首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium nitrite (NaNO2) is a flavoring, coloring and preservative agent in meat and fish products. The study aimed to evaluate the efficacy of l-arginine and l-glutamine supplementation as a potentially novel and useful strategy for the modulation of oxidative stress and toxicity induced by NaNO2 in male rats. Rats were divided into six groups each of 10 rats and treated for 6 weeks: group 1 as normal control; group 2 fed standard diet containing 0.2% NaNO2; group 3 and 4 fed the previous diet supplemented with 1% and 2% arginine, respectively; group 5 and 6 fed NaNO2 diet supplemented with 1% and 2% glutamine, respectively. NaNO2 treatment induced a significant increase in serum malondialdehyde, nitric oxide, arginase, glutathione-S-transferase activities, urea and creatinine as well as differential leucocytes%. However, a significant decrease was recorded in reduced glutathione, catalase activity, total protein, albumin and some hematological parameters as well as immunoglobulin G. On the other hand, arginine or glutamine showed a remarkable modulation of these abnormalities as indicated by reduction of malondialdehyde and improvement of the investigated antioxidant and hematological parameters. It can be concluded that arginine or glutamine supplementation may reduce oxidative stress and improve the hazard effects of NaNO2.  相似文献   

2.
We investigated the systemic effects of subchronic dietary exposure to NAA in Sprague Dawley® rats. NAA was added to the diet at different concentrations to deliver target doses of 100, 250 and 500 mg/kg of body weight/day and was administered for 90 consecutive days. All rats (10/sex/group) survived until scheduled sacrifice. No diet-related differences in body weights, feed consumption and efficiency, clinical signs, or ophthalmologic findings were observed. No biologically significant differences or adverse effects were observed in functional observation battery (FOB) and motor activity evaluations, hematology, coagulation, clinical chemistry, urinalysis, organ weights, or gross pathology evaluations that were attributable to dietary exposure to NAA. Treatment-related increased incidence and degree of acinar cell hypertrophy in salivary glands was observed in both male and female rats in the high dose group. Because there was no evidence of injury or cytotoxicity to the salivary glands, this finding was not considered to be an adverse effect. Based on these results and the actual average doses consumed, the no-observed-adverse-effect-levels (NOAEL) for systemic toxicity from subchronic dietary exposure to NAA were 451.6 and 490.8 mg/kg of body weight/day for male and female Sprague Dawley® rats, respectively.  相似文献   

3.
4.
Drugs causing endoplasmic reticulum or mitochondrial dysfunction may trigger apoptosis in eukaryotic cells. The thiol reagent dithiothreitol (DTT) belongs to the first group whereas the protein kinases inhibitor staurosporine acts on mitochondria. Since the endoplasmic reticulum and the mitochondrial pathways of apoptosis may converge in common steps, we examined the possibility of synergism between these two drugs. Using the activation of caspase-3 as indicator of apoptosis, we found that in two cell lines, Jurkat and Mono-Mac 6, staurosporine and DTT elicited apoptosis with a different pattern: staurosporine acted rapidly and at nanomolar concentrations while DTT acted slowly and at higher concentrations (1mM). When staurosporine and DTT were combined, the proapoptotic action was increased. This was confirmed examining late apoptotic events such as the translocation of phosphatidylserine across the plasma membrane and the cleavage of the antiapoptotic protein Mcl-1. The use of subthreshold DTT concentrations and isobologram analysis demonstrated the synergic nature of the interaction. Tunicamycin, a drug that, like DTT, inhibits protein folding in the endoplasmic reticulum also increased the proapoptotic effect of staurosporine. In agreement with the interplay between the mitochondrial and the endoplasmic reticulum pathways it was found that both staurosporine and DTT induced cytochrome c release. Furthermore, 90min incubation with DTT did not induce caspase-4 activation while staurosporine alone or in combination with DTT stimulated caspase-4 activity. We conclude that staurosporine is more active in cells undergoing endoplasmic reticulum stress. This synergism may warrant evaluation to establish whether the anticancer activity of staurosporine is also enhanced.  相似文献   

5.
Seleno-l-methionine (SeMet) can be oxidized to l-methionine selenoxide (MetSeO) by flavin-containing monooxygenase 3 (FMO3) and rat liver microsomes in the presence of NADPH. MetSeO can be reduced by GSH to yield SeMet and GSSG. In the present study, the potential reduction of MetSeO to SeMet by other cellular components and antioxidants was investigated. Besides GSH, other thiols (l-cysteine, or N-acetyl-l-cysteine) and antioxidants (ascorbic acid and methimazole) also reduced MetSeO to SeMet. This reduction is unique to MetSeO since methionine sulfoxide was not reduced to methionine under similar conditions. The MetSeO reduction by thiols was instaneous and much faster than the reduction by ascorbic acid or methimazole. However, only one molar equivalent of ascorbic acid or methimazole was needed to complete the reduction, as opposed to two molar equivalents of thiols. Whereas the disulfides produced by the reactions of MetSeO with thiols are chemically stable, methimazole disulfide readily decomposed at pH 7.4, 37 °C to yield methimazole, methimazole-sulfenic acid, methimazole sulfinic acid, methimazole S-sulfonate, 1-methylimidazole (MI) and sulfite anion. Collectively, the results demonstrate reduction of MetSeO to SeMet by multiple endogenous thiols, ascorbic acid, and methimazole. Thus, oxidation of SeMet to MetSeO may result in depletion of endogenous thiols and antioxidant molecules. Furthermore, the novel reduction of MetSeO by methimazole provides clear evidence that methimazole should not be used as an alternative FMO substrate when studying FMO-mediated oxidation of SeMet.  相似文献   

6.
Guo C  Liu S  Yao Y  Zhang Q  Sun MZ 《Toxicon》2012,60(3):302-311
As one of the major protein (enzyme) components of snake venom (SV), l-amino acid oxidase (LAAO) plays an important role in the toxicities and biological activities for SV. Accumulated researches in the past decade gradually revealed that SV-LAAOs induce platelet aggregation, cell apoptosis and cytotoxicity, and have anti-microbial, anti-leishmaniasis, anti-tumor and anti-HIV activity. Except for the enzymatic and structural characteristics of SV-LAAOs, the biological functions of SV-LAAOs and relevant action mechanisms are also summarized and discussed in the review. This work might provide useful inputs for future studies on SV-LAAOs.  相似文献   

7.
Enhanced DNA repair activity is important for the development of cellular resistance to alkylating agents. Here, we quantitated the kinetics of DNA excision repairs initiated by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in human leukemia CCRF-CEM cells. CEM cells that had been established resistant to BCNU (CEM-R) were evaluated in comparison with parental CEM cells (CEM-S). The excision repair kinetics were quantitated as the amount of DNA single strand breaks, which were generated from the incision/excision of the damaged DNA and were diminished by the rejoining of renewed DNA, using the single cell gel electrophoresis (Comet) assay. CEM-R cells were 10-fold more resistant to BCNU than CEM-S cells, and also showed cross-resistance to melphalan and cisplatin. In response to the treatment with BCNU, both CEM-S and CEM-R cells initiated an incision/excision reaction at the end of the incubation period, and completed the rejoining process within 4 hr. While CEM-S cells could not repair the damage induced by the high concentration of BCNU, CEM-R cells completed the repair process regardless of BCNU concentrations, suggesting enhanced excision repairs in CEM-R cells. The excision repair activity of CEM-R cells was increased with regard to the incision reaction and to the rate of the repair. Similar results were obtained using ultraviolet C, suggesting enhanced nucleotide excision repair in CEM-R cells. Thus, the enhanced DNA excision repairs were successfully quantitated in the resistant leukemic cell line using the Comet assay. The evaluation of the repair activity may predict the sensitivity of cancer cells to chemotherapy and provide a clue to overcome the resistance.  相似文献   

8.
The treatment of rat thymocytes with YO-2, a novel inhibitor of plasmin, resulted in an increase in DNA fragmentation. DNA fragmentation was also induced by another YO compounds such as YO-0, -3, -4 and -5. These YO compounds are the inhibitor of plasmin activity. On the other hand, YO-1, -6 and -8 that hardly inhibit plasmin activity had no effect on DNA fragmentation. Analysis of fragmented DNA from thymocytes treated with YO-2 by agarose gel electrophoresis revealed that the compound caused internucleosomal DNA fragmentation. In addition, judging from a laser scanning microscopy, annexin V-positive and propidium iodide-negative cells were increased by the treatment of the cells with the compound. Moreover, chromatin condensation was observed in thymocytes treated with the compound. These results demonstrated that YO-2 induces thymocyte apoptosis. There seemed to be some correlation between the apoptosis induced by YO compounds and their plasmin inhibitory effect. However, because the other protease inhibitors including pepstatin A, leupeptin, AEBSF, DFP and E-64-d did not affect DNA fragmentation, YO compounds are likely to have unique mechanism on plasmin or to show the effect on the other plasmin-like proteases. The plasmin inhibitory activity may have an important role in YO-2-induced apoptosis. Furthermore, the stimulations of caspase-8, -9 and -3-like activities were observed in thymocytes treated with YO-2. These results suggest that YO-2 induces thymocyte apoptosis via activation of caspase cascade.  相似文献   

9.
Ribonucleotide reductase is the rate-limiting enzyme for the de novo synthesis of deoxynucleoside triphosphates and therefore represents a good target for cancer chemotherapy. Trimidox (3,4,5-trihydroxybenzamidoxime) was identified as a potent inhibitor of this enzyme and was shown to significantly decrease deoxycytidine triphosphate (dCTP) pools in HL-60 leukemia cells. We now investigated the ability of trimidox to increase the antitumor effect of 1-beta-D-arabinofuranosyl cytosine (Ara-C). Ara-C is phosphorylated by deoxycytidine kinase, which is subject to negative allosteric regulation by dCTP. Therefore, a decrease of dCTP may cause increased Ara-C phosphorylation and enhanced incorporation of Ara-C into DNA. Ara-C incorporation indeed increased 1.51- and 1.89-fold after preincubation with 75 and 100 microM trimidox, respectively. This was due to the significantly increased 1-beta-D-arabinofuranosyl cytosine triphosphate pools (1.9- and 2.5-fold) after preincubation with trimidox. We also investigated the effects of a combination of trimidox and Ara-C on the colony formation of HL-60 cells. A synergistic potentiation of the effect of Ara-C could be observed, when trimidox was added. Trimidox, which decreases intracellular deoxynucleoside triphosphate concentrations thus leading to apoptosis, enhanced the induction of apoptosis caused by Ara-C. We conclude, that trimidox is capable of synergistically enhancing the effects of Ara-C and therefore this drug combination might be further tested in animals.  相似文献   

10.
Bothrops jararaca venom induces programmed cell death in epimastigotes of Trypanosoma cruzi. Here we fractionated the venom and observed that the anti-T. cruzi activity was associated with fractions that present l-amino acid oxidase (l-AAO) activity. l-AAO produces H2O2, which is highly toxic. The addition of catalase to the medium, a H2O2 scavenger, reverted the killing capacity of venom fractions. The anti-T. cruzi activity was also abolished when parasites were cultured in a medium without hydrophobic amino acids that are essential for l-AAO activity. These results were confirmed with a commercial purified l-AAO. Treatment for 24 h with fractions that present l-AAO activity induced parasites cytoplasmic retraction, mitochondrial swelling and DNA fragmentation, all morphological characteristics of programmed cell death. Similar changes were also observed when parasites were treated with H2O2. These results indicate that H2O2, the product of l-AAO reaction, induces programmed cell death explaining the anti-T. cruzi activity of B. jararaca venom.  相似文献   

11.
Sphingolipid metabolites such as sphingosine 1-phosphate (S1P) and ceramide can mediate many cellular events including apoptosis, stress responses and growth arrest. Although ceramide stimulates arachidonic acid metabolism in several cells, the effects of sphingosine and its endogenous analogs have not been established. We investigated the effects of D-erythro-sphingosine and its metabolites on arachidonic acid release in the two cells and on the activity of cytosolic phospholipase A2alpha. C2-Ceramide (N-acetyl-D-erythro-sphingosine, 100 microM) alone stimulated [3H]arachidonic acid release and enhanced the ionomycin-induced release from the prelabeled PC12 cells and L929 cells. In contrast, exogenous addition of D-erythro-sphingosine inhibited the responses in a concentration-dependent manner in the two cell lines. D-erythro-sphingosine, D-erythro-N,N-dimethylsphingosine (D-erythro-DMS) and D-erythro-dihydrosphingosine (D-erythro-DHS) significantly inhibited mastoparan-, but not Na3VO4-, stimulated arachidonic acid release in PC12 cells. D-erythro-S1P and DL-threo-DHS showed no effect on the responses. Production of prostaglandin F2alpha was also enhanced by C2-ceramide (20 microM) and suppressed by D-erythro-sphingosine (10 microM) in PC12 cells. An in vitro study revealed that D-erythro-sphingosine, D-erythro-DMS and D-erythro-DHS directly inhibited cytosolic phospholipase A2alpha activity. These findings suggest that ceramide and D-erythro-analogs of sphingosine have opposite effects on phospholipase A2 activity and thus regulate arachidonic acid release from cells.  相似文献   

12.
CGX, a traditional herbal drug, has been prescribed for patients suffering from various liver diseases, including hepatitis B, alcoholic liver disease, and fatty liver. We investigated whether CGX has hepatoprotective effects against lipopolysaccharide/d-galactosamine (LPS/d-GalN)-induced acute liver injury and its underlying mechanism(s). Mice were administered CGX orally for 7 days prior to an injection of LPS (5 μg/kg)/d-GalN (700 mg/kg). Complete blood count, serum diagnostic markers, antioxidant activities, caspase activity, and histopathological examinations were conducted 8 h after the injection. To evaluate the immunological mechanism of CGX, serum TNF-α and IL-10 were investigated 1.5 h after LPS/d-GalN injection. CGX pretreatment (100, 200, and 400 mg/kg) inhibited the elevation of serum AST and ALT levels as well as histopathological alterations. Moreover, CGX pretreatment inhibited activation of caspase-3/7. CGX attenuated LPS/d-GalN-induced lipid peroxidation with concomitant improvement in total antioxidant activities (superoxide dismutase, catalase, and glutathione peroxidase). CGX elevated the antioxidant capacity of the liver in both the pathological and normal conditions. Furthermore, LPS/d-GalN-induced alterations of neutrophil and lymphocyte populations were ameliorated and serum TNF-α was decreased significantly by CGX. From these data we conclude that CGX protects the liver from LPS/d-GalN-induced hepatitis through antioxidant mechanisms as well as immune modulation.  相似文献   

13.
Venoms from the bee Apis mellifera, the caterpillar Lonomia achelous, the spiders Lycosa sp. and Phoneutria nigriventer, the scorpions Tityus bahiensis and Tityus serrulatus, and the snakes Bothrops alternatus, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, Crotalus durissus terrificus, and Lachesis muta were assayed (800 μg/mL) for activity against Staphylococcus aureus. Venoms from B. jararaca and B. jararacussu showed the highest S. aureus growth inhibition and also against other Gram-positive and Gram-negative bacteria. To characterize the microbicidal component(s) produced by B. jararaca, venom was fractionated through gel exclusion chromatography. The high molecular weight, anti-S. aureus P1 fraction was further resolved by anion exchange chromatography through Mono Q columns using a 0-0.5 M NaCl gradient. Bactericidal Mono Q fractions P5 and P6 showed significant LAAO activity using l-leucine as substrate. These fractions were pooled and subjected to Heparin affinity chromatography, which rendered a single LAAO activity peak. The anti-S. aureus activity was abolished by catalase, suggesting that the effect is dependent on H2O2 production. SDS-PAGE of isolated LAAO indicated the presence of three isoforms since deglycosylation with a recombinant N-glycanase rendered a single 38.2 kDa component. B. jararaca LAAO specific activity was 142.7 U/mg, based on the oxidation of l-leucine. The correlation between in vivo neutralization of lethal toxicity (ED50) and levels of horse therapeutic antibodies anti-LAAO measured by ELISA was investigated to predict the potency of Brazilian antibothropic antivenoms. Six horses were hyperimmunized with Bothrops venoms (50% from B. jararaca and 12.5% each from B. alternatus, B. jararacussu, B. neuwiedii and B. moojeni). To set up an indirect ELISA, B. jararaca LAAO and crude venom were used as antigens. Correlation coefficients (r) between ED50 and ELISA antibody titers against B. jararaca venom and LAAO were 0.846 (p < 0.001) and 0.747 (p < 0.001), respectively. The hemolytic and leishmanicidal (anti-Leishmania amazonensis) activity of LAAO was also determined.  相似文献   

14.
l-Amino acid oxidases (LAAOs) are widely distributed in snake venoms, which contribute to the toxicity of venoms. However, LAAO from Bungarus fasciatus (B. fasciatus) snake venom has not been isolated previously. In the present study, LAAO from B. fasciatus snake venom was purified by SP-Sepharose HP anion exchange chromatography followed by Heparin-Sepharose FF affinity chromatography procedure and the purified enzyme was named BF-LAAO. BF-LAAO presented an estimated molecular weight of 55 kDa in SDS-PAGE and an apparent molecular weight of 70 kDa in size-exclusion chromatography suggesting that BF-LAAO is a monomeric protein. Kinetics studies showed that BF-LAAO was very active against l-Tyr, l-Asp, l-Phe, l-Glu, l-Trp, l-His, l-Gln, l-Ile, l-Met, l-Leu and moderately active against l-Lys, l-Arg, l-Ala and l-Asn. BF-LAAO exhibited a cytotoxic effect on A549 cells and caused up to 41.2% apoptosis of A549 cells following 12 h incubation period. In the mouse peritoneum, BF-LAAO provoked a marked increase in the number of neutrophils, lymphocytes and macrophages following injection. It also induced rabbit platelet aggregation in a dose-dependent manner. At 3 h following injection, BF-LAAO elicited severe inflammation in the gastrocnemius muscles of mice, but failed to induce significant organ damage. In conclusion, the cytotoxic and proinflammatory activities of BF-LAAO could be the main cause of the local inflammation, which helps us to understand the pathogenesis of snakebite.  相似文献   

15.
A novel method was developed for studying the diffusion of proteins through poly(d,l-lactide-co-glycolide) (PLG), using a diffusion cell. To develop improved formulations for the controlled release of encapsulated drugs it is important to understand the underlying release mechanisms. When using low-molecular-weight PLG as the release-controlling polymer, diffusion through the pores is often proposed as the main release mechanism. The experimental set-up and method of determining the diffusion coefficient were thoroughly evaluated with regard to the reliability and the influence of the stirring rate. A procedure for spraying thin films of PLG onto a filter, which could be placed in the diffusion cell, was optimized. The method was then applied to the determination of the diffusion coefficient of human growth hormone (hGH) through a PLG film. The results show that the method enables measurements of the diffusion coefficient through the polymer film. Neither the stirring rate nor the concentration of hGH influenced the diffusion coefficient. The diffusion coefficient of hGH through degraded PLG films was 5.0 · 10? 13 m2/s, which is in the range that could be expected, i.e., several orders of magnitude smaller than its the diffusivity in pure water. The reproducibility was good, considering the dynamic properties of PLG, i.e., the difference in diffusion coefficients, at, for example, different stages of degradation and for different compositions of PLG, is expected to be much higher. The variation is probably also present in PLG films used for controlled-release formulations. Although the PLG film contains a large amount of water, a considerable time elapsed before pores of sufficient size formed and diffusion through the film started. In two-component diffusion experiments, the difference in diffusion rate did not correspond to the difference in molecular weight of the solutes, indicating a size exclusion effect. This method can be used to study the effect of changes in the formulation specification. By studying the change in the diffusion coefficient through the degradation process of PLG, or similar polymers, a better understanding of diffusion and, thus, also release mechanisms can be obtained.  相似文献   

16.
Modulation of the extracellular level of arginine, substrate for nitric oxide synthetases, is a promising modality to alleviate certain pathological conditions where excess nitric oxide (NO) is produced. However, complications arise, as only preferential inhibition of the inducible nitric oxide synthetase (iNOS), but not endothelial nitric oxide synthetase (eNOS), is desired for the treatment of NO over-production. We investigated the effect of arginine deprivation mediated by a recombinant arginine deiminase (rADI) on the activity of iNOS and eNOS in an endothelial cell line, TR-BBB. Our results demonstrated that cytokine-induced NO production depends on the extracellular arginine as substrate. However, if sufficient citrulline is present in the medium, A23187-activated NO production by eNOS does not rely on extracellular arginine. Treatment with rADI can markedly inhibit cytokine-induced NO production via iNOS, but not A23187-activated NO production via eNOS. Our results also showed that the decrease of NO production by iNOS could be achieved by depleting arginine from the medium even under the conditions that would up-regulate iNOS expression. Thus, rADI appears to be a novel selective modulator of iNOS activity that may be a used as a tool in the study of pathological disorders where NO over-production plays a key role.  相似文献   

17.
Various epidemiological studies have shown that obesity increases the risk of liver disease, but the precise mechanisms through which this occurs are poorly understood. In the present study, we hypothesized that osteopontin (OPN), an extracellular matrix and proinflammatory cytokine, has an important role in making obese mice more susceptible to inflammatory liver injury. After exposure of genetically obese ob/ob and db/db mice to a single dose of d-galactosamine (GalN), the plasma liver enzyme levels, histology and expression levels of cytokines and OPN were evaluated. The ob/ob and db/db mice, which were more sensitive to GalN-induced inflammatory liver injury compared with wild-type mice, had significantly higher plasma and hepatic OPN expression levels. Increased OPN expression was mainly found in hepatocytes and inflammatory cells and was correlated with markedly up-regulated interleukin (IL)-12 and IL-18 levels. Furthermore, pretreatment with a neutralizing OPN (nOPN) antibody attenuated the GalN-induced inflammatory liver injury in ob/ob and db/db mice, which was accompanied by significantly reduced macrophages recruitment and IL-12 and IL-18 productions. Taken together, these results suggest that up-regulated OPN expression is a contributing factor to increased susceptibility of genetically obese mice to GalN-induced liver injury by promoting inflammation and modulating immune response.  相似文献   

18.
Some of the behavioral effects of d-amphetamine (d-AMPH) are mediated by an increase in dopamine neurotransmission in the nucleus accumbens. However, there is evidence that gamma-amino-butyric-acid-B (GABA-B) receptors are involved in some behavioral effects of d-AMPH and cocaine. Here, we examined the effects of baclofen on the discriminative stimulus properties of d-AMPH, using conditioned taste aversion (CTA) as the drug discrimination procedure. Male Wistar rats were deprived of water and trained in the CTA procedure. They received d-AMPH (1 mg/kg, i.p.) before gaining access to saccharin, which was followed by an injection of LiCl. On alternate days, the subjects received saline before and after the access to saccharin. After the rats learned the d-AMPH-saline discrimination, the standard dose of d-AMPH was replaced by different doses of d-AMPH, baclofen (a GABA-B receptor agonist), 2-hydroxysaclofen (a GABA-B receptor antagonist), a combination of baclofen + d-AMPH, or a combination of 2-hydroxysaclofen + baclofen + d-AMPH. Baclofen did not substitute for d-AMPH, but, when combined with d-AMPH, it produced a small but significant decrease in the discriminative stimulus effects of d-AMPH. This effect was reversed by administration of 2-hydroxysaclofen. These data suggest that GABA-B receptors play a regulatory role in the discriminative stimulus effects of d-AMPH.  相似文献   

19.
Sphingolipid metabolites such as sphingosine regulate cell functions including cell death and arachidonic acid (AA) metabolism. D-erythro-C18-Sphingosine-1-phosphate (D-e-S1P), a sphingolipid metabolite, acts as an intracellular messenger in addition to being an endogenous ligand of some cell surface receptors. The development of S1P analogs may be useful for studying and/or regulating S1P-mediated cellular responses. In the present study, we found that several synthetic S1P analogs at pharmacological concentrations stimulated AA metabolism and cell death in PC12 cells. D-erythro-N,O,O-Trimethyl-C18-S1P (D-e-TM-S1P), L-threo-O,O-dimethyl-C18-S1P (L-t-DM-S1P) and L-threo-O,O-dimethyl-3O-benzyl-C18-S1P (L-t-DMBn-S1P) at 100 microM stimulated [(3)H]AA release from the prelabeled PC12 cells. L-t-DMBn-S1P at 20 microM increased prostanoid formation in PC12 cells. L-t-DMBn-S1P-induced AA release was inhibited by D-e-sphingosine, but not by the tested PLA(2) inhibitors. L-t-DMBn-S1P did not stimulate the activity of cytosolic phospholipase A(2alpha) (cPLA(2alpha)) in vitro and the translocation of cPLA(2alpha) in the cells, and caused AA release from the cells lacking cPLA(2alpha). These findings suggest that L-t-DMBn-S1P stimulated AA release in a cPLA(2alpha)-independent manner. In contrast, D-e-S1P and D-erythro-N-monomethyl-C18-S1P caused cell death without AA release in PC12 cells, and the effects of D-e-TM-S1P, L-t-DM-S1P and L-t-DMBn-S1P on cell death were limited. Synthetic S1P analogs may be useful tools for studying AA metabolism and cell death in cells.  相似文献   

20.
We have investigated whether nucleoside drugs that induce or protect neurones against apoptosis might directly activate or inhibit mitochondrial permeability transition (mPT) since opening of the mPT pore can promote release of cytochrome c and apoptosis, while its closure can prevent these changes. We found that the pro-apoptotic pyrimidine analogues cytosine beta-D-arabinofuranoside and cytosine beta-D-arabinofuranoside 5'-triphosphate, which activated apoptosis in post-mitotic neurones without incorporation into nuclear DNA, induced rapid calcium-dependent mitochondrial swelling of isolated liver mitochondria in a dose-dependent manner. Induction of up to 50 and 80%, respectively, of maximal swelling induced by high calcium was obtained at 1mM concentrations, which also promoted a 17-fold increase in the release of cytochrome c. Both activities were inhibited by cyclosporine A to unstimulated levels; dCTP had no effect. In contrast, the anti-apoptotic adenine analogues, 3-methyladenine (3-MA) and olomoucine (but not iso-olomoucine), inhibited swelling induced by calcium or phenylarsine oxide in a dose-dependent manner at concentrations that protect neurones from apoptosis. Both compounds also inhibited the release of cytochrome c (by 82%, 20 mM 3-MA and 95%, 0.9 mM olomoucine), similar to the inhibition obtained with cyclosporine A, and 5mM ADP or ATP. Similar inhibitory effects with olomoucine and 3-MA were found in isolated heart mitochondria. These studies identify the mPT as an important target for hitherto untested pro- and anti-apoptotic nucleoside-based drugs and suggest that screening for mPT modulation is an important component in the validation of a drug's mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号