首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chronic stress and depression are associated with decreased levels of hippocampal neurogenesis. On the other hand, antidepressants as well as environmental enrichment may rely in part on their pro‐neurogenic effects to improve cognition and mood. Because a functional heterogeneity has been consistently reported along the septo‐temporal axis of the hippocampus, regional changes in neurogenesis could differentially contribute to these effects and affect distinct hippocampal functions. Mapping these regional changes could therefore provide a better understanding of the function of newborn neurons. While some studies report region‐specific effects of stress and antidepressants on neurogenesis, it is unclear whether these changes affect distinct populations of newborn neurons according to their developmental stage in a region‐specific manner. By using endogenous markers and BrdU labeling we quantified the regional changes in cell proliferation and survival as well as in the number of neuronal progenitors and immature neurons following unpredictable chronic mild stress (UCMS), environmental enrichment (EE) and chronic fluoxetine (20 mg/kg/day) treatment along the septo‐temporal axis of the hippocampus. EE promoted cell proliferation and survival of 4‐week‐old newborn cells as well as increased the number and proportion of post‐mitotic immature neurons specifically within the septal hippocampus. By contrast, UCMS uniformly decreased cell proliferation, survival and immature newborn neurons but differentially affected progenitor cells with a decrease restricted to the temporal regions of the hippocampus. Whereas fluoxetine treatment in control mice affected proliferation and survival specifically in the temporal hippocampus, it reversed most of the UCMS‐induced alterations all along the septo‐temporal axis. These results highlight that different factors known for exerting a mood improving effect differentially regulate neurogenesis along the septo‐temporal axis of the hippocampus. Such region and stage specific effects may correlate to distinct functional properties of newborn neurons along the septo‐temporal axis of the hippocampus which may contribute differently to the pathophysiology of affective disorders. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Recent research suggests an involvement of hippocampal neurogenesis in behavioral effects of antidepressants. However, the precise mechanisms through which newborn granule neurons might influence the antidepressant response remain elusive. Here, we demonstrate that unpredictable chronic mild stress in mice not only reduces hippocampal neurogenesis, but also dampens the relationship between hippocampus and the main stress hormone system, the hypothalamo-pituitary-adrenal (HPA) axis. Moreover, this relationship is restored by treatment with the antidepressant fluoxetine, in a neurogenesis-dependent manner. Specifically, chronic stress severely impairs HPA axis activity, the ability of hippocampus to modulate downstream brain areas involved in the stress response, the sensitivity of the hippocampal granule cell network to novelty/glucocorticoid effects and the hippocampus-dependent negative feedback of the HPA axis. Remarkably, we revealed that, although ablation of hippocampal neurogenesis alone does not impair HPA axis activity, the ability of fluoxetine to restore hippocampal regulation of the HPA axis under chronic stress conditions, occurs only in the presence of an intact neurogenic niche. These findings provide a mechanistic framework for understanding how adult-generated new neurons influence the response to antidepressants. We suggest that newly generated neurons may facilitate stress integration and that, during chronic stress or depression, enhancing neurogenesis enables a dysfunctional hippocampus to restore the central control on stress response systems, then allowing recovery.  相似文献   

3.
There have been few comparisons of strains and antidepressants in the unpredictable chronic mild stress (UCMS) paradigm in mice. This study was undertaken to determine the influence of such factors using four antidepressants drugs including the tricyclics imipramine (20 mg/(kgday)) and desipramine (10 mg/(kgday)), the tetracyclic maprotiline (20 mg/(kgday)) and the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10mg/(kgday)) in both Swiss and BALB/c mice. A 6-week UCMS regimen induced deterioration of the coat state and decreased grooming behaviours in the splash test in BALB/c mice but not Swiss mice. The four antidepressants reversed the UCMS-induced effects in BALB/c mice in both measures. However, imipramine and fluoxetine reached significance in the splash test while desipramine and maprotiline displayed only a trend. In conclusion, these results emphasize that BALB/c mice are more sensitive than Swiss mice for studying the effects of the UCMS model as well as for testing antidepressant-like properties.  相似文献   

4.
Etiopathogenesis of depression and the cause of insensitivity to treatment remain poorly understood, although genetic makeup has been established as a contributing factor. The isogenicity of inbred mouse strains provides a useful tool for investigating the link between genes and behavior or drug response. Hence, our aim was to identify inbred mouse strains (among A/J, BALB/c, C3H, C57BL/6, CBA, DBA and FVB) sensitive to a 9-week period of unpredictable chronic mild stress (UCMS) and, from the fifth week onward, to the reversal effect of an antidepressant (AD) (imipramine, 20 mg/kg/day i.p.) on various depression-related changes: physical, behavioral and neuroendocrine states. UCMS induced a significant deterioration of the coat state (in all the strains), blunted emotional reactivity in the novelty-suppressed feeding (NSF) test (A/J, BALB/c, C57BL/6), and changes in the level of fecal corticosterone metabolites (BALB/c, C57BL/6, DBA, FVB). Imipramine treatment reversed the UCMS-induced alterations of the coat state (BALB/c, DBA), in the NSF test (A/J, BALB/c, C57BL/6) and in fecal corticosterone metabolites (BALB/c, C57BL/6). C3H, CBA and FVB mice were irresponsive to imipramine treatment. It is noteworthy that UCMS-induced physical or behavioral changes occurred without hypothalamo–pituitary–adrenal (HPA) axis alterations in some strains (A/J, C3H, CBA), although the AD-induced reversal of these changes in BALB/c and C57BL/6 was associated with HPA axis normalization. Finally, UCMS is shown to discriminate various alterations and to replicate in a strain-dependent manner diverse profiles reminiscent of human disease subtypes. UCMS may thus enable the selection of strains suitable for investigating specific depression-related features and could be an appropriate model for identifying genetic factors associated with increased vulnerability, specific symptoms of affective disorders, and AD resistance.  相似文献   

5.
Hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity is associated with major depressive disorders, and treatment with classical antidepressants ameliorates not only psychopathological symptoms, but also the dysregulation of the HPA axis. Here, we further elucidated the role of impaired cannabinoid type 1 receptor (CB1) signaling for neuroendocrine and behavioral stress coping in the mouse forced swim test (FST). We demonstrate that the genetic inactivation of CB1 is accompanied by increased plasma corticosterone levels both under basal conditions and at different time points following exposure to the FST. The latter effect could be mimicked in C57BL/6N mice by acute, subchronic, and chronic administration of the selective CB1 antagonist SR141716. Further experiments confirmed the specificity of corticosterone-elevating SR141716 actions for CB1 in CB1-deficient mice. Subchronic and chronic pharmacological blockade of CB1, but not its genetic deletion, induced antidepressant-like behavioral responses in the FST that were characterized by decreased floating and/or increased struggling behavior. The antidepressant-like behavioral effects of acute desipramine treatment in the FST were absent in CB1-deficient mice, but the dampening effects of desipramine on FST stress-induced corticosterone secretion were not compromised by CB1 deficiency. However, antidepressant-like behavioral desipramine effects were intact in C57BL/6N mice pre-treated with SR141716, indicating potential developmental deficits in CB1-deficient mice. We conclude that pharmacological blockade of CB1 signaling shares antidepressant-like behavioral effects with desipramine, but reveals opposite effects on HPA axis activity.  相似文献   

6.
BACKGROUND: Fluoxetine stimulates proliferation of progenitor cells in the dentate gyrus of the adult hippocampus. There are suggestions that this action may underlie the therapeutic effects of such drugs in depression. Glucocorticoids also regulate neurogenesis, and there are multiple interactions between serotonin and corticoids. Diurnal cortisol rhythms are dysregulated in depression. We explored the role of diurnal variations in corticosterone on the ability of fluoxetine to alter neurogenesis in the dentate gyrus. METHODS: We manipulated plasma corticosterone by implanting corticosterone pellets or giving daily corticosterone injections to corticosterone-clamped adrenalectomized or intact rats that received fluoxetine or vehicle treatment. Proliferation of progenitor cells in the dentate gyrus was measured using BrdU or Ki-67. RESULTS: Our results strongly suggest that a diurnal rhythm in corticosterone is necessary for fluoxetine to stimulate neurogenesis in the adult dentate gyrus in the male rat. Preliminary data suggest this may be related to the 5-HT1A receptor. CONCLUSIONS: If altered neurogenesis in the dentate gyrus is part of the therapeutic response to antidepressants such as fluoxetine, the results we report suggest that concurrent manipulation of the HPA axis might improve sensitivity to selective serotonin reuptake inhibitors in some treatment-resistant patients.  相似文献   

7.
Serotonin reuptake inhibitor (SRI) antidepressants such as fluoxetine (Prozac), promote hippocampal neurogenesis. They also increase the levels of the bcl-2 protein, whose overexpression in transgenic mice enhances adult hippocampal neurogenesis. However, the mechanisms underlying SRI-mediated neurogenesis are unclear. Recently, we identified the microRNA miR-16 as an important effector of SRI antidepressant action in serotonergic raphe and noradrenergic locus coeruleus (LC). We show here that miR-16 mediates adult neurogenesis in the mouse hippocampus. Fluoxetine, acting on serotonergic raphe neurons, decreases the amount of miR-16 in the hippocampus, which in turn increases the levels of the serotonin transporter (SERT), the target of SRI, and that of bcl-2 and the number of cells positive for Doublecortin, a marker of neuronal maturation. Neutralization of miR-16 in the hippocampus further exerts an antidepressant-like effect in behavioral tests. The fluoxetine-induced hippocampal response is relayed, in part, by the neurotrophic factor S100β, secreted by raphe and acting via the LC. Fluoxetine-exposed serotonergic neurons also secrete brain-derived neurotrophic factor, Wnt2 and 15-Deoxy-delta12,14-prostaglandin J2. These molecules are unable to mimic on their own the action of fluoxetine and we show that they act synergistically to regulate miR-16 at the hippocampus. Of note, these signaling molecules are increased in the cerebrospinal fluid of depressed patients upon fluoxetine treatment. Thus, our results demonstrate that miR-16 mediates the action of fluoxetine by acting as a micromanager of hippocampal neurogenesis. They further clarify the signals and the pathways involved in the hippocampal response to fluoxetine, which may help refine therapeutic strategies to alleviate depressive disorders.  相似文献   

8.
Fluoxetine, a selective serotonin‐reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input‐specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase‐67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle‐aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle‐aged hippocampus shows greater sensitivity to fluoxetine‐induced input‐specific synaptic remodeling than the hippocampus in adulthood with the stratum‐oriens of CA1 exhibiting heightened structural plasticity. The input‐specific changes and circuit‐level modifications in middle‐age were associated with modest enhancement in contextual fear memory precision, anxiety‐like behavior and antidepressant‐like behavioral responses. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The preconditioning (PC) by using mild intermittent hypobaric hypoxia (PC) increases a resistance of the brain to severe hypoxia/ischemia and various stresses. Recently, potent antidepressant-like effects of PC have been described in animal models of depression. In the present study, the impact of PC on the activity and feedback regulation of the hypothalamic-pituitary-adrenal axis (HPA) impaired in depression has been studied in the model of shock-induced depression in rats. PC completely prevented depressive-like behavior (54% reduction in ambulance, 59% reduction in rearing in the open field, 654% increase of the anxiety level in the elevated plus maze), the HPA hyperactivity and the impairment of HPA feedback regulation that appeared in response to the inescapable footshock. Not affecting basal HPA activity, PC remarkably enhanced the HPA reactivity to stresses and substantially up-regulated the expression of glucocorticoid receptors in the ventral hippocampus following footshock that apparently contributes to the mechanisms responsible for the antidepressant-like action of PC.  相似文献   

10.
Unipolar depression is one of the leading causes of disability. The pathophysiology of depression is poorly understood. Evidence suggests that inflammation is associated with depression. For instance, pro-inflammatory cytokines are found to be elevated in the peripheral blood of depressed subjects. Cytokine immunotherapy itself is known to induce depressive symptoms. While the epidemiological and biochemical relationship between inflammation and depression is strong, little is known about the possible existence of neuroinflammation in depression. The use of animal models of depression such as the Unpredictable Chronic Mild Stress (UCMS) has already contributed to the elucidation of the pathophysiological mechanisms of depression such as decreased neurogenesis and HPA axis alterations. We used this model to explore the association of depressive-like behavior in mice with changes in peripheral pro-inflammatory cytokines IL-1β, TNFα and IL-6 level as well as the neuroinflammation by quantifying CD11b expression in brain areas known to be involved in the pathophysiology of depression. These areas include the cerebral cortex, the nucleus accumbens, the bed nucleus of the stria terminalis, the caudate putamen, the amygdala and the hippocampus. The results indicate that microglial activation is significantly increased in the infralimbic, cingulate and medial orbital cortices, nucleus accumbens, caudate putamen, amygdala and hippocampus of the mouse brain as a function of UCMS, while levels of pro-inflammatory cytokines did not differ among the groups. This finding suggests that neuroinflammation occurs in depression and may be implicated in the subject's behavioral response. They also suggest that UCMS could be a potentially reliable model to study depression-induced neuroinflammation.  相似文献   

11.
BackgroundSeveral lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1β, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice.MethodsP2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg−1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker.ResultsAfter a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment.DiscussionBehavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119– staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.  相似文献   

12.
Dentate gyrus (DG) of the mammalian hippocampus gives rise to new neurons and astrocytes all through adulthood. Canine hippocampus presents many similarities in fetal development, anatomy, and physiology with human hippocampus, establishing canines as excellent animal models for the study of adult neurogenesis. In the present study, BrdU-dated cells of the structurally and functionally dissociated dorsal (dDG) and ventral (vDG) adult canine DG were comparatively examined over a period of 30 days. Each part's neurogenic potential, radial glia-like neural stem cells (NSCs) proliferation and differentiation, migration, and maturation of their progenies were evaluated at 2, 5, 14, and 30 days post BrdU administration, with the use of selected markers (glial fibrillary acidic protein, doublecortin, calretinin and calbindin). Co-staining of BrdU+ cells with NeuN or S100B permitted the parallel study of the ongoing neurogenesis and gliogenesis. Our findings reveal the comparatively higher populations of residing granule cells, proliferating NSCs and BrdU+ neurons in the dDG, whereas newborn neurons of the vDG showed a prolonged differentiation, migration, and maturation. Newborn astrocytes were found all along the dorso-ventral axis, counting however for only 11% of newborn cell population. Comparative evaluation of adult canine and rat neurogenesis revealed significant differences in the distribution of resident and newborn granule cells along the dorso-ventral axis, division pattern of adult NSCs, maturation time plan of newborn neurons, and ongoing gliogenesis. Concluding, spatial and temporal features of adult canine neurogenesis are similar to that of other gyrencephalic species, including humans, and justify the comparative examination of adult neurogenesis across mammalian species.  相似文献   

13.
Stress and glucocorticoid stress hormones inhibit neurogenesis, whereas antidepressants increase neurogenesis and block stress-induced decrease in neurogenesis. Our previous studies have shown that leptin, an adipocyte-derived hormone with antidepressant-like properties, promotes baseline neurogenesis in the adult hippocampus. This study aimed to determine whether leptin is able to restore suppression of neurogenesis in a rat chronic unpredictable stress (CUS) model of depression. Chronic treatment with leptin reversed the CUS-induced reduction of hippocampal neurogenesis and depression-like behaviors. Leptin treatment elicited a delayed long-lasting antidepressant-like effect in the forced swim behavioral despair test, and this effect was blocked by ablation of neurogenesis with X-irradiation. The functional isoform of the leptin receptor, LepRb, and the glucocorticoid receptor (GR) were colocalized in hippocampal neural stem/progenitor cells in vivo and in vitro. Leptin treatment reversed the GR agonist dexamethasone (DEX)-induced reduction of proliferation of cultured neural stem/progenitor cells from adult hippocampus. Further mechanistic analysis revealed that leptin and DEX converged on glycogen synthase kinase-3β (GSK-3β) and β-catenin. While DEX decreased Ser9 phosphorylation and increased Tyr216 phosphorylation of GSK-3β, leptin increased Ser9 phosphorylation and attenuated the effects of DEX at both Ser9 and Tyr216 phosphorylation sites of GSK-3β. Moreover, leptin increased total level and nuclear translocation of β-catenin, a primary substrate of GSK-3β and a key regulator in controlling hippocampal neural progenitor cell proliferation, and reversed the inhibitory effects of DEX on β-catenin. Taken together, our results suggest that adult neurogenesis is involved in the delayed long-lasting antidepressant-like behavioral effects of leptin, and leptin treatment counteracts chronic stress and glucocorticoid-induced suppression of hippocampal neurogenesis via activating the GSK-3β/β-catenin signaling pathway.  相似文献   

14.
The continuous generation of new neurons in the adult hippocampus exhibits remarkable plasticity. Decreased neurogenesis is thought to underlie depression-like behaviors, and increased neurogenesis is thought to occur following antidepressant drug treatment. Studies on different strains of mice, however, yielded contrasting results with regard to the link between behavioral modifications induced by antidepressant drugs or environmental enrichment and changes in adult hippocampal neurogenesis. Therefore, we conducted a comparative study on the inbred strains Balb/c and C57Bl/6 that differ substantially in emotionality, stress reactivity, and behavioral responses to chronic antidepressant drugs. Quantitative assessments of progenitor cell proliferation and immature neuronal differentiation in the dentate gyrus revealed that, despite significantly different basal proliferation rates between both strains, neither strain exhibited changes in adult neurogenesis after exposure to early life stress or adult chronic fluoxetine treatment. A stimulatory effect of fluoxetine on adult hippocampal neurogenesis was only detected when treatment was initiated during adolescence, and this effect was abolished in mice exposed to early life stress, a prominent risk factor for developing adult-onset depression-like behaviors. Thus, in both strains of mice neither adult fluoxetine treatment nor adolescent fluoxetine treatment following early life stress exposure increased the proliferation and early differentiation of adult neural progenitor cells.  相似文献   

15.
BACKGROUND: There has been increasing evidence that atypical antipsychotics are effective in the treatment of mood disorders or for augmenting 5-hydroxytryptamine selective reuptake inhibitors for treatment-resistant depression. METHODS: Upregulation of neurogenesis in the adult hippocampus is a marker of antidepressant activity, and the present study investigated the influence of the atypical antipsychotic drug olanzapine on cell proliferation in the hippocampus of adult rat. The regulation of cell proliferation in the prelimbic cortex of adult rat was also examined. RESULTS: Chronic (21 days) olanzapine administration increased the number of newborn cells in the dentate gyrus of the hippocampus to the same extent as fluoxetine. Olanzapine or fluoxetine treatment also increased the number of proliferating cells in the prelimbic cortex. In contrast, there was no effect of either drug in the subventricular zone or primary motor cortex, and there was a trend for an increase in the striatum. Subchronic (7 days) administration of olanzapine had no effect on cell proliferation in hippocampus or prelimbic cortex, consistent with the time course for the effect of fluoxetine and the therapeutic actions of antidepressant treatment. The combination of olanzapine plus fluoxetine did not result in a greater induction of cell proliferation in either brain region. Analysis of the cell phenotype demonstrated that approximately 20% of the newborn cells in the prelimbic cortex differentiated into endothelial cells but not neurons, in contrast to the dentate gyrus, where most newborn cells differentiated into neurons. CONCLUSIONS: The results demonstrate that antidepressant or atypical antipsychotic medications can increase the proliferation of glia in limbic brain structures, an effect that could reverse the loss of glia that has been observed in depressed patients.  相似文献   

16.
Cognitive deficits, including spatial memory impairment, are very common after ischemic stroke. Neurogenesis in the dentate gyrus (DG) contributes to forming spatial memory in the ischemic brain. Fluoxetine, a selective serotonin reuptake inhibitor, can enhance neurogenesis in the hippocampus in physiological situations and some neurological diseases. However, whether it has effects on ischemia-induced spatial cognitive impairment and hippocampal neurogenesis has not been determined. Here we report that fluoxetine treatment (10 mg kg(-1), i.p.) for 4 weeks promoted the survival of newborn cells in the ischemic hippocampus and, consequently, attenuated spatial memory impairment of mice after focal cerebral ischemia. Disrupting hippocampal neurogenesis blocked the beneficial effect of fluoxetine on ischemia-induced spatial cognitive impairment. These results suggest that chronic fluoxetine treatment benefits spatial cognitive function recovery following ischemic insult, and the improved cognitive function is associated with enhanced newborn cell survival in the hippocampus. Our results raise the possibility that fluoxetine can be used as a drug to treat poststroke spatial cognitive deficits.  相似文献   

17.
Type 1 diabetes (T1D) is linked to an 'encephalopathy' explained by some features common to the aging process, degenerative and functional disorders of the central nervous system. In the present study we describe a manifest hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in two different experimental mouse models of T1D including the pharmacological one induced by streptozotocin and the spontaneous NOD (nonobese diabetic mice). The high expression of hypothalamic hormones like oxytocin and vasopressin were part to this alteration, together with elevated adrenal glucocorticoids and prominent susceptibility to stress. In the hippocampus of diabetic animals a marked astrogliosis, often associated with neural damage, was present. Dentate gyrus neurogenesis was also affected by the disease: proliferation and differentiation measured by bromodeoxyuridine immunodetection were significantly reduced in both experimental models used. Several facts, including changes associated with chronic hyperglycemia, hyperstimulation of the HPA axis, increased levels of circulating glucocorticoids in combination with brain inflammation and low production of new neurons, contribute to emphasize the impact of diabetes on the central nervous system.  相似文献   

18.
Depression is a leading cause of disability worldwide, in part because the available treatments are inadequate and do not work for many people. The neurobiology of depression, and the mechanism of action of common antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs), is not well understood. One mechanism thought to underlie the effects of these drugs is upregulation of adult hippocampal neurogenesis. Evidence indicates that vesicular zinc is required for modulation of adult hippocampal neurogenesis, at least under some circumstances. Vesicular zinc refers to zinc that is stored in the synaptic vesicles of certain neurons, including in the hippocampus, and released in response to neuronal activity. It can be eliminated from the brain by deletion of zinc transporter 3 (ZnT3), as is the case in ZnT3 knockout mice. Here, we examined the effects of repeated social defeat stress and subsequent chronic treatment with the SSRI fluoxetine on behavior and neurogenesis in ZnT3 knockout mice. We hypothesized that fluoxetine treatment would increase neurogenesis and reverse stress‐induced behavioral symptoms in wild type, but not ZnT3 knockout, mice. As anticipated, stress induced persistent depression‐like effects, including social avoidance and anxiety‐like behavior. Fluoxetine decreased social avoidance, though the effect was not specific to the stressed mice, but did not affect anxiety‐like behavior. Surprisingly, stress increased the survival of neurons born 1 day after the last episode of defeat stress. Fluoxetine treatment also increased cell survival, particularly in wild type mice, though it did not affect proliferation. Our results did not support our hypothesis that vesicular zinc is required for the behavioral benefits of fluoxetine treatment. As to whether vesicular zinc is required for the neurogenic effects of fluoxetine, our results were inconclusive, warranting further investigation into the role of vesicular zinc in adult hippocampal neurogenesis.  相似文献   

19.
Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all‐trans retinoic acid (RA) potently activated the hypothalamus‐pituitary‐adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive‐like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor‐α (RAR‐α) protein expression in the hippocampus, suggesting an activation of RA‐induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA‐induced impairments in hippocampal neurogenesis correlate with depression‐like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA‐associated mood disorders. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Adult‐born granule cells in the mammalian dentate gyrus have long been implicated in hippocampal dependent spatial learning and behavioral effects of chronic antidepressant treatment. Although recent anatomical and functional evidence indicates a dissociation of the dorsal and ventral regions of the hippocampus, it is not known if adult neurogenesis within each region specifically contributes to distinct functions or whether adult‐born cells along the entire dorsoventral axis are required for these behaviors. We examined the role of distinct subpopulations of adult‐born hippocampal granule cells in learning‐ and anxiety‐related behaviors using low‐dose focal x‐irradiation directed specifically to the dorsal or ventral dentate gyrus. Our findings indicate a functional dissociation between adult‐born neurons along the longitudinal axis of the dentate gyrus wherein new neurons in the dorsal dentate gyrus are required for timely acquisition of contextual discrimination while immature neurons in the ventral dentate gyrus are necessary for anxiolytic/antidepressant‐related effects of fluoxetine. Interestingly, when contexts are presented with altered temporal cues, or fluoxetine is administered alongside chronic glucocorticoid treatment, this dissociation is abrogated such that adult‐born neurons across the entire dorsoventral extent of the dentate gyrus appear to contribute to these behaviors. Our results suggest that individual subpopulations of adult‐born hippocampal neurons may be sufficient to mediate distinct behaviors in certain conditions, but are required to act in concert in more challenging situations. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号