首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung adenocarcinoma cells harboring epidermal growth factor receptor (EGFR) mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs), including gefitinib. Acquired resistance to EGFR-TKIs develops after prolonged treatments. The study was prompt to explore effective strategies against resistance to EGFR-TKIs. We established gefitinib resistant PC-9 cells which harbor EGFR exon 19 deletion. Known mechanisms for intrinsic or acquired EGFR-TKI resistance, including KRAS mutation, HER2 mutation, EGFR T790M mutation and MET gene amplification, were studied, and we did not observe any known mechanisms for intrinsic or acquired resistance to EGFR-TKIs in the resistant cells. In the parental PC-9 cells, labeled as PC-9/wt, gefitinib completely inhibited EGF-induced phosphorylation of EGFR, AKT and ERK. Gefitinib inhibited EGFR phosphorylation, but was unable to block EGF-induced phosphorylation of ERK in resistant cells, labeled as PC-9/gef cells, including PC-9/gefB4, PC-9/gefE3, and PC-9/gefE7 subclones. We detected NRAS Q61K mutation in the PC-9/gef cells but not the PC-9/wt cells. MEK inhibitors, either AZD6244 or CI1040, inhibited ERK phosphorylation and sensitized gefitinib-induced cytotoxicity in PC-9/gef cells. Whereas MEK inhibitors or gefitinib alone did not activate caspases in PC-9/gef cells, combination of gefitinib and AZD6244 or CI1040 induced apoptosis. Our in vivo studies showed that gefitinib inhibited growth of PC-9/wt xenografts but not PC-9/gef xenografts. Furthermore, combination of a MEK inhibitor and gefitinib inhibited growth of both PC-9/wt xenografts and PC-9/gefB4 xenografts. To conclude, persistent activation of ERK pathway contributes to the acquired gefitinib-resistance. Combined treatment of gefitinib and MEK inhibitors may be therapeutically useful for acquired gefitinib-resistance lung adenocarcinoma cells harboring EGFR mutations.  相似文献   

2.
Vascular endothelial growth factors (VEGF-C and VEGF-A) play important roles in tumour-induced lymphangiogenesis and angiogenesis, respectively, key processes implicated in promoting tumour growth and metastatic spread. Previous work from our laboratory has shown that EGFR overexpression in squamous carcinomas of the head and neck (SCCHN) is linked to high levels of VEGF-A and VEGF-C (but low levels of VEGF-D) and is associated with poor prognosis. The present study explored the signalling pathways regulating the induction of VEGF-C and VEGF-A in the SCCHN cell lines CAL 27 and Detroit 562. The addition of exogenous EGF induced the expression of VEGF-C and VEGF-A in a concentration-dependent manner and this was blocked by a selective EGFR inhibitor, gefitinib. In both cell lines stimulated with endogenous or exogenous ligand, inhibition of MEK1/2 (with U0126 or PD98059) or PI3K (with PI-103 or LY294002) resulted in a marked reduction of EGFR-induced VEGF-A expression, whereas exogenous EGF-induced VEGF-C upregulation was blocked by inhibitors of MEK but not PI3K. Inhibition of p38 MAPK suppressed EGF-induced VEGF-C upregulation in CAL 27 cells, but inhibited EGF-induced VEGF-A upregulation in Detroit 562. Taken together, our evidence suggests that both endogenous and exogenous EGFR activation induces VEGF-A expression requiring both PI3K and MAPK signalling whereas VEGF-C expression is dependent on MAPK, but not the PI3K or mTOR pathways in SCCHN cell lines. p38 MAPK appears to be differentially linked to either VEGF-A or VEGF-C regulation in different cellular contexts.  相似文献   

3.
4.
Patients with non-small cell lung carcinoma (NSCLC) bearing epidermal growth factor receptor (EGFR) gene mutations are good responders to gefitinib (Iressa), an EGFR tyrosine kinase inhibitor (EGFR-TKI), yet these patients may eventually develop acquired resistance to all available EGFR-TKIs. Nitrogen-containing bisphosphonates (N-BPs) are inhibitors of farnesyl diphosphate (FPP) synthase as well as chelators of divalent cations. This study was undertaken to examine if the N-BP zoledronic acid (zoledronate) possessing antitumor activity could enhance the antitumor effect of gefitinib on the HCC827 NSCLC cell line expressing mutated EGFR. Both gefitinib and zoledronate were cytotoxic to HCC827 cells when treated alone. Combined treatment with gefitinib (0.025 μM) that induced G0/G1 arrest and zoledronate (50 μM) that caused S/G2/M accumulation generated an additive induction in cell cytotoxicity, sub-G1 cell population, and apoptosis. Gefitinib suppressed EGF-activated phosphorylation of ERK1/2 and Akt, while zoledronate seemed to impose its pharmacological effect independent of ERK1/2 and Akt phosphorylation. The volumes of xenografted tumors in nude mice co-administered with gefitinib (1 mg/kg/day, five days a week, p.o.) and zoledronate (10 μg/kg, twice weekly, i.p.) were significantly smaller than those of tumors in mice treated with gefitinib alone at the last stage of a 6-week in vivo study. Severe peri-tumoral fat loss frequently observed in gefitinib-treated mice disappeared in mice receiving the combined treatment. Hence, combined treatment of gefitinib with zoledronate may form a basis to develop a more effective and less toxic therapy for NSCLC with EGFR gene mutations.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6–12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR.  相似文献   

6.
Nordy is a chiral compound synthesized based on the structure of a natural lipoxygenase (LO) inhibitor nordihydroguaiaretic acid (NDGA) from plants. The aim of the present study is to investigate the effect of Nordy on malignant human glioma cell responses to chemoattractants and growth promoting signals. We found that Nordy, in a non-cytotoxic concentration range, potently inhibited the chemotaxis and calcium flux of a human glioblastoma cell line U87 induced by a formylpeptide receptor (FPR) agonist, formyl-methionyl-leucyl-phenylalanine (fMLF) and epidermal growth factor (EGF). U87 cells treated by Nordy also showed a significantly impaired proliferation and expression of mRNA for vascular endothelial growth factor (VEGF) induced by fMLF. The chemotactic and proliferation responses of Nordy treated U87 cells to EGF were concomitantly diminished. Further experiments revealed that Nordy did not significantly affect FPR gene expression in U87 cells, but attenuated the activation of a plethora of signaling molecules including ERK1/2, p38, JNK, and Akt when the cells were stimulated by fMLF. EGF-induced EGF receptor phosphorylation was also inhibited in Nordy-treated U87 cells. Moreover, Nordy significantly reduced the tumorigenicity of U87 cells in nude mice. Our results suggest that Nordy is capable of inhibiting glioma cell responses to signals that promote cell motility, growth and production of VEGF. Thus, Nordy may constitute a molecular basis for the development of novel anti-cancer drugs. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. All animals used in this research project were cared for and used humanely according to the following policies: The US Public Health Service Policy on Humane Care and Use of Animals; the Guide for the Care and Use of Laboratory Animals; and the US Government Principles for Utilization and Care of Vertebrate Animals Used in Testing, Research, and Train. The publisher or recipient acknowledges right of the US Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.  相似文献   

7.
EGFR is frequently overexpressed in head and neck squamous cell cancer (HNSCC). Cetuximab is a monoclonal antibody designed to interact with EGFR, block its activation, reduce the downstream signaling pathways and induce EGFR internalization. This study aims to investigate the role of the EGFR signaling pathway and EGFR internalization in a cetuximab-resistant cell line and to propose a new therapeutic strategy to optimize treatment of HNSCC. The HNSCC cell line, CAL33 was sensitive to gefitinib but resistant to cetuximab. Cetuximab induces an unexpected EGFR phosphorylation in CAL33 cells similarly to EGF but this EGFR activation does not trigger EGFR internalization/degradation, the process currently implicated in the response to cetuximab. Cetuximab inhibits ERK and AKT phosphorylation in cetuximab-sensitive A431 cells, whereas the level of AKT phosphorylation is unmodified in cetuximab-resistant cells. Interestingly, CAL33 cells harbor a PIK3CA mutation. The treatment of CAL33 cells with PI3K inhibitor and cetuximab restores the inhibition of AKT phosphorylation and induces growth inhibition. Our results indicate that EGFR internalization is impaired by cetuximab treatment in CAL33 cells and that the AKT pathway is a central element in cetuximab resistance. The combination of cetuximab with a PI3K inhibitor could be a good therapeutic option in PIK3CA-mutated HNSCC.  相似文献   

8.
Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4- induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor κB (NF-κB) and resulted in phosphorylation of IκBα in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-κB translocation and phosphorylation of IκBα when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/ degradation of IκBα, NF-κB activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-κB-dependent mechanism.  相似文献   

9.
Despite multiple reports of overexpression in prostate cancer (PC), the reliance of PC cells on activated epidermal growth factor receptor (EGFR) and its downstream signaling to phosphoinositide 3'-kinase/Akt (PI3K/Akt/PTEN) and/or mitogen-activated protein kinase (MAPK/ERK) pathways has not been fully elucidated. In this study, we compared the role of EGF-mediated signaling in nonmalignant (BPH-1, PNT1A, and PNT1B) and PC cell lines (DU145, PC3, LNCaP, and CWR22Rv1). EGF-induced proliferation was observed in all EGFR-expressing PC cells except PC3, indicating that EGFR expression does not unequivocally trigger proliferation following EGF stimulation. ErbB2 recruitment potentiated EGF-induced signals and was associated with the most pronounced effects of EGF despite low EGFR expression. In this way, the sum of EGFR and ErbB2 receptor phosphorylation proved to be a more sensitive indicator of EGF-induced proliferation than quantification of the expression of either receptor alone. Both Akt and ERK were rapidly phosphorylated in response to EGF, with ERK phosphorylation being the weakest in PC3 cells. Extrapolation of these findings to clinical PC suggests that assessment of phosphorylated EGFR + ErbB2 together could serve as a marker for sensitivity to anti-EGFR-targeted therapies.  相似文献   

10.
OBJECTIVE To investigate gene mutations of epidermal growth factor receptor (EGFR) and K-RAS (Kirsten rat sarcoma viral oncogene) in Chinese patients with non-small cell lung cancer (NSCLC), and study the correlation with its protein expression and its clinical significance on gefitinib. METHODS Detect the EGFR and K-RAS gene mutations status by gene sequencing and use the method of Immunohistochemistry to detect EGFR and K-RAS protein expression. RESULTS The frequency of EGFR mutations was 33%, mainly located in exon 19 and exon 21. The frequency of K-RAS mutations was 5.5%, mainly located in codon 12. There was no case which both had EGFR and K-RAS mutations, suggesting a mutually exclusive relationship between the two. EGFR mutations are more common in adenocarcinomas (particularly those with bronchioloalveolar features), nonsmokers and females. 16% were detected EGFR positive expression and had no correlation with EGFR mutation (P > 0.05), but had significant correlation with mutation in exon 19 (P < 0.05). The frequency of K-RAS positive expression was 52.5% and had no correlation with K-RAS mutation (P > 0.05). Twelve (8 cases were protein-negative) out of 15 gefitinib-treated NSCLC patients with disease control carry EGFR mutations. CONCLUSION EGFR protein expression has some correlation with exon 19 mutations. Combined detection of EGFR and K-RAS gene mutations can help clinicians to choose patients who may benefit from EGFR tyrosine kinase inhibitor (EGFR-TKI) and to predict the response and prognosis of gefitinib.  相似文献   

11.
The role of Fused Toes Homolog (FTS) in epidermal growth factor (EGF) induced epithelial–mesenchymal transition (EMT) in cervical cancer cells was studied. EGF treatment induced the change of EMT markers and increased cell migration. EGF treatment also increased phosphorylated EGFR and ERK and nuclear level of ATF-2. The binding of ATF-2 to the promoter region of FTS was evidenced after EGF treatment. Pretreatment with PD98059 and gefitinib prevented EGF-induced FTS expression. FTS silencing reduced EMT and cell migration by EGF treatment. These results demonstrate a novel function for FTS in EGF-mediated EMT process.  相似文献   

12.
Acquired resistance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs), such as gefitinib and erlotinib, is a critical problem in the management of patients with EGFR mutant lung cancer. Several mechanisms have been reported involved in this acquired resistance, including hepatocyte growth factor (HGF) activation of an alternative pathway. PI3K and mTOR are downstream molecules of receptor tyrosine kinases, such as EGFR and Met, and are thought to be ideal targets for controlling various tumor types. We assessed whether BEZ235, a dual inhibitor of PI3K and mTOR, could overcome the EGFR–TKI resistance induced by HGF in an EGFR mutant lung cancer model. Exogenous and endogenous HGF triggered resistance to erlotinib in the PC‐9 and HCC827, EGFR mutant lung cancer cell lines. BEZ235 alone inhibited the viability of PC‐9 and HCC827 cells in vitro, irrespective of the presence or the absence of HGF. Using a xenograft model of severe combined immunodeficient mice with HGF‐gene‐transfected PC‐9 cells (PC‐9/HGF), we found that BEZ235 inhibited tumor growth, whereas erlotinib did not. BEZ235 monotherapy also inhibited the phosphorylation of Akt and p70S6K/S6RP, downstream molecules of PI3K and mTOR, respectively, as well as suppressing tumor‐cell proliferation and angiogenesis of PC‐9/HGF tumors. These results suggest that BEZ235, even as monotherapy, may be useful in managing HGF‐induced EGFR–TKI resistance in EGFR mutant lung cancer.  相似文献   

13.
Epidermal growth factor (EGF) has been shown to induce proliferation in cells, however, the role of prostaglandin E(2) (PGE(2)) plays in EGF-induced proliferation in still unclear. EGF and PGE(2) showed proliferation responses in epidermoid carcinoma cell A431 by MTT and [(3)H] thymidine incorporation assay. Activation of the EGF receptor and extracellular signal-regulated protein kinases (ERK1/2), but not p38 and JNK, appeared 10 min after EGF treatment, whereas total amounts of ERK1/2, p38 and JNK remained unchanged in A431 cells, accompanied by induction of COX-2 and PGE(2) production. PD98059, a specific ERK1/2 inhibitor, inhibited EGF-induced proliferation with concomitant decreases in ERK1/2 phosphorylation and COX-2/PGE(2) induction. Non-steroid anti-inflammatory drugs (NSAIDs) such as aspirin and diclofenac, a COX activity inhibitor, inhibited EGF-induced proliferation by blocking PGE(2) production. The addition of PGE(2) reversed the inhibitory effects of PD98059, aspirin, and diclofenac on EGF-induced proliferation. This suggests that COX-2/PGE(2) activation involves in EGF-induced proliferation and locates at the downstream of ERK1/2 activation. Furthermore, the natural product, 3-OH flavone, showed the most-potent inhibitory activity on EGF-induced proliferation among 9 structurally-related compounds, and suppression of EGF receptor phosphorylation, ERK1/2 phosphorylation, and COX-2/PGE(2) production by 3-OH flavone was identified. PGE(2) addition attenuates the inhibitory activity of 3-OH flavone on EGF-induced proliferation by MTT assay and colony formation by soft agar assay. Additionally, 3-OH flavone also showed more-specific inhibition on EGF- than on fetal bovine serum (FBS)-induced proliferation in A431 cells. Results of our present study provide evidence to demonstrate that PGE(2) is an important downstream molecule in EGF-induced proliferation, and 3-OH flavone, which inhibits PGE(2) production by blocking MAPK cascade, might reserve potential for development as an anti-cancer drug.  相似文献   

14.
BackgroundEpidermal growth factor receptor (EGFR) and its downstream Ras-mitogen-activated protein kinase kinase (MAPKK, MEK)-extracellular regulated protein kinase (ERK) signaling pathway and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway play important roles in the pathogenesis of colorectal cancer (CRC). The combination therapy of anti-EGFR and anti-mTOR needs to be explored.MethodsHere we combined the anti-EGFR monoclonal antibody cetuximab (CTX) with the mTOR inhibitor PP242 in CRC cell lines and mouse xenograft models and discussed the changes of EGFR downstream signaling pathways of CRC cell lines.ResultsIn HT-29 cells and Caco-2 cells, combined application of CTX and PP242 significantly inhibited the proliferation of CRC cells in vivo and in vitro. In BRAF wild-type Caco-2 cells, combined application of CTX and PP242 inhibited the activation of the EGFR and its downstream signaling pathways.ConclusionsOur research further demonstrates the effectiveness of the combined application of CTX and PP242 in inhibiting CRC cell lines from the perspective of cell proliferation, cell cycle, apoptosis, and mouse xenografts. We revealed that the combined application of CTX and PP242 can inhibit tumor growth and proliferation by inhibiting the phosphorylation of key molecules in EGFR downstream MEK-ERK and MEK 4/7 (MKK)-c-Jun N-terminal kinase (JNK) signaling pathways in BRAF wild-type CRC cells. In addition, we found that in BRAF mutant CRC cells, the monotherapy of PP242 resulted in negative feedback increased EGFR phosphorylation rates, accompanied by significant up-regulation of downstream MEK and ERK phosphorylation.  相似文献   

15.
Wu Y  Chen Y  Qu R  Lan T  Sang J 《Oncology reports》2012,27(2):553-558
Our previous study found that Type II cGMP-dependent protein kinase (PKG?II) is expressed at lower levels in human gastric cancer tissues and cell lines and increasing the expression and activity of PKG?II inhibited the proliferation of cancer cell line BGC-823. However, the mechanism through which PKG?II inhibits proliferation of gastric cancer cells is still not clear. Herein, we show that PKG?II can inhibit EGF-induced MAPK signal transduction. In the gastric cancer cell line BGC-823, the expression and activity of PKG?II were increased by infecting the cells with adenoviral construct encoding PKG?II cDNA and treating the cells with the cGMP analogue 8-pCPT-cGMP. We found that PKG?II inhibited the EGF-induced dual phosphorylation of ERK, a key component of the MAPK signal transduction pathway. Upstream of ERK, PKG?II inhibited the phosphorylation of MEK1/2, the phosphorylation/activation of Raf-1, the activation of Ras, and the binding between adaptor protein Grb2 and GTP exchange factor Sos1 induced by EGF. Of note, PKG?II inhibited the tyrosine phosphorylation of EGFR induced by EGF. Downstream of ERK, the EGF-induced nuclear translocation of phospho-ERK was also inhibited by PKG?II. The results suggest that PKG?II inhibits the proliferation of gastric cancer cells through blocking EGF-triggered MAPK signal transduction and the key blocking point is the tyrosine phosphorylation of the EGF receptor.  相似文献   

16.

Background

EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF.

Methods

Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A.

Results

Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases.

Conclusion

This is the first study to have systematically investigated the effect of cetuximab or gefitinib, alone and in combination with EGF, on human colon cancer cell lines. The EGFR inhibitors have a weaker effect in the presence of EGF that binds EGFR. Cetuximab treatment showed an expression pattern that inversely correlates with EGF treatment. We found interesting cyto-morphological features closely relating to gene expression profile. Both drugs have an effect on differentiation towards cellular death.  相似文献   

17.
Activation of the epidermal growth factor receptor (EGFR) pathway has been implicated in tumorigenesis in non-small cell lung cancer (NSCLC), the most common type of lung cancer. As a result, EGFR has become a key focus for the development of personalized therapy, with several molecular biomarkers having been investigated as potential predictors of response with EGFR tyrosine kinase inhibitors (TKIs) in NSCLC (e.g., EGFR expression, EGFR gene copy gain, and EGFR mutations). Of these, activating mutations in EGFR have thus far given the most consistent results based on the available evidence from preclinical studies and clinical trials. In an attempt to identify patients who are most likely to benefit from treatment with EGFR TKIs, EGFR mutation testing is being increasingly utilized in clinical practice. Currently in the United States, no EGFR TKI or accompanying mutational test is approved for the identification and first-line treatment of patients with advanced NSCLC. However, the first-generation EGFR TKIs, erlotinib and gefitinib, as well as investigational ErbB family TKIs and EGFR mutation testing methods are being evaluated in this setting. This review will discuss EGFR mutation testing as a biomarker of response to EGFR TKIs and the evolution of EGFR mutational analysis in NSCLC. Completed and ongoing clinical trials evaluating currently available or investigational EGFR TKIs as first-line therapy in molecularly and clinically selected patients with NSCLC, with a focus on trials in patients whose tumors have EGFR mutations, will also be reviewed.  相似文献   

18.
The epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2‐associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR‐induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF‐induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF‐induced activation of these pathways was reduced in cells with GAB1 knock‐down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR‐initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents.  相似文献   

19.
The epidermal growth factor receptor (EGFR) tyrosine kinase signaling pathways regulate cellular activities. The EGFR tyrosine kinase inhibitors (EGFR‐TKIs) repress the EGFR pathway constitutively activated by somatic EGFR gene mutations and have drastically improved the prognosis of non‐small‐cell lung cancer (NSCLC) patients. However, some problems, including resistance, remain to be solved. Recently, combination therapy with EGFR‐TKIs and cytotoxic agents has been shown to improve the prognosis of NSCLC patients. To enhance the anticancer effects of EGFR‐TKIs, we examined the cross‐talk of the EGFR pathways with ataxia telangiectasia‐mutated (ATM) signaling pathways. ATM is a key protein kinase in the DNA damage response and is known to phosphorylate Akt, an EGFR downstream factor. We found that the combination of an ATM inhibitor, KU55933, and an EGFR‐TKI, gefitinib, resulted in synergistic cell growth inhibition and induction of apoptosis in NSCLC cell lines carrying the sensitive EGFR mutation. We also found that KU55933 enhanced the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors. ATM inhibition may facilitate the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors, to exert anticancer effects against NSCLC cells with the sensitive EGFR mutation.  相似文献   

20.
Somatic mutations of epidermal growth factor receptor (EGFR) occur in ~3% of colorectal cancer (CRC) patients. Here, through systematic functional screening of 21 recurrent EGFR mutations selected from public data sets, we show that 11 colon cancer-derived EGFR mutants (G63R, E114K, R165Q, R222C, S492R, P596L, K708R, E709K, G719S, G724S and L858R) are oncogenic and able to transform cells in a ligand-independent manner. We demonstrate that cellular transformation by these mutants requires receptor dimerization. Importantly, the EGF-induced and constitutive oncogenic potential of these EGFR mutants are inhibited by cetuximab or panitumumab in vivo and in vitro. Taken together, we propose that a subset of EGFR mutations can serve as genomic predictors for response to anti-EGFR antibodies and that metastatic CRC patients with such mutations may benefit from these drugs as part of the first-line therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号