首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new glycoside of flavonol (1) and a new glycoside of a cycloartane-type triterpene (2) were isolated from the leaves and the roots of Astragalus caprinus, respectively. Their structures were elucidated in turn by spectroscopic data interpretation as 3-O-[[beta-D-xylopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->6)][beta-D-apiofuranosyl(1-->2)]]-beta-D-galactopyranosyl kaempferol (1) and 3-O-(beta-D-xylopyranosyl)-24-O-(beta-D-glucopyranosyl)-20,25-epoxycycloartane-3beta,6alpha,16beta,24alpha-tetrol (2).  相似文献   

2.
The structures of madhucosides A (1) and B (2), isolated from the bark of Madhuca indica, were established as 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1--> 3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid and 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid, respectively. These two compounds showed significant inhibitory effects on both superoxide release from polymorphonuclear cells in a NBT reduction assay and hypochlorous acid generation from neutrophils assessed in a luminol-enhanced chemiluminescence assay.  相似文献   

3.
The methanolic extract and its n-butanol-soluble fraction from the flowers of the tea plant (Camellia sinensis) were found to suppress serum triglyceride elevation in olive oil-treated mice. From the n-butanol-soluble fraction, three new acylated oleanane-type triterpene oligoglycosides, floratheasaponins A-C (1-3), were isolated together with several flavonol glycosides and catechins. The structures of 1-3 were elucidated on the basis of chemical and physicochemical evidence as 21-O-angeloyl-22-O-acetyltheasapogenol B 3-O-[beta-D-galactopyranosyl(1-->2)][beta-D-xylopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->3)]-beta-D-glucopyranosiduronic acid, 21,22-di-O-angeloyl-R1-barrigenol 3-O-[beta-D-galactopyranosyl(1-->2)][beta-D-xylopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->3)]-beta-D-glucopyranosiduronic acid, and 21-O-angeloyl-22-O-2-methylbutyryl-R1-barrigenol 3-O-[beta-D-galactopyranosyl(1-->2)][beta-D-xylopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->3)]-beta-D-glucopyranosiduronic acid, respectively. Floratheasaponins (1-3) showed inhibitory effects on serum triglyceride elevation, with their activities being more potent than those of theasaponins E1 (4) and E2 (5) obtained previously from the seeds of C. sinensis.  相似文献   

4.
Antifungal activity of natural products is being studied widely. Saponins are known to be antifungal and antibacterial. We used bioassay-guided fractionation to have isolated eight steroid saponins from Tribulus terrestris L., which were identified as hecogenin-3-O-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-8), tigogenin-3-O-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-9), hecogenin-3-O-beta-D-glucopyranosyl (1-->2)-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-10), hecogenin-3-O-beta-D-xylopyranosyl (1-->3)-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-11), tigogenin-3-O-beta-D-xylopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-galactopyranoside (TTS-12), 3-O-[beta-D-xylopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-[alpha-L-rhamnopyranosyl (1-->2)]-beta-D-galactopyranosyl]-26-O-beta-D-glucopyranosyl-22-methoxy-(3beta,5alpha,25R)-furostan-3,26-diol (TTS-13), hecogenin-3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-14), tigogenin-3-O-beta-D-glucopyranosyl (1-->2)-[beta-D-xylopyranosyl (1-->3)]-beta-D-glucopyranosyl (1-->4)-beta-D-galactopyranoside (TTS-15). The in vitro antifungal activities of the eight saponins against five yeasts, Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis and Cryptococcus neoformans were studied using microbroth dilution assay. In vivo activity of TTS-12 in a Candida albicans vaginal infection model was studied in particular. The results showed that TTS-12 and TTS-15 were very effective against several pathogenic candidal species and Cryptococcus neoformans in vitro. It is noteworthy that TTS-12 and TTS-15 were very active against Candida albicans (MIC(80) = 10 and 2.3 microg/mL) and Cryptococcus neoformans (MIC(80) = 1.7 and 6.7 microg/mL). Phase contrast microscopy showed that TTS-12 inhibited hyphal formation, an important virulence factor of Candida albicans, and transmission electron microscopy showed that TTS-12 destroyed the cell membrane of Candida albicans. In conclusion, TTS-12 has significant in vitro and in vivo antifungal activity, weakening the virulence of Candida albicans and killing fungi through destroying the cell membrane.  相似文献   

5.
Two new furostanol saponins, (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-2alpha,3beta,22alpha,26-tetraol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (1) and (25R)-26-O-beta-D-glucopyranosyl-5alpha-furostan-3beta,22alpha,26-triol 3-O-{beta-D-galactopyranosyl-(1-->2)-O-[beta-D-xylopyranosyl-(1-->3)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside} (2), and their O-methyl derivatives (3 and 4), and a new megastigmane glucoside, (6S,7E,9xi)-6,9,10-trihydroxy-4,7-megastigmadien-3-one 10-O-beta-D-glucopyranoside (6), along with one known spirostanol saponin, gitonin (5), and four known megastigmane glucosides were isolated from the aerial parts of Tribulus parvispinus. Their structures were established by detailed spectroscopic analysis. The cytotoxic activities of 1-6 against U937, MCF7, and HepG2 cells were evaluated. Compounds 2 (IC(50) 0.5 microM) and 5 (IC(50) 0.1 microM) showed the highest activity against U937 cells.  相似文献   

6.
Two new compounds, coniferyl 9-O-[beta-D-apiofuranosyl(1-->6)]-O-beta-D-glucopyranoside (1) and sinapyl 9-O-[beta-d-apiofuranosyl(1-->6)]-O-beta-D-glucopyranoside (2), were isolated from the seeds of Punica granatum (pomegranate), together with five known compounds, 3,3'-di-O-methylellagic acid (3), 3,3',4'-tri-O-methylellagic acid (4), phenethyl rutinoside, icariside D1, and daucosterol. The structures of 1 and 2 were elucidated by spectroscopic data analysis. Compounds 1-4 exhibited antioxidant activity, which was evaluated by measurement of low-density lipoprotein (LDL) susceptibility to oxidation and by determination in vitro of malondialdehyde (MDA) levels in the rat brain.  相似文献   

7.
Five new oleanane-type glycosides (1-5), along with two known triterpene saponins, were isolated from the roots of Pulsatilla patens var. multifida (Ranunculaceae). The structures of the new triterpene saponins were elucidated as 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl hederagenin 28-O-beta-D-glucopyranosyl ester (1), hederagenin 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranoside (2), 3-O-beta-D-glucopyranosyl bayogenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (3), 3-O-beta-D-glucopyranosyl(1-->2)-beta-D-galactopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (4), and 3-O-[beta-D-glucopyranosyl(1-->2)][beta-D-glucopyranosyl(1-->6)]-beta -D-galactopyranosyl hederagenin 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta -D-glucopyranosyl ester (5). Structure elucidation was accomplished by 1D and 2D NMR (HMQC, HMBC, and ROESY) methods, FABMS, and hydrolysis.  相似文献   

8.
Two new withanolide glycosides, (20R,22R)-O-(3)-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl-1 alpha,12 beta-diacetoxy-20-hydroxywitha-5,24-dienolide (3) and (20R,22R)-O-(3)-beta-D-xylopyranosyl(1-->3)-[beta-D-xylopyranosyl(1-->4)]-beta-D-glucopyranosyl-1 alpha-acetoxy-12 beta,20-dihydroxywitha-5,24-dienolide (4), were isolated from the leaves and root of Dunalia brachyacantha. Their aglycones, (20R,22R)-1 alpha,12 beta-diacetoxy-3 beta,20-dihydroxywitha-5,24-dienolide (or 1 alpha,12 beta-diacetyldunawithagenine) and (20R,22R)-1 alpha-acetoxy-3 beta,12 beta,20-trihydroxywitha-5,24-dienolide (or 1 alpha-acetyl-12 beta-hydroxydunawithagenine), are novel. The known 18-acetoxywithanolide D (1) and 18-acetoxy-5,6-deoxy-5-withenolide D (2) were also isolated from the leaves. These last two compounds were shown to be responsible for the trypanocidal, leishmanicidal, and bactericidal activities manifested by the crude ethanolic extract. The structures were deduced from spectroscopic data and on the basis of chemical evidence.  相似文献   

9.
Neuroprotective constituents from Hedyotis diffusa   总被引:10,自引:0,他引:10  
In a bioassay-guided search for neuroprotective compounds from medicinal plants, a MeOH extract of whole plants of Hedoytis diffusa yielded five flavonol glycosides, kaempferol 3-O-[2-O-(6-O-E-feruloyl)-beta-D-glucopyranosyl]-beta-D-galactopyranoside (1), quercetin 3-O-[2-O-(6-O-E-feruloyl)-beta-D-glucopyranosyl]-beta-D-galactopyranoside (2), quercetin 3-O-[2-O-(6-O-E-feruloyl)-beta-D-glucopyranosyl]-beta-D-glucopyranoside (3), kaempferol 3-O-(2-O-beta-D-glucopyranosyl)-beta-D-galactopyranoside (4), and quercetin 3-O-(2-O-beta-D-glucopyranosyl)-beta-D-galactopyranoside (5), and four O-acylated iridoid glycosides (6-9). Compounds 1 and 2 are previously unreported natural products, and all nine compounds exhibited significant neuroprotective activity in primary cultures of rat cortical cells damaged by L-glutamate.  相似文献   

10.
Triterpenoid saponins from the roots of Pulsatilla koreana   总被引:5,自引:0,他引:5  
Six new saponins, five lupanes (1-5) and one oleanane (6), along with 11 known saponins, were isolated from the roots of Pulsatilla koreana. The structures of the new saponins were found to be 23-hydroxy-3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (1), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (2), 3beta-[(O-alpha-L-rhamnopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (4), 23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1-->4)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid (5), and hederagenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside (6). Their structures were determined on the basis of 1D and 2D NMR ((13)C NMR, (1)H NMR, (1)H-(1)H COSY, HMQC, and HMBC) methods, FABMS, and hydrolysis. All isolated compounds were evaluated for their cytotoxic activity against A-549 human lung carcinoma cells.  相似文献   

11.
合欢皂甙J6的结构鉴定   总被引:3,自引:1,他引:2  
目的 :从合欢皮中分离皂甙。方法 :用色谱法分离 ,波谱法鉴定其结构。结果和结论 :从合欢皮的 95%乙醇提取物中分得 1个三糖链八糖皂甙 ,结构为 3-O [β-D 吡喃木糖基 ( 1→ 2 )-α-L 吡喃阿拉伯糖基 ( 1→ 6)-β-D 2 去氧 2 乙酰胺基 吡喃葡萄糖基 ] 21O {6S2 反式2羟甲基6甲基6-o[4-O ( 6S-2 反式-2 羟甲基 6-甲基 6-羟基 2 ,7 辛二烯酰基 ) β D 吡喃鸡纳糖基 ] 2 ,7 辛二烯酰基 } 金合欢酸-28-O-β-D 吡喃葡萄糖基 (1→ 3)[α- L 呋喃阿拉伯糖基 (1→ 4) ] α L 吡喃鼠李糖基 (1→ 2)-β-D 吡喃葡萄糖酯 ,为新化合物 ,命名为合欢皂甙J6 。  相似文献   

12.
Three genuine saponins, named kinmoonosides A-C (1-3), have been isolated, together with a new monoterpenoid (4), from a methanolic extract of the fruits of Acacia concinna. The structures of kinmoonosides A-C were elucidated on the basis of spectral analysis as 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6R, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinovopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (1); 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-?(6S, 2E)-2-hydroxymethyl-6-methyl-6-O-[4-O-(2'E)-6'-hydroxyl-2'-hydroxymet hyl-6'-methyl-2',7'-octadienoyl-beta-D-quinobopyranosyl]-2, 7-octadienoyl?acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (2); and 3-O-?alpha-L-arabinopyranosyl(1-->6)-[beta-D-glucopyranosyl(1-->2) ]-b eta-D-glucopyranosyl?-21-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl- 2,7-octadienoyl]acacic acid 28-O-alpha-L-arabinofuranosyl(1-->4)-[beta-D-glucopyranosyl(1-->3)]-a lpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl ester (3), respectively. The new monoterpenoid 4 was determined as 4-O-[(2E)-6-hydroxyl-2-hydroxymethyl-6-methyl-2, 7-octadienoyl]-D-quinovopyranose. Compounds 1-3 showed significant cytotoxicity against human HT-1080 fibrosarcoma cells.  相似文献   

13.
Two new dammarane saponins identified as jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[beta-d-glucopyranosyl(1-->6) beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (2) and jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[6-O-[3-hydroxy-3-methylglutaryl]-beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (3) and a new lupane saponin, 3beta-hydroxylup-20(29)-en-27,28-dioic acid 28-O-beta-d-glucopyranosyl(1-->2)-[beta-d-xylopyranosyl(1-->3)]-beta-d-xylopyranosyl(1-->2)-beta-d-glucopyranoside ester (5), along with the known jujubogenin 3-O-alpha-l-arabinofuranosyl(1-->2)-[beta-d-glucopyranosyl(1-->3)]-alpha-l-arabinopyranoside (1) and 3beta-hydroxylup-20(29)-ene-27,28-dioic acid (4), were isolated from the methanol extract of the stems of Anomospermum grandifolium. The structures of the new compounds were established by spectral analysis. Antimicrobial activity screening of compounds 1-3 revealed antifungal properties against C. albicans ATCC 3153 for compounds 2 and 3. The antibacterial and antifungal activities of the petroleum ether, chloroform, and methanol extracts of A. grandifolium stems were also evaluated.  相似文献   

14.
New steroidal glycosides from the fruits of Tribulus terrestris   总被引:5,自引:0,他引:5  
Three new steroidal saponins (1-3) were isolated from the fruits of Tribulus terrestris. Their structures were assigned by spectroscopic methods (IR, HRESIMS, 1D- and 2D-NMR) as 26-O-beta-D-glucopyranosyl-(25S)-5beta-furost-20(22)-en-3bet a, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl- (1-->4)]-beta-D-glucopyranoside (1), 26-O-beta-D-glucopyranosyl-(25S)-5beta-furost-20(22)-en-3bet a, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1 -->4)]-beta-D-galactopyranoside (2), and 25(S)-5beta-spirostan-3beta-ol-3-O-alpha-L-rhamnopyranosyl-( 1-->2)-[b eta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (3). Compound 3 showed cytotoxicity against a human malignant melanoma cell line (SK-MEL).  相似文献   

15.
Six new ent-labdane diterpenoids, 3-O-beta-D-glucopyranosyl-14,19-dideoxyandrographolide (1), 14-deoxy-17-hydroxyandrographolide (2), 19-O-[beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranoyl]-3,14-dideoxyandrographolide (3), 3-O-beta-d-glucopyranosylandrographolide (4), 12S-hydroxyandrographolide (5), and andrographatoside (6), together with 17 known analogues, were isolated from the aerial parts of Andrographis paniculata. The structures of 1-6 were determined by spectroscopic data analysis. All compounds isolated were evaluated for their inhibitory activity against several bacterial and fungal strains.  相似文献   

16.
Four novel triterpenoid saponins, glandulosides A (1), B (2), C (3), and D (4), together with two known saponins (5 and 6) have been isolated from the roots of Acanthophyllum glandulosum. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FABMS. The new compounds were characterized as 23-O-beta-D-galactopyranosylgypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[beta-d-galactopyranosyl-(1-->6)]-beta-D-galactopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-3-O-acetyl-beta-D-fucopyranoside (2), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-acetyl-beta-D-fucopyranoside (3), and 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-[3-O-acetyl-beta-D-quinovopyranosyl-(1-->4)]-beta-D-fucopyranoside (4).  相似文献   

17.
Two new saponins, 3-O-[6-O-sulfonyl-beta-d-glucopyranosyl-(1-->3)]-alpha-l-arabinopyranosyl pseudojujubogenin (1) and 3-O-[alpha-l-arabinofuranosyl-(1-->2)]-alpha-l-arabinopyranosyl jujubogenin (2), a new matsutaka alcohol derivative, (3R)-1-octan-3-yl-(6-O-sulfonyl)-beta-d-glucopyranoside (3), a new phenylethanoid glycoside, 3,4-dihydroxyphenylethyl alcohol (2-O-feruloyl)-beta-d-glucopyranoside (4), and a new glycoside, phenylethyl alcohol [5-O-p-hydroxybenzoyl-beta-d-apiofuranosyl-(1-->2)]-beta-d-glucopyranoside (5), were isolated from Bacopa monniera. Their structures were established by NMR, MS, and chemical methods.  相似文献   

18.
Two new lignan glycosides, 4-O-[alpha-L-arabinopyranosyl-(1' "-->2' ')-beta-D-xylopyranosyl-(1' " '-->5' ')-beta-D-apiofuranosyl]diphyllin (1), named ciliatoside A (1), and 4-O-?[beta-D-apiofuranosyl-(1' " "-->3' ")-alpha-L-arabinopyranosyl-(1' "-->2' ')][beta-D-xylopyranosyl-(1' " '-->5' ')]-beta-D-apiofuranosyl?diphyllin (2), named ciliatoside B (2), were isolated from the whole plant of Justicia ciliata. The structures of 1 and 2 were determined by spectral and chemical methods. Compounds 1 and 2 strongly inhibited the accumulation of NO(2)(-) in lipopolysaccharide-stimulated RAW 264.7 cells in a concentration-dependent manner with IC(50) values of 27.1 +/- 1.6 and 29.4 +/- 1.4 microM, respectively.  相似文献   

19.
A new iridoid glycoside, verbaspinoside (1), was isolated from the aerial parts of Verbascum spinosum. Its structure was elucidated on the basis of chemical and spectral data as 6-O-[(2' '-O-trans-cinnamoyl)-alpha-L-rhamnopyranosyl]-catalpol. Additionally, three known iridoids (aucubin, catalpol, and ajugol) and three phenylpropanoid glycosides [acteoside, angoroside A (2), and angoroside C (3)] were isolated and identified.  相似文献   

20.
Four new steroidal saponins, named neosibiricosides A-D (1-4), were isolated from the rhizomes of Polygonatum sibiricum, along with two known spirostanol glycosides. The structures of the new glycosides were elucidated by spectroscopic methods and acid hydrolysis as (23S,24R,25R)-1-O-acetylspirost-5-ene-1beta,3beta,23,24-tetrol 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->4)-beta-D-fucopyranoside (1), (25S)-1-O-acetylspirost-5-ene-1beta,3beta-diol 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside (2), (25S)-spirost-5-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-2-O-acetyl-beta-D-galactopyranoside (3), and (25R,S)-spirost-5-en-3beta-ol 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside (4). The cytotoxic activity of the isolated compounds was evaluated with human MCF-7 breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号