首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
The influences of chronic deficiency of L-ascorbic acid (AsA) on the differentiation of osteo-chondrogenic cells and the process of endochondral ossification were examined in the mandibular condyle and the tibial epiphysis and metaphysis by using Osteogenic Disorder Shionogi (ODS) rats that bear an inborn deficiency of L-gulonolactone oxidase. Weanling male rats were kept on an AsA-free diet for up to 4 weeks, until the symptoms of scurvy became evident. The tibiae and condylar processes of scorbutic rats displayed undersized and distorted profiles with thin cortical and scanty cancellous bones. In these scorbutic bones, the osteoblasts showed characteristic expanded round profiles of rough endoplasmic reticulum, and lay on the bone surface where the osteoid layer was missing. Trabeculae formation was deadlocked, although calcification of the cartilage matrix proceeded in both types of bone. Scorbutic condylar cartilage showed severe disorganization of cell zones, such as unusual thickening of the calcification zone, whereas the tibial cartilage showed no particular alterations (except for a moderately decreased population of chondrocytes). In condylar cartilage, hypertrophic chondrocytes were encased in a thickened calcification zone, and groups of nonhypertrophic chondrocytes occasionally formed cell nests surrounded by a metachromatic matrix in the hypertrophic cell zone. These results indicate that during endochondral ossification, chronic AsA deficiency depresses osteoblast function and disturbs the differentiation pathway of chondrocytes. The influence of scurvy on mandibular condyle cartilage is different from that on articular and epiphyseal cartilage of the tibia, suggesting that AsA plays different roles in endochondral ossification in the mandibular condyle and long bones.  相似文献   

2.

The field of temporomandibular joint (TMJ) condyle regeneration is hampered by a limited understanding of the phenotype and regeneration potential of cells in mandibular condyle cartilage. It has been shown that chondrocytes derived from hyaline and costal cartilage exhibit a greater chondro-regenerative potential in vitro than those from mandibular condylar cartilage. However, our recent in vivo studies suggest that mandibular condyle cartilage cells do have the potential for cartilage regeneration in osteochondral defects, but that bone regeneration is inadequate. The objective of this study was to determine the regeneration potential of cartilage and bone cells from goat mandibular condyles in two different photocrosslinkable hydrogel systems, PGH and methacrylated gelatin, compared to the well-studied costal chondrocytes. PGH is composed of methacrylated poly(ethylene glycol), gelatin, and heparin. Histology, biochemistry and unconfined compression testing was performed after 4 weeks of culture. For bone derived cells, histology showed that PGH inhibited mineralization, while gelatin supported it. For chondrocytes, costal chondrocytes had robust glycosaminoglycan (GAG) deposition in both PGH and gelatin, and compression properties on par with native condylar cartilage in gelatin. However, they showed signs of hypertrophy in gelatin but not PGH. Conversely, mandibular condyle cartilage chondrocytes only had high GAG deposition in gelatin but not in PGH. These appeared to remain dormant in PGH. These results show that mandibular condyle cartilage cells do have innate regeneration potential but that they are more sensitive to hydrogel material than costal cartilage cells.

  相似文献   

3.
Temporomandibular joint (TMJ) disorders are most commonly associated with TMJ disc dislocation and osteoarthritis, which can cause erosion of the articular cartilage on the head of the mandibular condyle. There has been little attention focused on treating the damaged condylar cartilage. Therefore, the overall goal of this research is to create a tissue engineering therapy for resurfacing the damaged cartilage of the condylar process with healthy living tissue. Initially, bovine condylar cartilage explants were studied to understand the tissue structure, composition, and gene expression of the native tissue. The cell response of isolated condylar chondrocytes encapsulated in photopolymerized poly(ethylene glycol) hydrogels as a tissue engineering scaffold was examined in the presence and absence of dynamic loading for up to three days of culture. Condylar chondrocyte viability was maintained within the PEG hydrogel constructs over the culture period and loading conditions. Cell response was examined through real-time RTPCR for collagen types I and II and aggrecan, nitric oxide production, cell proliferation, proteoglycan (PG) synthesis, and spatial distribution of extracellular matrix through histology. This study demonstrates that PEG hydrogel constructs are suitable for condylar chondrocyte encapsulation in the absence of loading. However, dynamic compressive strains resulted in inhibition of gene expression, cell proliferation, and PG synthesis.  相似文献   

4.
The aim of this study was to investigate the developmental characteristics of the mandibular condyle in sequential phases at the gene level using in situ hybridisation. At d 14.5 of gestation, although no expression of type II collagen mRNA was observed, aggrecan mRNA was detected with type I collagen mRNA in the posterior region of the mesenchymal cell aggregation continuous with the ossifying mandibular bone anlage prior to chondrogenesis. At d 15.0 of gestation, the first cartilaginous tissue appeared at the posterior edge of the ossifying mandibular bone anlage. The primarily formed chondrocytes in the cartilage matrix had already shown the appearance of hypertrophy and expressed types I, II and X collagens and aggrecan mRNAs simultaneously. At d 16.0 of gestation, the condylar cartilage increased in size due to accumulation of hypertrophic chondrocytes characterised by the expression of type X collagen mRNA, whereas the expression of type I collagen mRNA had been reduced in the hypertrophic chondrocytes and was confined to the periosteal osteogenic cells surrounding the cartilaginous tissue. At d 18.0 of gestation before birth, cartilage-characteristic gene expression had been reduced in the chondrocytes of the lower half of the hypertrophic cell layer. The present findings demonstrate that the initial chondrogenesis for the mandibular condyle starts continuous with the posterior edge of the mandibular periosteum and that chondroprogenitor cells for the condylar cartilage rapidly differentiate into hypertrophic chondrocytes. Further, it is indicated that sequential rapid changes and reductions of each mRNA might be closely related to the construction of the temporal mandibular ramus in the fetal stage.  相似文献   

5.
This study provides data concerning the cells and their extracellular matrix in prenatal human mandibular condylar cartilage. The latter cartilage represents a secondary type of cartilage since it develops late in the morphogenesis of the craniofacial skeleton. The cartilage of the mandibular condyle is actively involved in endochondral ossification, thus showing all the phases of cartilage growth, maturation, and mineralization that precedes de novo bone formation. The present study focused on the localization and distribution of the major macromolecules that are normally encountered in cartilage and bone, including colagens, proteoglycans, fibronectin, osteonectin, osteocalcin, alkaline phosphatase, and anchorin CII. It became clear that the mineralized zone of the cartilage already contained bone-specific antigens; thus the above zone might serve as an essential propagative predecessor in the ossification process.  相似文献   

6.
Mandibular condylar cartilage is often classified as a secondary cartilage, differing from the primary cartilaginous skeleton in its rapid progress from progenitor cells to hypertrophic chondrocytes. In this study we used in situ hybridization and immunohistochemistry to investigate whether the formation of primary (tibial) and secondary (condylar) cartilage also differs with respect to the expression of two major non‐collagenous glycoproteins of bone matrix, bone sialoprotein (BSP) and secreted phosphoprotein 1 (Spp1, osteopontin). The mRNAs for both molecules were never expressed until hypertrophic chondrocytes appeared. In the tibial cartilage, hypertrophic chondrocytes first appeared at E14 and the expression of BSP and Spp1 mRNAs was detected in the lower hypertrophic cell zone, but the expression of BSP mRNA was very weak. In the condylar cartilage, hypertrophic chondrocytes appeared at E15 as soon as cartilage tissue appeared. The mRNAs for both molecules were expressed in the newly formed condylar cartilage, although the proteins were not detected by immunostaining; BSP mRNA in the condylar cartilage was more extensively expressed than that in the tibial cartilage at the corresponding stage (first appearance of hypertrophic cell zone). Endochondral bone formation started at E15 in the tibial cartilage and at E16 in the condylar cartilage. At this stage (first appearance of endochondral bone formation), BSP mRNA was also more extensively expressed in the condylar cartilage than in the tibial cartilage. The hypertrophic cell zone in the condylar cartilage rapidly extended during E15–16. These results indicate that the formation process of the mandibular condylar cartilage differs from that of limb bud cartilage with respect to the extensive expression of BSP mRNA and the rapid extension of the hypertrophic cell zone at early stages of cartilage formation. Furthermore, these results support the hypothesis that, in vivo, BSP promotes the initiation of mineralization.  相似文献   

7.
8.
The condylar cartilage of the mandible is considered a secondary growth center and represents a joint cartilage different from other cartilage structures regarding its histological structure, its histochemical and immunohistochemical properties and its growth pattern. This study aimed to histologically and histomorphometrically investigate the condylar cartilage after anterior mandibular displacement similar to functional orthopedic treatment. A total of 12 pigs (sus scrofa domesticus) aged 10 weeks were divided into an experimental group and a control group comprising 6 animals each. The experimental animals were provided bilaterally with synthetic occlusal build-ups in the posterior area which induced anterior displacement of the mandible in terminal occlusion. After 4 weeks, the temporomandibular structures were removed en bloc and the condylar cartilage was analyzed histologically and histomorphometrically. As a result, the experimental animals displayed a significantly increased total cartilage thickness of the posterocranial mandibular condyle which was primarily caused by an increase in thickness of the hypertrophic and chondogenic layers. Similarly, the proliferative layer showed a significant increase, whereas significant differences in thickness were absent in the articular layer. Increased cell proliferation was not observed in the experimental animals as compared to the controls. The changes found in the condylar cartilage area suggest that the zonal structure of the condylar cartilage may be modified by an altered spatial relationship between the mandibular condyle and the glenoid fossa.  相似文献   

9.
Juvenile mice were treated for up to eight weeks with weekly doses of a synthetic analogue of cortisol:triamcinolone hexacetonide. The mandibular condylar cartilage was studied histologically and histochemically at regular intervals. Morphometric measurements were performed along the mandibular posterior vertical dimension (condylar process and ramus). By the second injection significant morphological changes were noted in the condylar cartilage, followed by retardation of bone growth. The most distinctive feature in the cartilage of triamcinolone-treated mice was a marked increase in the dimension of its mineralized zone concomitant with a significant increase in the number of hypertrophic chondrocytes. The role of condylar cartilage in mandibular growth is discussed.  相似文献   

10.
Juvenile mice were treated for up to eight weeks with weekly doses of a synthetic analogue of cortisol:triamcinolone hexacetonide. The mandibular condylar cartilage was studied histologically and histochemically at regular intervals. Morphometric measurements were performed along the mandibular posterior vertical dimension (condylar process and ramus). By the second injection significant morphological changes were noted in the condylar cartilage, followed by retardation of bone growth. The most distinctive feature in the cartilage of triamcinolone-treated mice was a marked increase in the dimension of its mineralized zone concomitant with a significant increase in the number of hypertrophic chondrocytes. The role of condylar cartilage in mandibular growth is discussed.  相似文献   

11.
Histological and autoradiographic studies using 3H-proline indicate that cartilaginous tissue in the mandibular condyle maintains morphologic and metabolic characteristics of an embryonic type of tissue. Cartilage cells in the condyle lack the specific arrangement and cellular homogeneity characteristic of more differentiated endochondral growth sites. Through dedifferentiation many chondrocytes in the mandibular condyle appear to outlive the hypoxic conditions that are reported to prevail within the mineralizing zone. Chondrocytes in this zone reveal only a minimal amount of 3H-proline uptake in comparison with the cells in the chondroblastic and premineralizing zones. The dedifferentiated chondrocytes appear to redifferentiate into more specialized cells, possibly osteoprogenitor cells, as they reveal a significant increase in 3H-proline incorporation in the vicinity of the ossifying front. These observations on proline metabolism support the concept that calcification in the condylar cartilage is not necessarily accompanied by degeneration and death of the chondrocytes.  相似文献   

12.
Matrix components of vascular canals (VCs) in human fetal mandibular condylar cartilage (15–16 weeks of gestation) were analyzed by immunohistochemistry. Prevascular canals (PVCs), consisting of spindle‐shaped cells without capillary invasion, were observed within the cartilage. Intense immunoreactivity for collagen type I, weak immunoreactivity for aggrecan and tenascin‐C, weak hyaluronan (HA) staining, and abundant argyrophilic fibers in PVCs indicated that they contain noncartilaginous fibrous connective tissues that was different from those in the perichondrium/periosteum. These structural and immunohistochemical features of PVCs are different from those of previously reported cartilage canals of the long bone. Capillaries entered the VCs from the periosteum and ascended through VCs. Following capillary invasion, loose connective tissue had formed in the lower part of VCs, and immunoreactivity for collagen types I and III, tenascin‐C, and HA staining was evident in the matrix of loose connective tissue. No chondroclasts or osteogenic cells were seen at the front of capillary invasion, although small, mononuclear tartrate‐resistant acid phosphatase (TRAP)‐positive cells were present. Meanwhile, TRAP‐positive, multinucleated chondroclasts and flattened, osteoblast‐like cells were observed in the loose connective tissue at the lower part of VCs. These results may indicate slow progress of endochondral ossification in human fetal mandibular condyle. Further, unique matrix components in PVCs/VCs, which were different from those in cartilage canals in long bone, may reflect the difference of speed of endochondral ossification in cartilage canals and human fetal mandibular condyles. Anat Rec, 298:1560–1571, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Dai J  Wang X  Shen G 《Medical hypotheses》2011,77(1):132-133
Condylar cartilage is absolutely necessary for the normal function of temporomandibular joint (TMJ). Unfortunately, condylar cartilage defect or missing is also one of the common clinical problems. Repair or reconstruction of cartilage is always a hot topic. Cell based cartilage regeneration is suggested as novel therapies in cartilage tissue engineering, and autologous chondrocytes were initially regarded as the ideal cell source. However, there are some disadvantages such as its limited augmentation capability for culture in vitro and may differentiate to other types of cells. On the other hand, bone marrow stromal cells (BMSCs) have gained special interest in tissue engineering. Because they can be obtained easily, cause relatively minor trauma and show the potential of long-run ex vivo expansion capacity. What most important is their capacity of multi-directional differentiation. They can differentiate into a variety of other types of cells when there are supplement exogenous factors or genes, but their clinical use is limited by safety concerns such as toxicity, insertional teratogenic, uncontrollable gene expression. Fortunately, the chondrocytes microenvironment has been demonstrated that could induce BMSCs to structure cartilage when culture in vitro or reimplanted in nude mice subcutaneously area. So in this article, we hypothesize that cotransplantation of autologous BMSCs and chondrocytes, which coculture with extracellular scaffolds, is a novel therapy for reconstruction of TMJ condylar cartilage. In our strategy, advantages of two types of cells are utilized and shortcomings are avoided, which strongly improve the feasibility and clinical safety, finally bring great hope to the patients with TMJ disease.  相似文献   

14.
CTRP3/cartducin, a novel C1q family protein, is expressed in proliferating chondrocytes in the growth plate and has an important role in regulating the growth of both chondrogenic precursors and chondrocytes in vitro. We examined the expression of CTRP3/cartducin mRNA in Meckel's cartilage and in condylar cartilage of the fetal mouse mandible. Based on in situ hybridization studies, CTRP3/cartducin mRNA was not expressed in the anlagen of Meckel's cartilage at embryonic day (E)11.5, but it was strongly expressed in Meckel's cartilage at E14.0, and then reduced in the hypertrophic chondrocytes at E16.0. CTRP3/cartducin mRNA was not expressed in the condylar anlagen at E14.0, but was expressed in the upper part of newly formed condylar cartilage at E15.0. At E16.0, CTRP3/cartducin mRNA was expressed from the polymorphic cell zone to the upper part of the hypertrophic cell zone, but was reduced in the lower part of the hypertrophic cell zone. CTRP3/cartducin-antisense oligodeoxynucleotide (AS-ODN) treatment of Meckel's cartilage and condylar anlagen from E14.0 using an organ culture system indicated that, after 4-day culture, CTRP3/cartducin abrogation induced curvature deformation of Meckel's cartilage with loss of the perichondrium and new cartilage formation. Aggrecan, type I collagen, and tenascin-C were simultaneously immunostained in this newly formed cartilage, indicating possible transformation from the perichondrium into cartilage. Further, addition of recombinant mouse CTRP3/cartducin protein to the organ culture medium with AS-ODN tended to reverse the deformation. These results suggest a novel function for CTRP3/cartducin in maintaining the perichondrium. Moreover, AS-ODN induced a deformation of the shape, loss of the perichondrium/fibrous cell zone, and disorder of the distinct architecture of zones in the mandibular condylar cartilage. Additionally, AS-ODN-treated condylar cartilage showed reduced levels of mRNA expression of aggrecan, collagen types I and X, and reduced BrdU-incorporation. These results suggest that CTRP3/cartducin is not only involved in the proliferation and differentiation of chondrocytes, but also contributes to the regulation of mandibular condylar cartilage.  相似文献   

15.
A high dose strontium diet was fed to fetal mice from day 1 of gestation to birth in order to investigate the ultrastructural changes of osteoclasts/chondroclasts when associated with poorly calcified bone/cartilage. Calcification in the mandibular bone and condylar cartilage was extensively inhibited by this diet. Multinucleated osteoclasts and chondroclasts were observed on the mandibular alveolar bone and in the resorption area of the condylar cartilage, respectively. However, both cell types never formed ruffled borders and clear zones at the cell surfaces facing the matrices indicative of bone resorption, although they had well-developed organelles and vacuoles. Furthermore, they revealed signs of phagocytosis of the matrix vesicles. These results indicate that osteoclasts/chondroclasts can exhibit phagocytotic activity in response to requirements.  相似文献   

16.
In a previous study (Luder, Anat. Rec., 1997;248:18–28), the articular tissue of the adult mandibular condyle was characterized semiquantitatively. However, questions about age changes of mature tissue were not answered, and the time course of tissue maturation from the end of condylar growth to the attainment of the adult appearance remained unknown. These issues are addressed in the present investigation. By using a light microscope, features of the superficial, intermediate, and deep articular tissue zones as well as of the subchondral bone were assessed at nine predetermined condylar sites. The frequencies of these features were recorded as scores from 0 (absent) to 10 (continuous) and were plotted against age. Analysis of covariance served for testing the significance of age and sex effects as well as intracondylar variability. Whereas almost all age-related changes in frequencies of tissue features were similar along the whole lateromedial dimension, changes at the putatively nonload-bearing, posterior slope differed significantly from those at the putatively load-bearing, anterior slope and zenith of the condyle. Two patterns of changes were noted. Frequencies of a first group of tissue features altered mainly during the age period from 15 years to 30 years and remained more or less stable thereafter. This course was characteristic for 1) a progressive cartilaginification of the superficial zone as well as 2) the disappearance of hypertrophic growth cartilage and 3) the appearance of grid-fibrous fibrocartilage in the deep zone, which were accompanied by 4) a decline in endochondral ossification and 5) the formation of a compact, subchondral bone plate. Frequencies of a second group of tissue features disclosed changes that continued up to middle and old age. This pattern was evident regarding 1) a decrease in the prominence associated with 2) a drop in cellularity and 3) progressive fibrosis or even cartilaginification of the intermediate zone. Among the age changes of condylar articular tissue, those affecting the superficial and deep zones as well as the subchondral bone are largely complete by about 30 years of age and seem to be related primarily to a gradual transition from growth to adulthood. In contrast, a second group of alterations, which progress to old age and involve mainly the intermediate zone, appears to be associated with continued maintenance and adaptive articular remodeling as well as possibly senescence. Both maturational and later age changes seem to depend markedly on articular load bearing. Anat. Rec. 251:439–447, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Mandibular condylar cartilage is a representative secondary cartilage, differing from primary cartilage in various ways. Syndecan is a cell-surface heparan sulfate proteoglycan and speculated to be involved in chondrogenesis and osteogenesis. This study aimed to investigate the expression patterns of the syndecan family in the developing mouse mandibular condylar cartilage. At embryonic day (E)13.0 and E14.0, syndecan-1 and -2 mRNAs were expressed in the mesenchymal cell condensation of the condylar anlage. When condylar cartilage was formed at E15.0, syndecan-1 mRNA was expressed in the embryonic zone, wherein the mesenchymal cell condensation is located. Syndecan-2 mRNA was mainly expressed in the perichondrium. At E16.0, syndecan-1 was expressed from fibrous to flattened cell zones and syndecans-2 was expressed in the lower hypertrophic cell zone. Syndecan-3 mRNA was expressed in the condylar anlage at E13.0 and E13.5 but was not expressed in the condylar cartilage at E15.0. It was later expressed in the lower hypertrophic cell zone at E16.0. Syndecan-4 mRNA was expressed in the condylar anlage at E14.0 and the condylar cartilage at E15.0 and E16.0. These findings indicated that syndecans-1 and -2 could be involved in the formation from mesenchymal cell condensation to condylar cartilage. The different expression patterns of the syndecan family in the condylar and limb bud cartilage suggest the functional heterogeneity of chondrocytes in the primary and secondary cartilage.  相似文献   

18.
19.
Qualitative and quantitative data on the growth of the mandibular condyle in the rhesus monkey (Macaca mulatta) are limited. The purpose of this investigation was to provide such data, with emphasis on variation in the size of the cartilaginous layers in the condyle and on condylar growth at five maturational levels (i.e., neonate, infant, juvenile, adolescent and young adult). Two regions of the mandibular condyle, the articular tissue and the prechondroblastic-chondroblastic (growth) layer, were examined histologically in 38 rhesus monkeys. The absolute area of the articular layer increased dramatically from the neonatal through the juvenile age groups and then decreased gradually through the adult group. When the absolute values were expressed relative to condylar size, the first three maturational levels shared a common trend of increasing growth of the articular layer, with a cessation of growth in this tissue occurring during the adolescent period. This variation in articular layer tissue is probably the result of progressive alteration in the function of the temporomandibular joint. The size of the prechondroblastic-chondroblastic (growth) cartilage increased dramatically between the neonatal and juvenile age groups, and subsequently decreased in older age groups. The relative thickness of the prechondroblastic-chondroblastic cartilage reached its peak within the infant and juvenile levels, being greatest in the posterior region among the infants and in the postero-superior region among the juveniles. This corresponds to previous investigations which have shown that greater vertical growth of the rhesus monkey mandible occurs during the infant period, while the direction of mandibular growth is more horizontal in subsequent age groups.  相似文献   

20.
The present chronological investigation assessed the distribution of type II collagen expression in the developing mouse mandibular condyle using immunohistochemical staining with respect to the anatomy of the anlage of the mandibular condyle, the histological characteristics of which were disclosed in our previous investigation. We analyzed fetuses, obtained by cross breeding of ICR strain mice, between 14.0 and 19.0 days post-conception (dpc) and pups on 1, 3, and 5 days post-natal (dpn) using immunohistochemical staining with 2 anti-type II collagen antibodies. The expression of type II collagen was first detected at 15.0 dpc in the lower part of the hypertrophic chondrocyte zone; thereafter, this type II collagen-positive layer was expanded and intensified (P1 layer). At 17.0 dpc, we identified a type II collagen-negative layer (N layer) around the P1 layer and we also identified another newly formed type II collagen-positive layer (P, layer) on the outer surface of the N layer. The most typical and conspicuous 3-layered distribution was observed at 1 dpn; thereafter, there was a reduction in the intensity of expression, and with it, the demarcation between the layers was weakened by 5 dpn. The P1 layer was derived from the central region of the core cell aggregate of the anlage of the mandibular condyle and participated in endochondral bone formation. The N layer was derived from the fringe of the core cell aggregate of the anlage, formed the bone collar at the side of the condyle by intramembranous bone formation, and showed a high level of proliferative activity at the vault. The P2 layer was formed from the outgrowth of the N layer, and could be considered as the secondary cartilage. The intensive expression of type II collagen from 17.0 dpc to 3 dpn was detected in the fibrous sheath covering the condylar head, which is derived from the peripheral cell aggregate of the anlage. Since its expression in the fibrous sheath was not detected in the neighboring section in the absence of hyaluronidase digestion, some changes in the extracellular matrix of the fibrous sheath appear to participate in the generation of the lower joint space. The results of the present investigation indicate that further studies are required to fully characterize the development of the mouse mandibular condyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号