activate effectively the excitability of the inhibitory systems in dyskinetic patients.DiscussionThese findings suggest that dyskinesia is associated with an abnormal effect of levodopa on cortical motor inhibitory circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号