首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Dapsone activates CYP2C9-mediated metabolism in various expression systems and is itself metabolized by CYP2C9 to its hydroxylamine metabolite. Studies were conducted with expressed CYP2C9 to characterize the kinetic effects of dapsone (0-100 microM) on (S)-flurbiprofen (2-300 microM), (S)-naproxen (10-1800 microM), and piroxicam (5-900 microM) metabolism in 6 x 6 matrix design experiments. The influence of (S)-flurbiprofen on dapsone hydroxylamine formation was also studied. Dapsone increased the Michaelis-Menten-derived V(max) of flurbiprofen 4'-hydroxylation from 12.6 to 20.6 pmol/min/pmol P450, and lowered its K(m) from 28.9 to 10.0 microM, suggesting that dapsone activates CYP2C9-mediated flurbiprofen metabolism without displacing flurbiprofen from the active site, supporting a two-site model describing activation. Similar results were observed with piroxicam 5'-hydroxylation, as V(max) was increased from 0.08 to 0.20 pmol/min/pmol P450 and K(m) was decreased from 183 to 50 microM in the presence of dapsone. In addition, the kinetic profile for naproxen was converted from biphasic to hyperbolic in the presence of dapsone, while exhibiting similar decreases in K(m) and increases in V(max). Kinetic parameters were also estimated using the two-site binding equation, with alpha values <1 and beta values >1, indicative of activation. Additionally, dapsone hydroxylamine formation was measured from incubations containing flurbiprofen, exhibiting a kinetic profile that was minimally affected by the presence of flurbiprofen. Overall, these results suggest that dapsone activates the metabolism of multiple substrates of CYP2C9 by binding within the active site and causing positive cooperativity, thus lending further support to a two-site binding model of P450-mediated metabolism.  相似文献   

2.
Studies have shown that CYP2C9.1 mediated metabolism of flurbiprofen or naproxen is activated by co-incubation with dapsone. However, dapsone activation has not been examined in the known variant forms of CYP2C9. Six concentrations of flurbiprofen (2-300microM) or naproxen (10-1800 microM) were co-incubated with six concentrations of dapsone (0-100 microM) and with reconstituted, purified CYP2C9.1, CYP2C9.2 (R144C), CYP2C9.3 (I359L), or CYP2C9.5 (D360E), in order to assess degrees of activation. Dapsone increased the efficiency (V(m)/K(m)) of flurbiprofen 4'-hydroxylation by CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5 by 8-, 31-, 47-, and 22-fold, respectively. In similar experiments using the substrate naproxen, dapsone increased the efficiency of naproxen demethylation 7-, 15-, 13-, and 22-fold, in CYP2C9.1, CYP2C9.2, CYP2C9.3, and CYP2C9.5, respectively. Also, dapsone normalized naproxen's kinetic profile from biphasic (CYP2C9.1 and CYP2C9.2) or linear (CYP2C9.3 and CYP2C9.5) to hyperbolic for all variant forms. Thus, amino acid substitutions of CYP2C9 variants affect the degree of dapsone activation in a genotype-dependent fashion. Furthermore, the degree of effect noted across variants appeared to be dependent on the substrate studied.  相似文献   

3.
Cytochrome P450 2C9-mediated metabolism has been shown to be activated in the presence of the effector dapsone. However, it has yet to be established what effector structural features are necessary to activate CYP2C9 activity. To address this question, kinetic studies were conducted with nine analogs of dapsone containing various functional properties (three sulfone compounds, three carbonyl compounds, and three sulfonamide compounds), to examine the functional groups important for enzyme activation by the effector (dapsone). Results show that phenylsulfone (dapsone without the para-amino groups) activates flurbiprofen 4'-hydroxylation comparable to dapsone but inhibits naproxen demethylation. Meanwhile, p-tolylsulfone had little effect on flurbiprofen metabolism, but activated naproxen demethylation, albeit only at high concentrations. These substrate-dependent differences in effect suggest that naproxen has a different binding orientation compared with flurbiprofen. Perhaps most interesting is that replacement of only one amino group from dapsone with a nitro group (4-(4-nitrophenylsulfonyl)-aniline) resulted in substantial inhibition of flurbiprofen 4'-hydroxylation, suggesting that electronic effects may influence activation of this substrate. Other analogs either had minor or no effect on CYP2C9-mediated metabolism. Overall, it is apparent from these studies that a sulfone group in direct association with two benzene rings with para-electron-donating groups represents the most efficient activator of CYP2C9. However, the effects of these analogs appear to be concentration- and substrate-dependent, further complicating the prediction of these types of in vitro interactions.  相似文献   

4.
OBJECTIVE: This study was conducted to examine differences in flurbiprofen metabolism among individuals with the CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. METHODS: Fifteen individuals with the CYP2C9*1/*1 ( n=5), *1/*2 ( n=5), and *1/*3 ( n=5) genotypes received a single 50-mg oral dose of flurbiprofen. Plasma and urine samples were collected over 24 h, and flurbiprofen and 4'-hydroxyflurbiprofen pharmacokinetic data were compared across genotypes. RESULTS: CYP2C9 genotype was a significant predictor of flurbiprofen metabolism and accounted for 59% of the variability in flurbiprofen AUC(0- infinity ), and approximately 50% of the variability in flurbiprofen oral clearance, formation clearance to 4'-hydroxyflurbiprofen, and the 0 to 24-h urinary metabolic ratio of flurbiprofen to 4'-hydroxyflurbiprofen. Flurbiprofen AUC(0- infinity )was significantly higher and all measures of flurbiprofen clearance were significantly lower in the CYP2C9*1/*3 individuals than in those with *1/*1. Significant differences in these parameters were not detected between *1/*2 subjects and *1/*1 subjects. CONCLUSIONS: CYP2C9 genotype is a significant predictor of flurbiprofen disposition in humans by altering CYP2C9-mediated metabolism and reducing systemic clearance. The effects are most pronounced in individuals carrying the *3 allele.  相似文献   

5.
1. The adverse reactions associated with the administration of dapsone are believed to be caused by metabolism to its hydroxylamine. Previous reports suggest that CYP3A4 is responsible for this biotransformation [1]. 2. Data presented in this paper illustrate the involvement of more than one cytochrome P450 enzyme in dapsone hydroxylamine formation using human liver microsomes. Eadie-Hofstee plots demonstrated bi-phasic kinetics in several livers. No correlation could be established between hydroxylamine formation and CYP3A concentrations in six human livers (r = -0.47; P = 0.34). 3. Studies with low molecular weight inhibitors illustrate the importance of CYP2C9 and CYP3A in dapsone N-hydroxylation. 4. Differential sensitivity of dapsone N-hydroxylation to selective CYP inhibitors indicated that the contribution of individual CYP enzymes varies between livers. Selective inhibition ranged from 6.8 to 44.1% by 5 microM ketoconazole, and from 24.0 to 68.4% by 100 microM sulphaphenazole. The extent of inhibition, by either ketoconazole or sulphaphenazole was dependent on the CYP3A content of the liver. 5. The levels of expression of these cytochrome P450 enzymes may be an important determinant of individual susceptibility to the toxic effects of dapsone, and may influence the ability of an enzyme inhibitor to block dapsone toxicity in vivo. Because of the inability to produce complete inhibition, selective CYP inhibitors are unlikely to offer any clinical advantage over cimetidine in decreasing dapsone hydroxylamine formation in vivo.  相似文献   

6.
Clinical pharmacokinetics of dapsone   总被引:13,自引:0,他引:13  
Dapsone (DDS) has for about 4 decades been the most important antileprosy drug. Concentrations of dapsone and its monoacetyl metabolite, MADDS, can be determined in biological media by high-performance liquid chromatography. After oral administration, the drug is slowly absorbed, the maximum concentration in plasma being reached at about 4 hours, with an absorption half-life of about 1.1 hours. However, the extent of absorption has not been adequately determined. The elimination half-life of dapsone is about 30 hours. The drug shows linear pharmacokinetics within the therapeutic range and the time-course after oral administration fits a 2-compartment model. The concentration-time profile of dapsone after parenteral administration is reviewed. Of clinical importance is the development of a new long acting injection, which permits monthly supervised administration as recommended by the World Health Organization. Following dapsone injection in gluteal subcutaneous adipose tissue, a sufficiently sustained absorption for this purpose has been reported. Dapsone is about 70 to 90% protein bound and its monoacetylated metabolite (MADDS) is almost completely protein bound. The volume of distribution of dapsone is estimated to be 1.5 L/kg. It is distributed in most tissues, but M. leprae living in the Schwann cells of the nerves might be unaffected. Dapsone crosses the placenta and is excreted in breast milk and saliva. Dapsone is extensively metabolised. Dapsone, some MADDS and their hydroxylated metabolites are found in urine, partly conjugated as N-glucuronides and N-sulphates. The acetylation ratio (MADDS:dapsone) shows a genetically determined bimodal distribution and allows the definition of 'slow' and 'rapid' acetylators. As enterohepatic circulation occurs, the elimination half-life of dapsone is markedly decreased after oral administration of activated charcoal. This permits successful treatment in cases of intoxication. The daily dose of dapsone in leprosy is 50 to 100mg, but varies from 50 to 400mg in the treatment of other dermatological disorders. In malaria prophylaxis, a weekly dose of 100mg is used in combination with pyrimethamine. Side effects are mostly not serious below a daily dose of 100mg and are mainly haematological effects. The dapsone therapeutic serum concentration range can be defined as 0.5 to 5 mg/L. Alcoholic liver disease decreases the protein binding of dapsone; coeliac disease and dermatitis herpetiformis may delay its oral absorption and severe leprosy has been reported to affect the extent of absorption.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The aim of the present study was to develop and improve methods for phenotyping of CYP2E1, an important enzyme in the biotransformation of many industrial chemicals, therapeutic drugs and endogenous substances. The possibility to measure CYP2E1 activity in lymphocytes by using p-nitrophenol as a substrate and CYP2E1 protein levels by flow cytometry were studied in vitro. Further, the conventional chlorzoxazone method for in vivo phenotyping was studied by adjusting the dose to body weight in 10 healthy volunteers. Finally, the possibility to obtain the chlorzoxazone metabolic ratio in saliva samples was investigated. No CYP2E1 protein in lymphocytes was detected by using flow cytometry. Some enzyme activity was found in the experiments with p-nitrophenol, however, it could not be verified that it was catalyzed by CYP2E1. Chlorzoxazone and 6-hydroxychlorzoxazone were not detectable in saliva samples. The present in vivo experiments, combined with our previous data (in total 356 experiments in 50 subjects) show that the metabolic ratio increases with decreasing absorbed dose, expressed as the sum of chlorzoxazone and 6-hydroxychlorzoxazone in plasma at 2 h. The increase becomes pronounced at sum concentrations below 100 microM. In conclusion, chlorzoxazone metabolism in vivo remains the only available method for CYP2E1 phenotyping. The administered dose as well as the absorption of the probe influences the chlorzoxazone ratio. We suggest that a dose of 10 mg chlorzoxazone per kg body weight is used to estimate the CYP2E1 phenotype. Further, metabolic ratios should be disregarded if the sum of plasma chlorzoxazone and 6-hydroxychlorzoxazone is below 100 microM (blood sampled after 2 h).  相似文献   

8.
The most prominent adverse effects seen during treatment with dapsone, an antibacterial and antiprotozoal agent, are hemolysis and methemoglobinemia. An in vitro microsomal/cytochrome P450 (CYP)‐linked assay, which allows reactive metabolites generated in situ to react with the co‐incubated human erythrocytes, was employed to profile CYP isoforms responsible for hemotoxicity of dapsone. Dapsone caused a robust generation of methemoglobin in human erythrocytes in the presence of human/mouse liver microsomes, which indicates contribution of CYP‐mediated metabolism for hemotoxicity. The highest methemoglobin formation with dapsone was observed with CYP2C19, with minor contributions from CYP2B6, CYP2D6 and CYP3A4. Cimetidine and chloramphenicol completely abrogated methemoglobin generation by dapsone, thus confirming a predominant contribution of CYP2C19. The results provide useful insights into CYP‐dependent hemotoxicity of dapsone in human erythrocytes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Aims The aim of this study was to investigate whether chloroquine can inhibit drug metabolism in humans, if such inhibition is general or selective for certain enzymes and evaluate the potential for and clinical significance of any drug-drug interactions when chloroquine is co-administered with other drugs.
Methods The study was conducted in fourteen normal non-smoking healthy male volunteers using a cocktail of five drugs consisting of caffeine, mephenytoin, debrisoquine, chlorzoxazone and dapsone to assess activities of cytochromes P450 (CYP) 1A2, 2C19, 2D6, 2E1 and 3A4 respectively. Dapsone was also used to assess N -acetyltransferase activity. The activities were assessed at baseline, after one and seven daily doses (250  mg daily) of chloroquine and 7 and 14 days after stopping chloroquine dosing.
Results Chloroquine caused a progressive and significant decrease in CYP2D6 activity as measured by debrisoquine metabolism from first to seventh dose and the activity returned to baseline gradually over 14 days after stopping administration. There was no effect on the metabolism of any of the other probe drugs.
Conclusions Chloroquine has been shown to be capable of inhibiting the activity of CYP2D6 in vivo in humans. This effect is selective as activities of other enzymes investigated were not affected. The effect was modest but suggests a potential for drug-drug interactions when co-administered with other drugs that are substrates for this enzyme. The clinical significance of such an interaction will depend on the therapeutic index of any drug involved.  相似文献   

10.
Repaglinide is an antidiabetic drug metabolised by cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes. To clarify the mechanisms of observed repaglinide drug interactions, we determined the contribution of the two enzymes to repaglinide metabolism at different substrate concentrations, and examined the effect of fibrates and rifampicin on CYP2C8, CYP3A4 and repaglinide metabolism in vitro. We studied repaglinide metabolism using pooled human liver microsomes, recombinant CYP2C8 and recombinant CYP3A4 enzymes. The effect of quercetin and itraconazole on repaglinide metabolism, and of gemfibrozil, bezafibrate, fenofibrate and rifampicin on CYP2C8 (paclitaxel 6alpha-hydroxylation) and CYP3A4 (midazolam 1-hydroxylation) activities and repaglinide metabolism were studied using human liver microsomes. At therapeutic repaglinide concentrations (<0.4 microM), CYP2C8 and CYP3A4 metabolised repaglinide at similar rates. Quercetin (25 microM) and itraconazole (3 microM) inhibited the metabolism of 0.2 microM repaglinide by 58% and 71%, and that of 2 microM repaglinide by 56% and 59%, respectively. The three fibrates inhibited CYP2C8 (Ki: bezafibrate 9.7 microM, gemfibrozil 30.4 microM and fenofibrate 92.6 microM) and repaglinide metabolism (IC50: bezafibrate 37.7 microM, gemfibrozil 111 microM and fenofibrate 164 microM), but had no effect on CYP3A4. Rifampicin inhibited CYP2C8 (Ki 30.2 microM), CYP3A4 (Ki 18.5 microM) and repaglinide metabolism (IC50 13.7 microM). In conclusion, both CYP2C8 and CYP3A4 are important in the metabolism of therapeutic concentrations of repaglinide in vitro, but their predicted contributions in vivo are highly dependent on the scaling factor used. Gemfibrozil is only a moderate inhibitor of CYP2C8 and does not inhibit CYP3A4; inhibition of CYP-enzymes by parent gemfibrozil alone does not explain its interaction with repaglinide in vivo. Rifampicin competitively inhibits both CYP2C8 and CYP3A4, which can counteract its inducing effect in humans.  相似文献   

11.
目的研究氟比洛芬酯复合小剂量芬太尼与单纯芬太尼和单纯氟比洛芬酯用予椎管狭窄扩大成形椎弓钉内固定手术后静脉镇痛的临床效应。方法腰椎管狭窄手术的患者45例,随机分为3组,泵内药物:A组,芬太尼1mg+格拉司琼3mg+0.9%NaCl共100ml;B组,氟比洛芬酯200mg+格拉司琼3mg+0.9%NaCl共100ml;C组,氟比洛芬酯100mg+芬太尼0.5mg+格拉司琼3mg+0.9%NaCl共100ml。参数设定:A组负荷量为泵内药物5ml,B、C组负荷量为氟比洛芬酯50mg(5ml),持续输注为各组泵内药物2ml/h,PCA2ml,锁定30min.观察24b内的镇痛评分(VAS),PCA使用次数及不良反应的发生情况。结果术后24h时A,B和C组的VAS,3组间差异无显著性(P〉0.05)。24h内的PCA按压次数C组显著少于A和B组(P〈0.05)。B,C组不良反应的发生率显著低于A组(P〈0.05):镇痛期间无异常出血等并发症发生。结论氟比洛芬酯复合小剂量芬太尼用于腰椎管狭窄手术后静脉镇痛效果良好,可明显减少芬太尼和氟比洛芬酯的用量及不良反应的发生率。  相似文献   

12.
Using selective cytochrome P450 (CYP) inhibitors and clinical concentrations (4 microM) of dapsone (DDS), we found a major contribution of CYP2C9 and little or no contribution (< or = 10%) of CYP3A4 and CYP2E1 to dapsone N-hydroxylation (DDS-NHY) in human liver microsomes. Sulfaphenazole (2.16 microM) and tolbutamide (500 microM), selective inhibitors of CYP2C9 (or 2C8/9), inhibited DDS-NHY by 48 +/- 14 and 41 +/- 15%, respectively. The apparent Michaelis-Menten Km values for DDS-NHY by cloned CYP2C8, CYP2C9, CYP2C18, and CYP2C19 were 75 microM, 31 microM, 25 microM, and greater than 1 mM, respectively. CYP3A4 and CYP2E1 were incapable of DDS-NHY at 4 microM DDS. S-mephenytoin (360 microM) activated DDS-NHY by human liver microsomes and by CYP2C8 by 43 +/- 36 and 193 +/- 16%, respectively. This activation was cytochrome b5-dependent. In contrast, S-mephenytoin inhibited DDS-NHY by CYP2C9, CYP2C18, and CYP2C19 by 27 +/- 2, 49 +/- 1, and 32 +/- 4%, respectively. Because CYP2C18 and CYP19 are expressed at low concentrations in the human liver, these observations indicate that at clinical DDS concentrations, CYP2C9 is a major and CYP2C8 is a likely minor contributor to DDS-NHY in human liver microsomes.  相似文献   

13.
AIMS: Short-term disulfiram administration has been shown to selectively inhibit CYP2E1 activity but the effects of chronic disulfiram administration on the activities of drug metabolizing enzymes is unclear. The purpose of this study was to evaluate the effects of disulfiram given for 11 days on selected drug metabolizing enzyme activities. METHODS: Seven healthy volunteers were given disulfiram 250 mg daily for 11 days. Activities of the drug metabolizing enzymes CYP1A2, CYP2C19, CYP2D6, CYP2E1 and N-acetyltransferase were determined using the probe drugs caffeine, mephenytoin, debrisoquine, chlorzoxazone, and dapsone, respectively. Chlorzoxazone was administered before disulfiram administration and after the second and eleventh doses of disulfiram, while the other probe drugs were given before disulfiram administration and after the eleventh disulfiram dose. RESULTS: Disulfiram administration markedly inhibited chlorzoxazone 6-hydroxylation by more than 95%, but did not affect metabolism of debrisoquine or mephenytoin. Caffeine N3-demethylation was decreased by 34% (P < 0.05). Monoacetyldapsone concentrations were markedly elevated by disulfiram administration resulting in a nearly 16-fold increase in the dapsone acetylation index, calculated as the plasma concentration ratio of monoacetyldapsone to dapsone. CYP-mediated dapsone N-hydroxylation was not significantly altered. CONCLUSIONS: These data suggest that disulfiram-mediated inhibition is predominantly selective for CYP2E1. The magnitude of CYP2E1 inhibition was similar after both acute and chronic disulfiram administration. The effects on caffeine N3-demethylation (CYP1A2) and dapsone metabolism suggest that chronic disulfiram administration may affect multiple drug metabolizing enzymes, which could potentially complicate the use of chronically administered disulfiram as a diagnostic inhibitor of CYP2E1.  相似文献   

14.
The mRNA levels of human cytochrome P450 (CYP)2Cs and CYP3As in primary cultures of freshly isolated human hepatocytes were assessed after exposure to NO-1886 and rifampicin, a typical inducer of CYP3As. mRNA levels were analyzed by real-time RT-PCR using an ABI PRISM 7700 Sequence Detector system. Exposure to NO-1886 for 24 hr at a concentration of less than 10 microM showed only a tendency to reduce or increase the expression levels of CYP2C8, CYP2C9, CYP2C19, CYP3A4, or CYP3A5 mRNA. A higher concentration (50 microM) of NO-1886 induced an increase in CYP2C8 mRNA and a decrease in CYP2C19 mRNA, and these changes continued after additional culture for 24 hr in fresh medium without NO-1886. The expression level of CYP3A4 mRNA after exposure to NO-1886 for 24 hr at 50 microM was about twice that in controls. Following additional culture for 24 hr in fresh medium without NO-1886, the expression of CYP3A4 mRNA was comparable to that in controls. On the other hand, the expression levels of CYP2C9 and CYP3A5 mRNA showed small and variable changes in each donor even at a high concentration (50 microM) of NO-1886. Furthermore, the pharmacokinetics of NO-1886 during repeated oral administration for 14 days was studied in female rats. The pharmacokinetic parameters of NO-1886 were nearly the same on days 1, 7, and 14 of repeated administration. The hepatic microsomal content of CYP isoforms was not affected by repeated administration for 7 days at a dose of 1 to 30 mg/kg in female rats, although the total CYP content was increased at a dose of 30 mg/kg. The expression levels of CYP1A2, CYP2B2, CYP2C12, and CYP2E1 mRNA in primary cultures of rat hepatocytes were not affected by exposure to NO-1886 at 2, 10, or 50 microM. The expression levels of CYP3A1 mRNA in primary cultures of rat hepatocytes were not affected by exposure to NO-1886 at 2 or 10 microM, but were increased, with large individual variation, by exposure at 50 microM. The mRNA expression levels in rat hepatocytes exposed to concentrations comparable to free plasma levels did not change significantly, which was consistent with the equivalence in the in vivo plasma concentrations observed on days 1 and 14 of repeated administration. These results suggest that repeated administration of NO-1886 at clinical doses does not significantly affect the expression levels of CYP isoforms in human liver, although the mRNA levels of the CYP isoforms involved in the metabolism of NO-1886 were increased by exposure to higher concentrations of NO-1886 in human hepatocytes in vitro.  相似文献   

15.
On the basis of the efficacy of the available agents, the World Health Organization has recommended only 4 drugs for combined chemotherapy of leprosy: rifampicin, dapsone, clofazimine and ethionamide/prothionamide. Thiacetazone and isoniazid are also used to a lesser extent by some physicians. Pyrazinamide may find a place in treating 'persister' bacilli. Dapsone is absorbed slowly after oral administration. Peak plasma drug concentration is reached at about 4 hours; absorption half-life is 1.1 hours; elimination half-life is about 30 hours. Oral availability is around 90%. Dapsone is approximately 70% protein-bound, while its monoacetylated metabolite is almost entirely bound. Dapsone crosses the placenta and is excreted into breast milk. It is metabolised via acetylation and N-hydroxylation, but acetylation polymorphism has no effect on dapsone handling by leprosy patients. Dapsone penetrates into sciatic nerves of experimental animals but its presence has not been demonstrated in Schwann cells. Oral doses of rifampicin are rapidly and completely absorbed. The bioavailability is greater when the drug is given before meals; peak concentrations occur at 1 to 2 hours. 80 to 90% of rifampicin is bound to plasma proteins, and the drug is found in saliva, cerebrospinal fluid and breast milk. Its main metabolite, desacetyl rifampicin, also exhibits antimycobacterial activity in tuberculosis. Rifampicin induces its own metabolism, as well as that of dapsone and steroids. Absorption of dapsone and rifampicin is reported to be reduced in leprosy patients. Clofazimine has been in use in leprosy treatment since 1960. In higher doses it exerts an anti-inflammatory action which is useful in treating leprosy patients in reaction. Oral absorption of the drug is slow and dose-dependent; faecal excretion also increases with dose. Single- and multiple-dose studies have shown a plasma half-life of around 10 days. Bioavailability of the drug is higher when given with food than when fasting; the peak plasma concentration occurs at 4 to 8 hours when the drug is administered with breakfast. After absorption, the drug is thought to circulate in protein-bound form, accounting for the fact that it is deposited in various tissues. Uneven distribution and prolonged retention in the tissues are special features of clofazimine metabolism. One unconjugated and 2 conjugated metabolites have been detected in urine, and the urinary excretion of both the parent compound and its metabolites is around 1% of the dose.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
目的评价氟比洛芬酯复合酒石酸布托啡诺用于腔镜甲状腺切除术后多模式镇痛效果。方法选择60例拟行腔镜下甲状腺切除手术的成年女性患者,ASAⅠ~Ⅱ级,随机分为3组:对照组(C组):注射用芬太尼0.1mg稀释至10ml,拔管后即刻静脉缓慢推注;氟比洛芬酯组(F组):氟比洛芬酯100mg,拔管后即刻静脉缓慢推注;氟比洛芬酯复合酒石酸布托啡诺组(FB组):氟比洛芬酯注射液50mg复合酒石酸布托啡诺1mg稀释至10ml,拔管后即刻静脉缓慢推注。观察静脉给药后0、2、4、8、12、24h的镇痛、镇静评分及不良反应发生率。结果与C组比较,F组在术后4h镇痛评分低;FB组在术后2、4及8h镇痛评分低,2及4h镇静评分高(P<0.05)。与F组比较,FB组在术后2及4h镇痛评分低,在2h镇静评分高(P<0.05)。术后恶心呕吐、呼吸抑制、皮肤瘙痒等不良反应发生率差异无统计学意义(P>0.05)。结论氟比洛芬酯复合酒石酸布托啡诺静脉注射安全有效,能够更好的满足腔镜甲状腺切除术后早期镇痛,且镇静效果好。  相似文献   

17.
Objective Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. Methods In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. Results During the pioglitazone phase, the mean peak plasma repaglinide concentration (Cmax) and the total area under the concentration-time curve [AUC(0-∞)] of repaglinide were 100% (range 53–157%, P=0.99) and 90% (range 63–120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Conclusions Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.  相似文献   

18.
The effects of conjugated equine estrogens (CEE) 0.625 mg daily on cytochrome P450 (CYP) were quantified in 12 middle-aged and 13 elderly postmenopausal women at baseline and 6 months later. CYP phenotype was characterized by caffeine (CYP1A2), chlorzoxazone (CYP2E1), dapsone (CYP, N-acetyltransferase 2), dextromethorphan (CYP2D6), and mephenytoin (CYP2C19) metabolism. CEE significantly decreased CYP1A2 (caffeine metabolic ratio: 0.57 +/- 0.20 before, 0.40 +/- 0.20 after, P = .001) and significantly increased CYP2D6 (dextromethorphan/dextrorphan ratio: 0.0116 +/- 0.0143 before, 0.0084 +/- 0.0135 after, P = .022) metabolism. CEE had no overall effect on CYP2C19, CYP2E1, CYP-mediated dapsone metabolism, and N-acetyltransferase 2. The dextromethorphan metabolic ratio decreased only in the seniors. The dapsone recovery ratio decreased in the middle-aged group and increased in the seniors. CEE significantly influenced CYP1A2, CYP2D6, and CYP-mediated dapsone oxidative metabolism but not CYP2C19, CYP2E1, or N-acetyltransferase 2 metabolism in postmenopausal women. Age influenced CYP2D6 metabolism and dapsone hydroxylation.  相似文献   

19.
Objective: This study examined the use of dapsone N-hydroxylation and cortisol 6β-hydroxylation, well accepted in vivo probes of cytochrome P4503A4 (CYP3A4) activity, on defining the effect of three HIV protease inhibitors on CYP3A4 activity. Methods: Subjects from University Hospital Infectious Disease Clinic about to be started on indinavir, and subjects from two clinical studies, one using ritonavir and the other using amprenavir, were recruited to participate in the study. Subjects received dapsone 100?mg p.o. followed by an 8-h urine collection for dapsone, dapsone N-hydroxylamine, cortisol, and 6β-hydroxycortisol concentrations before HIV protease inhibitor administration, and 3–4 weeks into receiving HIV protease inhibitors. Results: None of the HIV protease inhibitors demonstrated statistically significant alterations in dapsone recovery ratio and 6β-hydroxycortisol/cortisol ratio. In fact, with ritonavir, the dapsone recovery ratio tended to increase rather than decrease, suggesting induction. These negative results were found despite evidence of CYP3A4 inhibition by these three HIV protease inhibitors via published drug-drug interactions with drugs that are substrates for CYP3A4. Conclusions: These in vivo assays used to probe CYP3A4 activity are suboptimal, most likely because of the presence of extrahepatic sites of metabolism for both dapsone and cortisol, and multiple CYP isozymes involved in dapsone N-hydroxylation.  相似文献   

20.
Our previous studies, carried out using rat cDNA-expressed cytochrome P450 (CYP) isoforms, liver microsomes and specific CYP inhibitors, showed that the 1-N- and 3-N-demethylation of caffeine at a therapeutic concentration was predominantly catalyzed by CYP1A2 and CYP2C, its 7-N-demethylation was governed by P450s of the CYP2C subfamily, while its 8-hydroxylation was specifically mediated by CYP1A2. The present study was aimed at corroborating the above-described results using another experimental model, i.e. a study of caffeine metabolism in the liver microsomes and specific CYP inducers. Animals received one of the following inducers: beta-naphthoflavone (100 mg/kg i.p. for 4 days), phenobarbital (10 mg/kg for 6 days or 100 mg/kg i.p. for 4 days), pregnenolone 16alpha-carbonitrile (100 mg/kg i.p. for 4 days) or 15% ethanol ( approximately 11 g/kg in drinking water for 6 days). Sixteen hours after the last dose of an inducer liver microsomes were prepared and the caffeine metabolism and CYP isoform activities (testosterone 2alpha-, 2beta-, 6beta-, 7alpha-, 16beta-hydroxylation and warfarin 7-hydroxylation) were investigated. beta-Naphthoflavone (mainly a CYP1A inducer and CYP2C11 inhibitor) potently accelerated the metabolism of caffeine, the effect on 7-N-demethylation being the weakest. Moreover, the influence of beta-naphthoflavone on caffeine metabolism was more potent at the substrate concentration of 100 microM than 800 microM, in particular in the case of 7-N-demethylation and 8-hydroxylation. Pregnenolone-16alpha-carbonitrile (mainly a CYP3A inducer and CYP2C11 inhibitor) moderately induced 8-hydroxylation only. Phenobarbital (an inducer of CYP2B and other CYPs and a CYP2C11 inhibitor) moderately stimulated the metabolism of caffeine, but practically did not affect 7-N-demethylation. Ethanol (mainly a CYP2E1 inducer) modestly increased the rates of the N-demethylation reactions. The presently obtained data confirm the pivotal role of CYP1A2 in the metabolism of caffeine, as well as the involvement of CYP3A in the 8-hydroxylation of caffeine and that of CYP2C11 in its 7-N-demethylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号