首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We showed previously that treatment of human airway smooth muscle cells and lung fibroblasts with lysophosphatidic acid (LPA) increases the binding of epidermal growth factor (EGF) to EGF receptors (EGFRs). The purpose of this study was to determine whether LPA also regulates EGFR binding in airway epithelial cells. Airway epithelial cells were incubated in the absence or presence of 10 microM LPA for increasing times, and binding of 125I-EGF to intact cells on ice was measured. Exposure to LPA for only 15 min caused a 30 to 70% decrease in EGFR binding in a dose-dependent manner, depending on the cell line. This decrease in binding was sustained to at least 18 h in BEAS-2B and primary human bronchial epithelial cells. In contrast, the LPA-induced decrease in binding reversed rapidly in two lung cancer epithelial cell lines, H292 and A549, returning to control levels within 3 h. LPA increased phosphorylation of the EGFR in BEAS-2B cells, and this phosphorylation was inhibited by both 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478; EGFR tyrosine kinase inhibitor) and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM6001; matrix metalloproteinase inhibitor) but not by CRM197 (heparin-binding EGF inhibitor). AG-1478 and GM6001 also inhibited the LPA-induced decrease in EGFR binding but only by 50%, suggesting only partial involvement of EGFR transactivation in the decrease in EGFR binding. In summary, LPA stimulates a decrease in EGFR binding in airway epithelial cells that is sustained in normal cells but that rapidly reverses in cancer cells. LPA-induced transactivation of EGFRs occurs and contributes to the decrease in EGFR binding, but additional pathway(s) may also be involved.  相似文献   

2.
The endogenous phospholipid lysophosphatidic acid (LPA) regulates fundamental cellular processes such as proliferation, survival, motility, and invasion implicated in homeostatic and pathological conditions. Hence, delineation of the full range of molecular mechanisms by which LPA exerts its broad effects is essential. We report avid binding of LPA to the receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, and mapping of the LPA binding site on this receptor. In vitro, RAGE was required for LPA-mediated signal transduction in vascular smooth muscle cells and C6 glioma cells, as well as proliferation and migration. In vivo, the administration of soluble RAGE or genetic deletion of RAGE mitigated LPA-stimulated vascular Akt signaling, autotaxin/LPA-driven phosphorylation of Akt and cyclin D1 in the mammary tissue of transgenic mice vulnerable to carcinogenesis, and ovarian tumor implantation and development. These findings identify novel roles for RAGE as a conduit for LPA signaling and suggest targeting LPA–RAGE interaction as a therapeutic strategy to modify the pathological actions of LPA.Endogenous phospholipids such as lysophosphatidic acid (LPA) regulate cellular signal transduction cascades implicated in diverse homeostatic and pathological conditions, from vascular signaling and tumorigenesis to neuropathic pain, as examples (Moolenaar et al., 2004; Lin et al., 2010). Thus, it is not surprising that the production of LPA is tightly regulated. The control of LPA levels occurs largely through the action of the enzyme autotaxin (atx), the principal source of LPA in the tissues (Georas, 2009; Pamuklar et al., 2009). In the vasculature and in tumors, LPA stimulates cellular proliferation, survival, motility, invasion, and production of growth factors (Moolenaar et al., 2004; Lin et al., 2010). LPA exerts homeostatic effects in development, but in adult organisms recrudescence of LPA signaling in stressed tissues is met with pathological responses such as neointimal expansion and tumor growth and metastasis (Moolenaar et al., 2004; Smyth et al., 2008; Lin et al., 2010). Although it is known that LPA interacts with G protein–coupled receptors (GPCRs), not all LPA activities can be explained by GPCR signaling. A potential role for an intracellular receptor has been proposed; further, unidentified LPA receptors or possibly nonreceptor pathways have been implicated in the biological actions of this lipid (McIntyre et al., 2003; Choi et al., 2010; Chun et al., 2010). Despite the high interest in LPA signaling, the identity of non-GPCR receptors has remained elusive. Because the receptor for advanced glycation end products (RAGE) has been implicated in vascular signaling, atherosclerosis, and tumorigenesis (Yan et al., 2010), we surmised that RAGE might mediate some of the biological effects of LPA and provide here substantial evidence in support of this hypothesis.  相似文献   

3.
Bradykinin (BK) has been implicated in the regulation of renal function. Activation of extracellular signal-regulated protein kinase (ERK1/2) has been demonstrated in several models of toxic or proliferative renal injury. We studied activation of ERK1/2 by BK in a cell model of the most distal part of the nephron, inner medullary collecting duct (mIMCD-3) cells. Exposure of mIMCD-3 cells to BK (10(-10)-10(-5) M) resulted in a concentration-dependent increase in tyrosine phosphorylation of ERK1/2, with maximal effect at 10(-8) M BK. ERK1/2 activation by BK was observed as early as 1 min, peaked at 5 min, and was sustained at least for 1 h. The effect of BK was mediated by the B(2) receptor and was pertussis toxin-independent. Inhibition of phospholipase C, protein kinase C, or phosphatidylinositol 3-kinase did not alter ERK1/2 activation by BK. BK-induced ERK1/2 activation was Ca(2+)-calmodulin-independent but was sensitive to genistein, an inhibitor of tyrosine kinase(s). AG1478, a specific inhibitor of epidermal growth factor receptor (EGFR) kinase, completely blocked the effect of BK, suggesting an essential role of EGFR in ERK1/2 activation by BK. Immunoprecipitation/Western blot studies revealed that BK stimulated tyrosine phosphorylation of EGFR, its association with an adapter molecule Grb2, and complex formation between Grb2 and the adapter protein Shc. Activation studies of monomeric G protein Ras showed that BK-induced stimulation of Ras was dependent on EGFR tyrosine kinase activity. These studies demonstrate that BK stimulates Ras-dependent activation of ERK1/2 in mIMCD-3 cells via transactivation of EGFR through a novel mechanism.  相似文献   

4.
An in vitro method of studying epidermal growth factor (EGF) receptors in mouse mammary epithelial cells in serum-free collagen gel culture has been developed. Binding of EGF averaged 108 +/- 19 fmol/mg DNA in cells isolated from freshly dissociated virgin mammary tissue. Initial binding values were maintained in cells cultured in the presence of 0.1 ng/ml EGF, but decreased in either 0 ng/ml or 10 ng/ml EGF. Addition of either chloroquine (100 microM) or ammonium chloride (10 mM) to the culture medium increased receptor levels 10-fold. Cycloheximide (0.1 microgram/ml), ouabain (3 mM), and actinomycin D (5 x 10(-2) micrograms/ml) each decreased receptor levels, in some cases by as much as 80%. Both methylamine (10 mM) and dinitrophenol (0.1 mM) had no significant effect. These studies suggest that the net level of EGF receptors in these target cells is the result of an equilibrium between synthesis and degradation. The difference between the effects of the compounds tested on either receptor degradation or synthesis in comparison to cell growth, may be indicative that receptor degradation is not linked to cell proliferation.  相似文献   

5.
The induction of prostaglandin G/H synthase (PGHS; prostaglandin endoperoxide synthase, cyclooxygenase) by proinflammatory cytokines accounts, at least in part, for the altered eicosanoid biosynthesis in inflammatory diseases. In secondary cultures of normal human bronchial epithelial cells (NHBECs), interferon-gamma (IFN-gamma, 10 ng/ml for 24 h) increased the amount of prostaglandin E2 (PGE2) released in response to stimulation with exogenous arachidonic acid (5 microM). The enhanced production of PGE2 reflected the upregulation of PGHS-2 as indicated by enhanced expression of PGHS-2 RNA and increased recovery of PGHS-2 protein in NHBECs. IFN-gamma did not alter the production of PGE2 in A549 cells (a human lung adenocarcinoma cell line) or 6-keto-PGF1alpha in human umbilical vein endothelial cells (HUVECs), although prostaglandin release and/or the expression of PGHS-2 RNA in these cell lines was upregulated by other proinflammatory cytokines. Induction of PGHS-2 RNA in IFN-gamma-treated NHBECs, which peaked at 24 h, suggested the presence of an intermediary substance regulating the expression of PGHS-2. When the binding between the epidermal growth factor (EGF) receptor and its ligands was disrupted by a neutralizing antibody (LA-1), IFN-gamma failed to upregulate the release of PGE2 and the expression of PGHS-2 RNA in NHBECs. Furthermore, IFN-gamma induced the expression of RNAs for a number of ligands at the EGF receptor TGF-alpha; heparin-binding EGF-like growth factor (HB-EGF); and amphiregulin in NHBECs, and when administered exogenously, these ligands increased PGE2 release from NHBECs. Heparin at the concentration that neutralized the function of amphiregulin, or antibodies against TGFalpha or HB-EGF also reduced the release of PGE2 from IFN-gamma-stimulated NHBECs. These data are consistent with the presence of an autocrine growth factor/EGF receptor loop regulating PGHS-2 expression and PGE2 synthesis in bronchial epithelial cells.  相似文献   

6.
We have previously shown that stimulation of extracellular signal-regulated protein kinase (ERK) by bradykinin (BK) in murine inner medullary collecting duct (mIMCD)-3 cells is mediated by epidermal growth factor receptor (EGFR) transactivation. The mechanism of EGFR transactivation seemed to be novel, because it does not require phospholipase C, Ca(2+), calmodulin, protein kinase C, G alpha(i) subunits, or EGFR-B(2) receptor heterodimerization. In this study, we demonstrated the involvement of matrix metalloproteinases (MMPs) in B(2) receptor-induced EGFR transactivation using their broad-spectrum inhibitors batimastat and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (Galardin) (GM-6001). Selective inhibitors for collagenase-2 and -3 (MMP-8 and MMP-13, respectively) blocked BK-induced EGFR phosphorylation and ERK activation, whereas inhibitors for MMP-1, -2, -3, -7, or -9 were without effect. Transfection of mIMCD-3 cells with MMP-8 small interfering RNA (siRNA) resulted in approximately 50% decrease of BK-induced ERK activation. A neutralizing antibody against MMP-13 as well as transfection with MMP-13 siRNA produced a similar effect. Inhibition of both collagenases resulted in approximately 65% decrease of BK-induced ERK activation, supporting roles for both enzymes. Stimulation of mIMCD-3 cells with 10 nM BK increased the activity of collagenases in concentrated culture media within 10 min. Moreover, recombinant MMP-13 and MMP-8, when applied to mIMCD-3 cells for 10 min without BK, stimulated tyrosine phosphorylation of EGFR and caused approximately 250% increase over basal ERK phosphorylation comparable with BK-induced ERK activation. Collagenases-induced ERK activation was inhibited by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) and thus dependent on EGFR tyrosine kinase activity. This study demonstrates a novel role for collagenase-2 and -3 in signaling of the G(q)-coupled BK B(2) receptor in mIMCD-3 cells.  相似文献   

7.
To understand how glomerular epithelial cell (GEC) proliferation may be regulated in health and disease, we studied the effects of type I collagen extracellular matrices (ECM) on EGF receptor (EGF-R) activation in cultured rat GEC. EGF stimulated proliferation of GEC adherent to ECM, but not of GEC on a plastic substratum. Significant and prolonged EGF-R tyrosine autophosphorylation (which reflects receptor kinase activation) was induced by EGF in GEC adherent to collagen, but EGF did not stimulate EGF-R autophosphorylation in GEC on plastic (at 37 degrees C). However, EGF-R autophosphorylation increased significantly in plastic-adherent GEC that were stimulated with EGF at 4 degrees C or in the presence of vanadate, an inhibitor of phosphotyrosine phosphatases. Furthermore, dephosphorylation of EGF-R was enhanced in GEC on plastic as compared with collagen. At 4 degrees C, [125I]EGF binding was not different between substrata, and there was negligible accumulation of intracellular [125I]EGF (which reflects EGF-R internalization). At 37 degrees C, EGF-R internalization was reduced significantly in collagen-adherent GEC as compared with GEC on plastic. Thus, contact with ECM facilitates proliferation and EGF-R activation in GEC. The enhanced activity of EGF-R tyrosine kinase may be due to ECM-induced reduction in EGF-R internalization and dephosphorylation by phosphotyrosine phosphatase(s). Signals from ECM to growth factor receptors may regulate cell turnover in the glomerulus under normal conditions and during immune glomerular injury.  相似文献   

8.
9.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have poor efficacy in head and neck squamous carcinoma cells (HNSCC). Because the IGF-1 receptor (IGF1R) generates potent prosurvival signals and has been implicated in therapeutic resistance, its ability to induce resistance to EGFR-TKIs was studied in vitro. Five HNSCC cell lines showed reduced sensitivity to the EGFR-TKI gefitinib when the IGF1R was activated. In SCC-25 and Cal27 cells, gefitinib inhibited basal and EGF-stimulated EGFR, extracellular signal-regulated kinase (Erk), and Akt phosphorylation and reduced cell number. This correlated with initiation of apoptosis based on a 4-fold increase in PARP cleavage and a 2.5-fold increase in Annexin V positivity. The apoptotic response and reduction in cell number were blocked by IGF1R activation, which resulted in phosphorylation of both Erk and Akt. In both the cell lines, IGF1R-induced Erk, but not Akt, activation was eliminated by gefitinib. IGF1R-induced gefitinib resistance was unaffected by MAP/Erk kinase inhibition with U0126 but was partially impaired by inhibition of phosphoinositide-3-kinase with LY294002. The IGF1R-TKI PQ401 inhibited growth of SCC-25 and Cal27 cells alone and also acted synergistically with gefitinib. Thus, the IGF1R can make HNSCC cells resistant to EGFR-TKI treatment via a prosurvival mechanism. Of the 8 HNSCC tumor samples studied, all samples expressed the IGF1R and 5 showed detectable IGF1R phosphorylation, suggesting that this receptor may be relevant in vivo, and thus, combined EGFR/IGF1R inhibition may be necessary in some patients for effective targeted molecular therapy.  相似文献   

10.
Mitogenic signaling of G protein-coupled receptors (GPCRs) can proceed via sequential epidermal growth factor receptor (EGFR) transactivation and extracellular signal-regulated kinase (ERK) phosphorylation. Although the mu-opioid receptor (MOR) mediates stimulation of ERK via EGFR transactivation in human embryonic kidney 293 cells, the mechanism of acute MOR signaling to ERK has not been characterized in rat C6 glioma cells that seem to contain little EGFR. Herein, we describe experiments that implicate fibroblast growth factor (FGF) receptor (FGFR) transactivation in the convergence of MOR and growth factor signaling pathways in C6 cells. MOR agonists, endomorphin-1 and morphine, induced a rapid (3-min) increase of ERK phosphorylation that was abolished by MOR antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2. By using selective inhibitors and overexpression of dominant negative mutants, data were obtained to suggest that MOR signaling to ERK is transduced by Gbetagamma and entails Ca2+- and protein kinase C-mediated steps, whereas the FGFR branch of the pathway is Ras-dependent. An intermediary role of FGFR1 transactivation was suggested by MOR- but not kappa-opioid receptor (KOR)-induced FGFR1 tyrosine phosphorylation. A dominant negative mutant of FGFR1 attenuated MOR- but not KOR-induced ERK phosphorylation. Thus, a novel transactivation mechanism entailing secreted endogenous FGF may link the GPCR and growth factor pathways involved in MOR activation of ERK in C6 cells.  相似文献   

11.
Epidermal growth factor receptor (EGFR), a member of a family of membrane receptors with tyrosine kinase activity, is emerging as a target candidate for anti-cancer therapy, due to its overexpression in many carcinomas and its relationship with several hallmark properties of malignant behavior such as continuous cell proliferation, escape from apoptosis, cell migration and angiogenesis. Specially appealing is the overexpression of EGFR in tumors such as lung, colon, kidney and head and neck carcinomas which are mostly resistant to current chemotherapy. Several anti-EGFR agents are already in clinical testing: small molecule tyrosine kinases inhibitors, monoclonal antibodies and cancer vaccines. Early results provide evidence of antitumor activity in humans, to be confirmed in larger trials. Toxicity profiles do not overlap with chemotherapy or radiotherapy, but skin rash and diarrhea can be severe. Future investigations should clarify optimal schedules and explore combinations with standard onco-specific treatments. The ultimate challenge will be to combine diverse therapeutic interventions dealing with a regulatory system which is complex, highly redundant and robust. Combinations between vaccines and antibodies, or between vaccines to several molecular components of the system should be evaluated, as well as combinations between inhibitors of the EGFR signaling pathway and inhibitors of other regulatory pathways related to cell proliferation, apoptosis and angiogenesis.  相似文献   

12.
The oncogenic epidermal growth factor receptor (EGFR) pathway triggers downstream phosphatidylinositol 3-kinase (PI3K)/RAS-mediated signaling cascades. In transgenic mice, glioblastoma cannot develop on single but only on simultaneous activation of the EGFR signaling mediators RAS and AKT. However, complete blockade of EGFR activation does not result in apoptosis in human glioblastoma cells, suggesting additional cross-talk between downstream pathways. Based on these observations, we investigated combination therapies using protein kinase inhibitors against EGFR, platelet-derived growth factor receptor, and mammalian target of rapamycin, assessing glioblastoma cell survival. Clinically relevant doses of AEE788, Gleevec (imatinib), and RAD001 (everolimus), alone or in combinations, did not induce glioblastoma cell apoptosis. In contrast, simultaneous inactivation of the EGFR downstream targets mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase and PI3K by U0126 and wortmannin triggered rapid tumor cell death. Blocking EGFR with AEE788 in combination with sublethal concentrations of the microtubule stabilizer patupilone also induced apoptosis and reduced cell proliferation in glioblastoma cells, accompanied by reduced AKT and ERK activity. These data underline the critical role of the PI3K/AKT and the RAS/RAF/mitogen-activated protein/ERK kinase/ERK signaling cascades in the cell-intrinsic survival program of sensitive glioblastoma cell lines. We conclude that drug combinations, which down-regulate both ERK and protein kinase B/AKT activity, may prove effective in overcoming cell resistance in a subgroup of glioblastoma.  相似文献   

13.
背景:重组人表皮生长因子和碱性成纤维生长因子的制剂临床上已经用于眼表创伤的修复,但是对于使用何种浓度的生长因子就能够最大程度的促进愈合以及两种生长因子促进创面愈合的效果比较一直存在争议。 目的:初步观察重组人表皮生长因子、碱性成纤维生长因子对培养的人角膜上皮细胞克隆的影响。 方法:用不同浓度的重组人表皮生长因子和碱性成纤维生长因子作用于体外培养的人角膜上皮细胞,应用四甲基偶氮唑盐比色法分别在不同浓度的生长因子作用人角膜上皮细胞3,5,7 d后检测人角膜上皮细胞的增殖能力;平板克隆形成实验法观察细胞克隆形态及计算细胞克隆形成率。 结果与结论:不同质量浓度的重组人表皮生长因子和碱性成纤维生长因子分别对人角膜上皮细胞干预5d后,重组人表皮生长因子和碱性成纤维生长因子在10μg/L质量浓度时MTT值最大;质量浓度10μg/L重组人表皮生长因子促进人角膜上皮细胞克隆形成率高于质量浓度10μg/L碱性成纤维生长因子(P=0.02)。结果证实,重组人表皮生长因子和碱性成纤维生长因子均能促进人角膜上皮细胞增殖并增加其克隆形成能力。质量浓度10μg/L 重组人表皮生长因子干预5 d促进人角膜上皮细胞克隆形成效果最好。  相似文献   

14.
Comparative cultures of normal and malignant cells are important for understanding the growth properties of tumors. Although many cell lines have been established from esophageal cancers, the growth properties of normal and cancer-derived esophageal epithelial cells have not been compared extensively. We succeeded in establishing an assay system in serum-free conditions for normal human esophageal epithelial cells (HEE cells) and 14 cancer-derived esophageal epithelial cell lines (TE-cell lines). The growth properties of these cells were characterized upon stimulation with various growth-related factors. Among these factors, acidic fibroblast growth factor (aFGF) was the most effective stimulant for both the HEE cells and all the TE-cell lines. Most TE-cell lines required a higher concentration of calcium for their growth than did the HEE cells. Transforming growth factor-beta1 (TGF-beta1) inhibited the growth of HEE cells and 7 TE-cell lines; however, the other 7 TE-cell lines were resistant to the inhibitory effect of TGF-beta1. Interestingly, epidermal growth factor (EGF) had a much greater stimulatory effect on the TGF-beta1-resistant cells than the TGF-beta1-sensitive cells. Although ethanolamine enhanced the growth-promoting ability of EGF or aFGF in the TGF-beta1-sensitive cells, it had no effect on the TGF-beta1-resistant cells. These findings suggested a possible cross talk between TGF-beta1 and EGF signaling, and an important role of ethanolamine in the signaling pathways of growth factors. This serum-free culture system will contribute to clarify the altered signaling pathways of esophageal cancer.  相似文献   

15.
目的探讨胰腺癌组织中表皮生长因子受体(EGFR)和肝细胞生长因子受体(Met)基因和蛋白的表达情况,及其与胰腺癌临床病理特征和预后的关系。方法采用免疫组化法检测78例胰腺癌组织和23例正常胰腺组织中EGFR和Met蛋白的表达情况,采用实时定量聚合酶链反应(RT-RCR)法检测 EGFR和Met-DNA的相对拷贝数。结果78例胰腺癌组织中,EGFR和Met蛋白的阳性表达率明显高于正常胰腺组织,差异均有统计学意义( P<0.05)。肿瘤直径大于4 cm患者、胰腺癌组织高中分化患者、出现远处转移患者、淋巴转移患者、肠系膜上血管侵犯患者、T N M分期为Ⅲ和Ⅳ期患者中EG FR和M et蛋白的表达均明显高于肿瘤直径小于或等于4 cm患者,胰腺癌组织低分化患者,未出现远处转移患者、未有淋巴转移患者、未出现肠系膜上血管侵犯患者、TNM 分期为Ⅰ和Ⅱ期患者,差异具有统计学意义(P<0.05)。胰腺癌患者中,EGFR和Met-DNA 相对拷贝数均明显高于正常胰腺组织中EGFR和Met-DNA相对拷贝数,差异具有统计学意义(P<0.05)。高表达EGFR和Met胰腺癌患者的平均生存时间均显著低于Met及EGFR低表达患者,差异具有统计学意义(P<0.05)。Met和EGFR均高表达的患者的平均生存时间较Met或 EGFR单一高表达者的短,差异具有统计学意义(P<0.05)。结论 EGFR和M et的表达与胰腺癌的临床病理相关指标密切相关,对二者的分析研究有助于对胰腺癌患者的预后作出预测,并对化疗药物新靶点筛选提供理论依据。  相似文献   

16.
Pancreatic cancer is the fifth leading cause of cancer death in North America. Gemcitabine improves the quality of life of patients but fails to significantly reduce mortality. Our laboratory has demonstrated previously that the phosphatidylinositol 3'-kinase inhibitor wortmannin promotes gemcitabine antitumor activity (S. S. W. Ng et al., Clin. Cancer Res., 7: 3269-3275, 2001). The present study examined the effects of the epidermal growth factor receptor (EGFR) inhibitor OSI-774 ("Tarceva") alone and in combination with wortmannin and/or gemcitabine on downstream signaling molecules, as well as apoptosis in primary pancreatic cancer xenografts implanted orthotopically in severely combined immunodeficient mice. Tumors established from two pancreatic cancer patients [Ontario Cancer Institute Pancreas number (OCIP#) 2 and OCIP#7] were treated with various combinations of the above three drugs and harvested for analyses of the following: the levels of phosphorylated and nonphosphorylated forms of EGFR, protein kinase B (PKB/Akt) and extracellular-regulated kinase (ERK1/2), and the extent of apoptosis using immunofluorescence image analysis and TUNEL assay, respectively. OSI-774 alone significantly inhibited phosphorylation of EGFR in both of the primary xenografts. Phosphorylation of pERK decreased in OCIP#2, but not in OCIP#7. No significant effects on pPKB because of OSI-774 were observed in either tumor type. The extent of apoptosis was significantly increased by 2-fold in OCIP#2 tumors treated with gemcitabine and wortmannin in combination; an additional 2-fold increase in apoptosis was evident in the presence of OSI-774. Although wortmannin failed to enhance gemcitabine-induced apoptosis in OCIP#7 tumors, the extent of apoptosis was significantly increased with the inclusion of OSI-774 in the combination. Taken together, these findings support the use of OSI-774 plus a phosphatidylinositol 3'-kinase inhibitor in combination with gemcitabine in the treatment of pancreatic cancer.  相似文献   

17.
Platelet-activating factor (PAF) is a lipid mediator that has been implicated in a variety of keratinocyte functions. Keratinocytes express the specific receptor for PAF (PAF-R), a seven-transmembrane G-protein-coupled receptor. Although PAF-R-dependent stimulation of numerous signal transduction pathways has been shown in a variety of cell types, to date there has been no analysis of PAF-R signal transduction in human epidermal cells. There is also contradictory evidence that PAF acts as either a suppressor or activator of keratinocyte proliferation. Using a model system created by retroviral-mediated transduction of the PAF-R into the PAF-R-negative epidermal cell line KB, we now demonstrate that the activation of the epidermal PAF-R results in the activation of both the extracellular signal-regulated kinase (ERK) and p38, but not the jun N-terminal kinase mitogen-activated protein (MAP) kinase pathways. Additionally, we show that the activation of the PAF-R stimulates the replication of epidermal cells. The activation of the ERK signal transduction pathway, as well as the PAF-dependent increase in cell proliferation, was dependent on the transactivation of the epidermal growth factor receptor (EGF-R). PAF-R-induced transactivation of the EGF-R was blocked by pharmacologic inhibitors of matrix metalloproteinases, of heparin-binding epidermal growth factor (HB-EGF), and specific inhibitors of the EGF-R tyrosine kinase. Activation of p38 MAP kinase by the PAF-R was not dependent on EGF-R activation and represents a distinct pathway of PAF-R-mediated signal transduction. In summary, these studies provide a mechanism whereby the PAF-R can exert proliferative effects through the activation of the EGF-R.  相似文献   

18.
The outcome for patients with lung cancer has not changed significantly for more than two decades. Several studies show that the overexpression of vascular endothelial growth factor (VEGF)/vascular permeability factor and epidermal growth factor (EGF) and their receptors correlates with the clinical outcome for lung cancer patients. However, clinical trials of agents that target either of these pathways alone have been disappointing. We hypothesize that targeting both the tumor and its vasculature by simultaneously blocking the VEGFR and EGFR pathways will improve the treatment of locoregional lung cancer. Human lung cancer specimens were first examined for the activation of VEGF receptor 2 (VEGFR2) and EGF receptor (EGFR) for tumor and tumor-associated endothelial cells, and both were found to be activated. The effects of ZD6474 (ZACTIMA), a small-molecule inhibitor of VEGFR2 and EGFR tyrosine kinases, were then studied in vitro using human lung cancer and microvascular endothelial cells. In vitro, ZD6474 inhibited EGFR, VEGFR2, mitogen-activated protein kinase and Akt phosphorylation, EGF- and VEGF-induced proliferation, and endothelial cell tube formation and also induced apoptosis. ZD6474 was further studied in vivo using an orthotopic mouse model of non-small cell lung cancer using NCI-H441 human lung adenocarcinoma cells. The inhibition of both VEGFR2 and EGFR signaling pathways by ZD6474 resulted in profound antiangiogenic, antivascular, and antitumor effects. These results provide a basis for the development of clinical strategies for the combination of selective protein tyrosine kinase inhibitors that block both EGFR and VEGFR signaling as part of the management of locally advanced lung cancer.  相似文献   

19.
20.
Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号