首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of acute and chronic treatments with intraperitoneal venlafaxine, a selective serotonin/norepinephrine reuptake inhibitor, on the anticonvulsant activity of selected antiepileptic drugs was studied in the maximal electroshock test in mice. Venlafaxine (12.5 and 25 mg/kg), given either acutely or chronically, significantly increased the electroconvulsive threshold. Moreover, both acute and chronic venlafaxine, applied at the highest subprotective dose of 6.25 mg/kg, enhanced the anticonvulsant effect of valproate, without affecting the protective action of carbamazepine, phenobarbital and phenytoin. The antidepressant did not affect brain concentration of valproate, indicating that the interaction between the two drugs seems pharmacodynamic in nature. Despite the lack of effect on the antielectroshock action of the remaining antiepileptics, acute venlafaxine increased the brain concentration of phenobarbital, while chronic venlafaxine reduced the brain level of phenytoin. In terms of adverse effects, acute/chronic venlafaxine and antiepileptic drugs alone, as well as their combinations, did not produce significant motor or long-term memory deficits in mice. Summing up, it seems that venlafaxine may be considered as a safe drug for the clinical use in patients with epilepsy and depressive disorders.  相似文献   

2.
Interactions between chronically administered fluoxetine and valproate, carbamazepine, phenytoin, or phenobarbital were studied in the maximal electroshock test in mice. Fluoxetine administered for 14 days at doses up to 20 mg/kg failed to affect the electroconvulsive threshold. Nevertheless the drug (at 15 and 20 mg) enhanced the anticonvulsant activity of valproate, carbamazepine, and phenytoin. When applied at 20 mg/kg, it potentiated the protective action of phenobarbital. Fluoxetine, antiepileptic drugs, and their combinations did not produce significant adverse effects evaluated in the chimney test (motor coordination) and passive-avoidance task (long-term memory). Chronically applied fluoxetine significantly increased the brain concentrations of valproate, carbamazepine, phenobarbital and phenytoin, indicating a pharmacokinetic contribution to the observed pharmacodynamic interactions. In conclusion, long-term treatment with fluoxetine exhibited some favorable effects on the anticonvulsant properties of conventional antiepileptic drugs, resulting, however, from pharmacokinetic interactions.  相似文献   

3.
Experimental studies have indicated that the central histaminergic system plays an important role in the inhibition of seizures through the stimulation of histamine H1 receptors. H1 receptor antagonists, including classical antiallergic drugs, occasionally may induce convulsions in healthy children and patients with epilepsy. The purpose of this study was to investigate the effects of antazoline and ketotifen (two H1 receptor antagonists) on the anticonvulsant activity of antiepileptic drugs against maximal electroshock (MES)-induced convulsions in mice. The following antiepileptic drugs were used: valproate, carbamazepine, diphenylhydantoin and phenobarbital. In addition, the effects of antiepileptic drugs alone or in combination with antazoline or ketotifen were studied on long-term memory (tested in the passive avoidance task) and motor performance (evaluated in the chimney test), acutely and after 7-day treatment with these H1 receptor antagonists. The influence of antazoline and ketotifen on the free plasma and brain levels of the antiepileptics was also evaluated. Antazoline (at 0.5 mg/kg), given acutely and after 7-day treatment, significantly diminished the electroconvulsive threshold. Similarly, ketotifen, after acute and chronic doses of 8 mg/kg markedly reduced the threshold for electroconvulsions. In both cases, antazoline and ketotifen were without effect upon this parameter at lower doses. Antazoline (0.25 mg/kg) significantly raised the ED50 value of carbamazepine against MES (both, acutely and after 7-day treatment). Furthermore antazoline (0.25 mg/kg) also reduced the anticonvulsant activity of diphenylhydantoin, but only after repeated administration, without modifying the brain and free plasma level of this drug. Moreover, valproate and phenobarbital did not change their protective activity when combined with antazoline. Ketotifen (4 mg/kg) possessed a biphasic action, acutely it enhanced the anticonvulsant action of carbamazepine and phenobarbital while, following 7-day treatment, reduced the antiseizure activity of carbamazepine. Ketotifen did not affect the free plasma or brain levels of antiepileptics tested. Only acute antazoline (0.25 mg/kg) applied with valproate impaired the performance of mice evaluated in the chimney test. Ketotifen (4 mg/kg) co-administered with conventional antiepileptic drugs impaired motor coordination in mice treated with valproate, phenobarbital or diphenylhydantoin. Acute and chronic antazoline (0.25 mg/kg) alone or in combination with antiepileptic drugs did not disturb long-term memory, tested in the passive avoidance task. Similarly, ketotifen (4 mg/kg) did not impair long-term memory, acutely and after 7-day treatment. However, valproate alone or in combination with chronic ketotifen (4 mg/kg) worsened long-term memory. The results of this study indicate that H1 receptor antagonists, crossing the blood brain barrier, should be used with caution in epileptic patients. This is because antazoline reduced the protective potential of diphenylhydantoin and carbamazepine. Also, ketotifen reduced the protection offered by carbamazepine and elevated the adverse activity of diphenylhydantoin, phenobarbital and valproate.  相似文献   

4.
The interactions between cholecalciferol, a precursor of the active form of Vitamin D(3), and conventional antiepileptic drugs (valproate, carbamazepine, phenytoin, and phenobarbital) were studied in the maximal electroshock test in mice. Vitamin D(3) applied i.p. at doses of 37.5 and 75 mug/kg, but not at 18.75 mug/kg, significantly raised the electroconvulsive threshold. Furthermore, cholecalciferol (at its highest subthreshold dose of 18.75 mug) potentiated the anticonvulsant activity of phenytoin and valproate. The action of carbamazepine and phenobarbital was also enhanced by Vitamin D(3), but when it was given at the higher dose of 37.5 mug/kg. Cholecalciferol, antiepileptic drugs, and their combinations did not produce significant adverse effects evaluated in the chimney test (motor coordination) and passive-avoidance task (long-term memory). Cholecalciferol did not significantly increase the brain concentrations of conventional antiepileptics, indicating a pharmacodynamic nature of revealed interactions. Our findings show that cholecalciferol may play an anticonvulsant role in the brain and can influence the efficacy of antiepileptic drugs, at least in experimental conditions.  相似文献   

5.
BackgroundThe aim of the study was to examine effects of an acute and chronic treatment with trazodone, a serotonin antagonist and reuptake inhibitor (SARI), on the protective activity of four classical antiepileptic drugs provided in the maximal electroshock test in mice.MethodsElectroconvulsions were produced in mice by means of an alternating current (50 Hz, 25 mA, 0.2 s) and delivered via earclip electrodes. Motor impairment in animals were assessed in the chimney test, and long-term memory deficits were quantified in the passive-avoidance task. Brain concentrations of antiepileptic drugs were analyzed by fluorescence polarization immunoassay.ResultsThe obtained results showed that a single administration of trazodone (up to 40 mg/kg) did not influence the electroconvulsive threshold. In contrast, chronic treatment with the antidepressant (40 mg/kg) significantly increased this parameter. Furthermore, both single and chronic administration of trazodone reduced the anticonvulsant effect of phenytoin and carbamazepine against the maximal electroshock. However, the antidepressant remained without effect on the anticonvulsant action of valproate and phenobarbital. Some interactions between trazodone and antiepileptic drugs may have a pharmacodynamic background. Both, acute and chronic treatment with the antidepressant diminished the brain concentration of phenytoin. Chronic trazodone lowered the brain levels of carbamazepine and phenobarbital. Moreover, acute and chronic trazodone increased the valproate concentration in the brain. As regards undesired effects, acute and chronic trazodone (40 mg/kg), alone and in combination with phenytoin, significantly impaired long-term memory in tested animals, evaluated in the passive avoidance task. Acute trazodone (40 mg/kg) alone and combined with phenytoin produced also significant motor deficits in mice, as measured in the chimney test.ConclusionThe obtained results allow to conclude that trazodone is not a good candidate for an antidepressant drug in epileptic patients.  相似文献   

6.
The aim of this study was to evaluate the effects of chronic astemizole and ketotifen administration on the anticonvulsant activity of antiepileptic drugs against maximal electroshock-induced convulsions in mice. Adverse effects were evaluated in the chimney test (motor performance) and passive avoidance task (long-term memory). Brain and plasma levels of antiepileptics were measured by immunofluorescence. Astemizole (2 mg/kg) and ketotifen (8 mg/kg) significantly diminished the electroconvulsive threshold, being without effect upon this parameter at lower doses. Astemizole significantly reduced the anticonvulsant action of phenobarbital and diphenylhydantoin, but it did not affect that of carbamazepine and valproate. Moreover, ketotifen (at the subprotective dose of 4 mg/kg) remained without effect upon the protective activity of valproate, diphenylhydantoin or phenobarbital, but significantly diminished the anticonvulsant effect of carbamazepine. Histamine receptor antagonists combined with antiepileptic drugs, did not alter their brain and free plasma levels. Also, they did not influence adverse potential of carbamazepine, diphenylhydantoin and valproate while that of phenobarbital was significantly enhanced. Valproate, phenobarbital and diphenylhydantoin alone at their ED50s against maximal electroshock or combined with the histamine receptor antagonists disturbed long-term memory. The results of this study indicate that H1 receptor antagonists, should be used with caution in epileptic patients.  相似文献   

7.
The aim of this study was to determine the influence of acute (single) and chronic (once daily for 7 consecutive days) treatments with atorvastatin and fluvastatin on the anticonvulsant potential of three antiepileptic drugs: carbamazepine, phenytoin and valproate in the mouse maximal electroshock-induced seizure model. Additionally, the effects of acute and chronic administration of both statins on the adverse effect potential of three antiepileptic drugs were assessed in the chimney test (motor performance) and passive avoidance task (long-term memory). To evaluate the pharmacokinetic characteristics of interaction between antiepileptic drugs and statins, the total brain concentrations of antiepileptic drugs were estimated with the fluorescence polarization immunoassay technique. Results indicate that atorvastatin at doses up to 80mg/kg in chronic experiment attenuated the anticonvulsant potential of carbamazepine by increasing its ED(50) value against maximal electroconvulsions. Acute fluvastatin (80mg/kg) enhanced the anticonvulsant potential of carbamazepine and valproate by decreasing their ED(50) values. Acute fluvastatin (80mg/kg) also markedly increased the total brain carbamazepine concentration by 61% in a pharmacokinetic reaction. Atorvastatin (acute and chronic) and fluvastatin (chronic) in combinations with valproate impaired long-term memory in mice. Both statins in combinations with all three antiepileptic drugs had no impact on their adverse effects in the chimney test. Based on this preclinical study, one can conclude that chronic administration of atorvastatin reduces the anticonvulsant action of carbamazepine and acute fluvastatin can enhance the anticonvulsant potency of the carbamazepine and valproate. The former interaction was pharmacokinetic in nature.  相似文献   

8.
BackgroundThe aim of the study was to analyze the influence of acute and chronic treatment with tianeptine, an antidepressant selectively accelerating presynaptic serotonin reuptake, on the protective activity of classical antiepileptic drugs in the maximal electroshock test in mice.MethodsElectroconvulsions were produced by means of an alternating current (50 Hz, 25 mA, 0.2 s) delivered via ear-clip electrodes. Motor impairment and long-term memory deficits in animals were quantified in the chimney test and in the passive-avoidance task, respectively. Brain concentrations of antiepileptic drugs were measured by fluorescence polarization immunoassay.ResultsAcute and chronic treatment with tianeptine (25–50 mg/kg) did not affect the electroconvulsive threshold. Furthermore, tianeptine applied in both acute and chronic protocols enhanced the anticonvulsant action of valproate and carbamazepine, but not that of phenytoin. Neither acute nor chronic tianeptine changed the brain concentrations of valproate, carbamazepine or phenytoin. On the other hand, both single and chronic administration of tianeptine diminished the brain concentration of phenobarbital. In spite of this pharmacokinetic interaction, the antidepressant enhanced the antielectroshock action of phenobarbital. In terms of adverse effects, acute/chronic tianeptine (50 mg/kg) and its combinations with classic antiepileptic drugs did not impair motor performance or long-term memory in mice.ConclusionThe obtained results justify the conclusion that tianeptine may be beneficial in the treatment of depressive disorders in the course of epilepsy.  相似文献   

9.
The present study was designed to investigate the effects of fluoxetine (FXT), a selective serotonin reuptake inhibitor, on the effect of antiepileptic drugs (AEDs) in the maximal electroshock seizure (MES) model in mice. FXT at the doses of 25, 20 and 15 mg/kg significantly increased the electroconvulsive threshold. The antidepressant applied at the lower doses (10, 5 and 2.5 mg/kg) did not influence the threshold. Moreover, FXT (at the highest subprotective dose of 10 mg/kg) increased the anticonvulsive potential of carbamazepine (CBZ), diphenylhydantoin (DPH), valproate (VPA) and phenobarbital (PB), producing a dose-related decrease in their ED50 values against MES. Nevertheless, pharmacokinetic events may be involved in the interaction between FXT and PB or CBZ, since the antidepressant raised the total brain concentration of the two antiepileptics. FXT in combination with AEDs did not influence the motor performance in the chimney test and long-term memory. In conclusion, the data suggest that FXT modulates seizure processes in the brain and may be advantageous in the treatment of epilepsy in depressed patients, improving the seizure control in epilepsy.  相似文献   

10.
Tiagabine (TGB), a new potent gamma-aminobutyric acid (GABA) uptake inhibitor, is widely applied in adjunctive treatment of partial seizures in humans. Although, polytherapy is not an initial method of epilepsy treatment, clinicians often combine TGB with other antiepileptics as add-on therapy for assuring the anticonvulsant protection in patients with refractory seizures. To evaluate the character of pharmacological interactions between TGB and some antiepileptics, the isobolographic analysis was used as a suitable method for determining the exact types of interactions. Determination of an influence of TGB on the protective effects of diphenylhydantoin (DPH), carbamazepine (CBZ), valproate (VPA), phenobarbital (PB), lamotrigine (LTG), topiramate (TPM), and felbamate (FBM) in maximal electroshock-induced seizures was essential for this study. To exclude or confirm a pharmacokinetic character of observed interactions, the free plasma and brain concentrations of antiepileptic drugs (AEDs) studied were evaluated by using the immunofluorescence or high-pressure liquid chromatography (HPLC).TGB (up to 2.5 mg/kg) remained ineffective upon the electroconvulsive threshold, whilst the drug in doses of 5 and 10 mg/kg significantly raised the electroconvulsive threshold in mice. According to the isobolography, TGB appears to act synergistically with VPA. The remaining combinations tested exerted additive interactions. A pharmacokinetic character of interaction between TGB and VPA was evidently corroborated either in plasma or brains. Moreover, TGB significantly reduced the plasma and brain concentrations of DPH; however, pharmacokinetic events were not accompanied by any changes in anticonvulsant activity of the latter. Finally, the isobolographic analysis revealed that combinations of TGB with VPA exerted synergistic (supra-additive) interaction resulting from a pharmacokinetic interaction.  相似文献   

11.
2-Methyl-6-phenylethynyl-pyridine (MPEP), a selective noncompetitive mGluR5 antagonist, influences the action of conventional antiepileptic drugs in amygdala-kindled seizures in rats. MPEP alone (up to 40 mg/kg) did not affect any seizure parameter. Moreover, the common treatment of MPEP with either carbamazepine or phenytoin (administered at subeffective doses) did not result in any anticonvulsant action in kindled rats. However, when combined with subprotective doses of valproate or phenobarbital, MPEP significantly shortened seizure and afterdischarge durations. Importantly, combinations of MPEP with the two antiepileptics did not have the adverse effects of impaired motor performance or long-term memory in rats. Our data indicate that MPEPmay positively interact with some conventional antiepileptic drugs in the amygdala-kindling model of complex partial seizures.  相似文献   

12.
This study evaluated the effect of two angiotensin-converting enzyme (ACE) inhibitors, enalapril and cilazapril, commonly used antihypertensive drugs, on the protective efficacy of the classical antiepileptics — carbamazepine (CBZ), phenytoin (PHT), valproate (VPA) and phenobarbital (PB). For this purpose, we used the maximal electroshock seizure (MES) test in mice. Additionally, adverse effects of combined treatment with ACE inhibitors and antiepileptic drugs in the passive avoidance task and chimney test were assessed. All drugs were administered intraperitoneally. Neither enalapril (10, 20 and 30 mg/kg) nor cilazapril (5, 10 and 20 mg/kg) affected the threshold for electroconvulsions. Enalapril (30 mg/kg) but not cilazapril (20 mg/kg), enhanced the protective action of VPA, decreasing its ED50 value from 249.5 to 164.9 mg/kg (p < 0.01). Free plasma (non-protein-bound) and total brain concentrations of VPA were not significantly influenced by enalapril. Therefore, the observed interaction could be pharmacodynamic in nature. The combinations of ACE inhibitors with other antiepileptics (CBZ, PHT, and PB) were ineffective in that their ED50 values against MES were not significantly changed. Enalapril and cilazapril remained ineffective as regards memory retention in the passive avoidance task or motor performance in the chimney test. The current study suggests that there are no negative interactions between the studied ACE inhibitors and classical antiepileptic drugs. Enalapril was even documented to enhance the anticonvulsant activity of VPA.  相似文献   

13.
Caffeine has been reported to be proconvulsant and to reduce the anticonvulsant efficacy of a variety of antiepileptic drugs (carbamazepine, phenobarbital, phenytoin, valproate and topiramate) in animal models of epilepsy and to increase seizure frequency in patients with epilepsy. Using the mouse maximal electroshock model, the present study was undertaken so as to ascertain whether caffeine affects the anticonvulsant efficacy of the new antiepileptic drugs lamotrigine, oxcarbazepine and tiagabine. The results indicate that neither acute nor chronic caffeine administration (up to 46.2 mg/kg) affected the ED50 values of oxcarbazepine or lamotrigine against maximal electroshock. Similarly, caffeine did not modify the tiagabine electroconvulsive threshold. Furthermore, caffeine had no effect on oxcarbazepine, lamotrigine and tiagabine associated adverse effects such as impairment of motor coordination (measured by the chimney test) or long-term memory (measured by the passive avoidance task). Concurrent plasma concentration measurements revealed no significant effect on lamotrigine and oxcarbazepine concentrations. For tiagabine, however, chronic caffeine (4 mg/kg) administration was associated with an increase in tiagabine concentrations. In conclusion, caffeine did not impair the anticonvulsant effects of lamotrigine, oxcarbazepine, or tiagabine as assessed by electroconvulsions in mice. Also, caffeine was without effect upon the adverse potential of the studied antiepileptic drugs. Thus caffeine may not necessarily adversely affect the efficacy of all antiepileptic drugs and this is an important observation.  相似文献   

14.
The present results refer to the action of three gonadal steroid antihormones, tamoxifen (TXF, an estrogen antagonist), cyproterone acetate (CYP, an antiandrogen) and mifepristone (MIF, a progesterone antagonist) on seizure phenomena in mice. TXF and CYP at their lowest protective dose in the electroconvulsive threshold test, enhanced the antiseizure efficacy of some antiepileptic drugs. TXF (20 mg/kg) potentiated the protective activity of valproate, diphenylhydantoin and clonazepam, but not that of carbamazepine or phenobarbital, against maximal electroshock-induced convulsions in female mice. CYP (40 mg/kg) enhanced the anticonvulsant action of valproate, carbamazepine, diphenylhydantoin and clonazepam, but not that of phenobarbital, against maximal electroshock in male animals. MIF failed to affect the electroconvulsive threshold or the efficacy of antiepileptic drugs in maximal electroshock. The effect of TXF or CYP upon the electroconvulsive threshold and on the action of antiepileptics was not reversed by sex steroid hormones (estradiol, testosterone, progesterone). However, the TXF-induced elevation of the electroconvulsive threshold was abolished by bicuculline, N-methyl-D-aspartic acid and kainic acid, and partially reversed by aminophylline, strychnine being ineffective in this respect. The action of CYP on the threshold for electroconvulsions was partially reversed by bicuculline and aminophylline. Both glutamatergic agonists and strychnine remained ineffective in this respect. Moreover, the action of TXF or CYP on the activity of antiepileptics was not influenced by strychnine, and reversed to various extents by the remaining convulsants. In contrast to maximal electroshock, none of the three antihormones affected the protective action of antiepileptic drugs against pentylenetetrazol-induced seizures in mice. Neither TXF nor CYP altered the free plasma levels of antiepileptic drugs, so a pharmacokinetic interaction is not probable. The combined treatment of the two antihormones with antiepileptic drugs, providing 50% protection against maximal electroshock, did not affect motor performance in mice, and did not result in significant long-term memory deficits. Our data indicate that steroid receptor-mediated events may be indirectly associated with seizure phenomena in the central nervous system and can modulate the protective activity of some conventional antiepileptic drugs.  相似文献   

15.
The anticonvulsive potential of classical antiepileptics co-administered with beta-adrenergic receptor antagonists against generalized tonic-clonic seizures was evaluated in the model of maximal electroshock (MES)-induced convulsions. Propranolol, acebutolol, metoprolol and atenolol were tested in the doses not affecting the electroconvulsive threshold. Propranolol and metoprolol lowered the ED(50) of valproate and diazepam. Acebutolol reduced valproate's but not diazepam's ED(50) value. In contrast, hydrophilic atenolol, not penetrating via blood-brain barrier, affected neither the action of valproate nor diazepam. None of the studied drugs changed the protective activity of carbamazepine and phenytoin against MES. beta-blockers per se did not alter the motor performance of mice. Moreover, propranolol and metoprolol did not influence diazepam-evoked impairment of locomotor activity. The free plasma and brain levels of antiepileptic drugs were not affected by beta-blockers. In conclusion, the use of certain beta-adrenoceptor antagonists, such as propranolol and metoprolol, might improve the antiepileptic potential of valproate and diazepam.  相似文献   

16.
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ - an endogenous parkinsonism-preventing substance) administered intraperitoneally at a dose of 20 mg/kg considerably elevated the threshold for electroconvulsions in mice from 6.4 to 8.4 mA (P < 0.05). In contrast, the agent administered at 5 and 10 mg/kg had no significant impact on the electroconvulsive threshold in mice. Moreover, 1-MeTHIQ (at a subthreshold dose of 10 mg/kg) potentiated the anticonvulsant action of valproate (VPA) against maximal electroshock (MES)-induced seizures in mice, reducing its median effective dose (ED50) from 232 to 170 mg/kg (P < 0.001). Similarly, 1-MeTHIQ (at 10 mg/kg) enhanced the antielectroshock activity of carbamazepine (CBZ) in mice, decreasing its ED50 from 10.8 to 7.8 mg/kg (P < 0.05). In contrast, 1-MeTHIQ (at 10 mg/kg) did not affect the anticonvulsant action of phenytoin and phenobarbital against MES-induced seizures in mice. The evaluation of acute neurotoxic effects of the studied antiepileptic drugs (AEDs) in combination with 1-MeTHIQ, as regards motor coordination impairment in the chimney test, revealed no significant changes in median toxic doses (TD50) of conventional AEDs after systemic administration of 1-MeTHIQ (up to 10 mg/kg). Pharmacokinetic characterization of interactions between 1-MeTHIQ (10 mg/kg) and VPA (170 mg/kg) or CBZ (7.8 mg/kg) revealed no significant changes in total brain concentrations of CBZ and VPA, indicating that the observed enhancement of antiseizure effects of CBZ and VPA by 1-MeTHIQ was pharmacodynamic in nature. Based on our preclinical study, it may be concluded that 1-MeTHIQ exerts the anticonvulsant effects increasing the threshold for electroconvulsions and potentiating the antiseizure action of CBZ and VPA against maximal electroshock. The antiseizure properties of 1-MeTHIQ (an endogenous parkinsonism-preventing substance) and its exact physiological role in the brain need extensive examination in further neuropharmacological studies.  相似文献   

17.
The aim of this study was to determine the effect of WIN 55,212-2 mesylate (WIN — a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of four classical antiepileptic drugs (carbamazepine, phenytoin, phenobarbital, and valproate) in the mouse maximal electroshock seizure (MES) model. The results indicate that WIN (10 mg/kg, i.p.) significantly enhanced the anticonvulsant action of carbamazepine, phenytoin, phenobarbital and valproate in the MES test in mice. WIN (5 mg/kg) potentiated the anticonvulsant action of carbamazepine and valproate, but not that of phenytoin or phenobarbital in the MES test in mice. However, WIN administered alone and in combination with carbamazepine, phenytoin, phenobarbital and valproate significantly reduced muscular strength in mice in the grip-strength test. In the passive avoidance task, WIN in combination with phenobarbital, phenytoin and valproate significantly impaired long-term memory in mice. In the chimney test, only the combinations of WIN with phenobarbital and valproate significantly impaired motor coordination in mice. In conclusion, WIN enhanced the anticonvulsant action of carbamazepine, phenytoin, phenobarbital and valproate in the MES test. However, the utmost caution is advised when combining WIN with classical antiepileptic drugs due to impairment of motor coordination and long-term memory and/or reduction of skeletal muscular strength that might appear during combined treatment.  相似文献   

18.
(+)-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine (3-PPP; a sigma receptor ligand), administered at 30 mg kg-1, 30 min before the test, significantly decreased the electroconvulsive threshold in mice, being ineffective in lower doses. 3-PPP (20 mg kg-1) diminished the protective activity of diphenylhydantoin, phenobarbital and valproate, but not that of carbamazepine against maximal electroshock. The effect of 3-PPP upon the electroconvulsive threshold and the 3-PPP-induced inhibition of the protective action of antiepileptics was reversed by haloperidol (0.5 mg kg-1). Moreover, 3-PPP did not alter the total and free plasma levels of antiepileptic drugs, so a pharmacokinetic interaction is not probable. The combined treatment of 3-PPP with antiepileptic drugs, providing a 50% protection against maximal electroshock, did not affect motor performance in mice, although resulted in significant long-term memory deficits. Our data indicate that sigma receptor-mediated events may play some role in seizure processes in the central nervous system and can modulate the protective activity of some conventional antiepileptic drugs.  相似文献   

19.
Competitive antagonists of N-methyl-D-aspartate (NMDA) receptors, D(-) CPP (up to 0.625 mg/kg) and (+/-)CPP (up to 0.625 mg/kg), did not influence the electroconvulsive threshold in mice. At a dose of 1.25 mg/kg, both drugs significantly elevated the threshold. D(-)CPP (0.625 mg/kg) and (+/-)CPP (0.625 mg/kg) potentiated the anticonvulsant activity of valproate, carbamazepine and phenobarbital. No potentiation was observed in the case of diphenylhydantoin. Moreover, these competitive NMDA antagonists did not influence the plasma levels of antiepileptic drugs, so a pharmacokinetic interaction, in terms of total and free plasma levels at least, is not probable. The combined treatment of both CPP agents with either carbamazepine, diphenylhydantoin or phenobarbital (providing a 50% protection against maximal electroshock) was devoid of significant side effects (in the tests evaluating motor and long-term memory impairment). Valproate co-administered with CPP compounds caused a moderate motor impairment, but did not affect cognitive functions in mice. It is noteworthy that valproate and phenobarbital given alone at doses equal to their ED50s resulted in significant long-term memory deficit. The results indicate that combinations of antiepileptic drugs with some NMDA receptor antagonists, apart from enhanced anticonvulsant potential, may not necessarily result in the occurrence of considerable adverse reactions.  相似文献   

20.
The two enantiomers of propranolol antagonize generalized tonic-clonic seizures in DBA/2 mice with the (-)-enantiomer being about 1.5 times more potent than the (+)-enantiomer. Metoprolol was less active and atenolol was unable to affect audiogenic seizures. In combination with conventional antiepileptic drugs, both propranolol enantiomers tested in doses not affecting the occurrence of audiogenic seizures increased the anticonvulsant activity of diazepam, phenobarbital, valproate and lamotrigine and tended to increase that of carbamazepine and phenytoin. The effect was more pronounced with the (-)-enantiomer. This increase was associated with an enhancement of motor impairment, however, the therapeutic index of combined treatment of the antiepileptic drugs with both propranolol enantiomers was more favourable than the combination with saline alone. Metoprolol was also able to decrease the ED(50) values of the antiepileptic drugs, whereas atenolol showed no effects. Since neither enantiomer of propranolol significantly influenced the total and free plasma levels of the antiepileptics, pharmacokinetic interactions are not likely. In addition, (+)- and (-)-propranolol did not significantly affect the hypothermic effects of the antiepileptics tested. In conclusion, both enantiomers of propranolol and metoprolol showed an additive anticonvulsant effect when co-administered with some conventional antiepileptic drugs, most notably diazepam, phenobarbital, lamotrigine and valproate, implicating a possible therapeutic relevance of such drug combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号