首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The pregnane X receptor (PXR) interacts with a vast array of structurally dissimilar chemicals and confers induction of several major types of drug metabolizing enzymes such as cytochrome P450s (CYP). We previously reported that the expression of PXR was markedly increased in rats treated with clofibrate and perfluorodecanoic acid (PFDA). The present study was undertaken to test the hypothesis that induced expression of PXR increases PXR ligand-dependent induction on CYP3A23. Rat hepatocytes were treated with clofibrate or PFDA individually, or along with PXR ligand pregnenolone 16alpha-carbonitrile (PCN), and the levels of PXR and CYP3A23 were determined by Western blots. Both clofibrate and PFDA markedly increased the expression of PXR with PFDA being more potent, and the induction was abolished by actinomycin D, an inhibitor for mRNA synthesis. As expected, PCN alone markedly induced the expression of CYP3A23. Interestingly, co-treatment with clofibrate enhanced the induction, whereas co-treatment with PFDA suppressed it. Clofibrate and PFDA represent multi-classes of chemicals called peroxisome proliferators including many therapeutic agents and industrial pollutants. The opposing effects of clofibrate and PFDA on the PCN-induced expression of CYP3A23 suggest that peroxisome proliferators likely increase the expression of PXR but differentially alter its ligand-dependent induction. The interaction between PXR inducer and ligand provides a novel mechanism on how functionally and structurally distinct chemicals cooperatively regulate the expression of xenobiotic-metabolizing enzymes and transporters.  相似文献   

2.
Cytochrome P450 3A4 (CYP3A4) is the most abundant cytochrome P450 enzyme in human liver and metabolizes more than 60% of prescribed drugs in human body. Patients with liver conditions such as cirrhosis show increased secretion of cytokines (e.g., interleukin-6) and decreased capacity of oxidation of many drugs. In this study, we provided molecular evidence that cytokine secretion directly contributed to the decreased capacity of oxidative biotransformation in human liver. After human hepatocytes were treated with IL-6, the expression of CYP3A4 decreased at both mRNA and protein levels, so did the CYP3A4 enzymatic activity. Meanwhile, the repression of CYP3A4 by IL-6 occurred after the decrease of pregnane X receptor (PXR) in human hepatocytes. The PXR-overexpressed cells (transfected with human PXR) increased the CYP3A4 mRNA level, and the repression of CYP3A4 by IL-6 was greater in the PXR-overexpressed cells than in the control cells. Further, PXR knockdown (transfected with siPXR construct) decreased the CYP3A4 mRNA level with less repression by IL-6 than in the control cells transfected with corresponding vector. Collectively, our study suggests that PXR is necessary for IL-6-mediated repression of the CYP3A4 expression in human hepatocytes.  相似文献   

3.
Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies.  相似文献   

4.
5.
细胞色素P4503A(CYP3A)是参与临床药物代谢的主要CYP同工酶之一。孕烷X受体(PXR)属于核受体超家族(NR)的NR1 Ⅰ亚家族。该受体作为药物代谢的关键转录调控因子,参与CYP3A的诱导表达。药物可通过多种途径激活PXR受体调控cyp3a基因的表达,其中包括PXR与其他核受体、转录因子及细胞信号转导通路间的相互作用等多种途径。目前,基于PXR的筛选方法已广泛应用于早期新药研发。  相似文献   

6.
Freshly prepared human hepatocytes are considered as the 'gold standard' for in vitro testing of drug candidates. However, several disadvantages are associated with the use of this model system. The availability of hepatocytes is often low and consequently the planning of the experiments rendered difficult. In addition, the quality of the available cells is in some cases poor. As an alternative, cryopreserved human hepatocytes were validated as a model to study cytochrome P450 1A2 (CYP1A2) and cytochrome P450 3A4 (CYP3A4) induction. In a single blinded experiment, hepatocytes from three separate lots were incubated with three concentrations of different compounds, and compared to non-treated cells and cells incubated with omeprazole or rifampicin. CYP1A2 and CYP3A4 induction was determined by measuring 7-ethoxyresorufin-O-deethylation activity and 6beta-hydroxytestosterone formation, respectively. CYP1A2 and CYP3A4 mRNA and protein expression were analyzed by TaqMan QRT-PCR and immunodetection. Cells responded well to the prototypical inducers with a mean 38.8- and 6.2-fold induction of CYP1A2 and CYP3A4 activity, respectively. Similar as with fresh human hepatocytes, high batch-to-batch variation of CYP1A2 and CYP3A4 induction was observed. Except for 1 and 10 microM rosiglitazone, the glitazones did not significantly affect CYP1A2. A similar result was observed for CYP3A4 activity although CYP3A4 mRNA and protein expression were dose-dependently upregulated. In conclusion, cryopreserved human hepatocytes may be a good alternative to fresh hepatocytes to study CYP1A and 3A induction.  相似文献   

7.
8.
9.
Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats. To this end, female rats were treated with estradiol benzoate (EB) or known CYP inducers. Liver tissues were obtained after 5 days of treatment, and mRNA and protein expression levels as well as activities of major hepatic CYPs were determined by qRT-PCR, immunoblot, and microsomal assay. E2 increased CYP1A2 expression and activity to a smaller extent than β-naphthoflavone did. E2 also enhanced CYP2C expression (CYP2C6, CYP2C7, and CYP2C12) to levels comparable to those observed by phenobarbital. E2 upregulated CYP3A9 expression, while expression of CYP3A1 was downregulated. Expression of hepatic nuclear receptors (PXR and CAR) and the obligate redox partner of CYPs (POR) was downregulated in EB-treated rats, suggesting their potential involvement in regulation of CYP expression and activity by E2. In summary, in female rats E2 regulates expression of hepatic CYPs in a CYP isoform-specific manner although the directional changes are different from those clinically observed during human pregnancy. Further study is warranted to determine whether the changes in drug metabolism during human pregnancy are attributable to involvement of hormones other than E2.  相似文献   

10.
Furocoumarins are natural plant constituents present in medicinal plants and in a variety of foods such as grapefruit juice. They are phototoxic and act as potent inhibitors of drug metabolism. We have investigated the interaction of four furocoumarins angelicin, bergamottin, isopimpinellin, and 8-methoxypsoralen with the expression and activity of aryl hydrocarbon receptor (AhR)-regulated CYP1A1 in rat hepatocytes in primary culture, both in the presence and absence of light. In intact hepatocytes pretreated with 2,3,7,8-tetrachlorodibenzo-p-dioxin and in microsomes isolated thereof, all furocoumarins tested acted as potent inhibitors of CYP1A1 activity bergamottin being the most potent inhibitor in microsomes with an IC(50) of 10 nM in the presence and 60 nM in the absence of light. 8-Methoxypsoralen and angelicin led to a significant induction of CYP1A1 mRNA in hepatocytes, while all furocoumarins except bergamottin increased xenobiotic-responsive element-driven reporter gene expression in transfected H4IIE rat hepatoma cells when light was excluded. Furthermore, all furocoumarins tested induced the expression of endogenous, immunoreactive CYP1A1 protein, primarily in the dark. In conclusion, our results demonstrate that individual furocoumarins present in food and medicinal plants can interfere with AhR-regulated CYP1A1 expression and activity in at least three major ways, i.e., (i) act as highly potent inhibitors of the catalytic activity of CYP1A1 both in the presence and absence of light, (ii) induce CYP1A1 gene expression in the absence of light via activation of the AhR, and (iii) induce CYP1A1 gene expression without activation of the AhR.  相似文献   

11.
Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC50 estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners.  相似文献   

12.
Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR−/− mice, but not in hypothyroid PXR−/− mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR−/− hypothyroid mice, and this induction was abolished in CAR−/− mice and in and CAR−/− PXR−/− double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR−/− mice and lowest in WT and PXR−/− mice. Hypothyroid WT or PXR−/− mice survived chronic CBZ treatment, but all hypothyroid CAR−/− and CAR−/− PXR−/− mice died, with CAR−/−PXR−/− mice surviving longer than CAR−/− mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge.  相似文献   

13.
Murine hepatic cytochrome P450 2A5 (CYP2A5), unlike most CYP enzymes, is upregulated during hepatitis and hepatotoxic conditions, but the common stimulus for its induction remains unknown. We investigated the involvement of oxidative stress in the regulation of CYP2A5 expression using an oxidative stress-sensitive glucose-6-phosphate dehydrogenase (G6PD)-deficient mouse model. Treatment of deficient and wild-type mice with the prototypical CYP2A5-inducer pyrazole for 72h led to a significantly greater degree of induction of CYP2A5 mRNA, protein and activity in deficient mice, with the greatest increase observed in animals homozygous for the deficiency. However, markers of oxidative stress including protein carbonyl, 8-hydroxydeoxyguanosine, malondiadehyde and 4-hydroxyalkenal levels were unaltered with pyrazole treatment. Furthermore, CYP2A5 expression was not altered in G6PD-deficient mice treated with the pro-oxidant menadione whereas DNA, lipid, and protein markers of oxidative stress were significantly increased. The antioxidant polyethylene glycol-conjugated catalase, while decreasing oxidative stress in menadione-treated mice, did not prevent the induction of CYP2A5 by pyrazole. Finally, the ER stress marker protein, GRP78, was increased following pyrazole treatment in G6PD-deficient compared to wild-type mice. These findings do not support a central role for generalized cellular oxidative stress in the regulation of CYP2A5 and suggest that additional factors related to G6PD-deficiency, such as ER stress, may be involved.  相似文献   

14.
15.
Metabolism of MDMA (3,4-methylenedioxymethamphetamine, Ecstasy) by the major hepatic drug-metabolizing enzyme cytochrome P450 3A (CYP3A), plays an important role in MDMA-induced liver toxicity. In the present study, we investigated interactions between MDMA and several therapeutic and recreational drugs on CYP3A and its regulator pregnane X receptor (PXR), using a human PXR-mediated CYP3A4-reporter gene assay, rat primary hepatocytes and microsomes. MDMA significantly inhibited hPXR-mediated CYP3A4-reporter gene expression induced by the human PXR activator rifampicin (IC50 1.26 ± 0.36 mM) or the therapeutic drugs paroxetine, fluoxetine, clozapine, diazepam and risperidone. All these drugs concentration-dependently inhibited CYP3A activity in rat liver microsomes, but in combination with MDMA this inhibition became more efficient for clozapine and risperidone. In rat primary hepatocytes that were pretreated with or without the rodent PXR activator pregnenolone 16alpha-carbonitrile (PCN), MDMA inhibited CYP3A catalytic activity with IC50 values of 0.06 ± 0.12 and 0.09 ± 0.13 mM MDMA, respectively. This decrease appeared to be due to decreased activation of PXR and subsequent decreased CYP3A gene expression, and catalytic inhibition of CYP3A activity. These data suggest that in situations of repeated MDMA use in combination with other (therapeutic) drugs, adverse drug-drug interactions through interactions with PXR and/or CYP3A cannot be excluded.  相似文献   

16.
The aim of the present study was to examine the effect of the brain noradrenergic system on the expression of cytochrome P450 in the liver. The experiment was carried out on male Wistar rats. Intracerebroventricular injection of the noradrenergic neurotoxin DSP-4 diminished noradrenaline level in the brain. Simultaneously, significant decreases in the serum concentration of the growth hormone, testosterone and the thyroid hormone thyroxine, as well as an increase in corticosterone level were observed. The concentrations of triiodothyronine and the cytokines interleukine 2 (IL-2) and 6 (IL-6) were not changed by DSP-4. The neurotoxin produced complex changes in the functioning of cytochrome P450. Significant decreases in the activity of liver CYP2C11 (measured as a rate of the 2α- and 16α-hydroxylation of testosterone) and CYP3A (measured as a rate of the 2β- and 6β-hydroxylation of testosterone) were found. In contrast, the activity of CYP1A (measured as a rate of caffeine metabolism) rose, while that of CYP2A (measured as a rate of the 7α-hydroxylation of testosterone), CYP2C6 (measured as a rate of the 7-hydroxylation of warfarin) and CYP2D (the 1′-hydroxylation of bufuralol) remained unchanged. The changes in the activity of CYP1A, CYP2C11 and CYP3A correlated positively with those in CYP protein levels and with the CYP mRNA levels of CYP1A1, CYP2C11 and CYP3A1/2 genes, respectively. The obtained results indicate an important role of the brain noradrenergic system in the neuroendocrine regulation of liver cytochrome P450 expression, which may be of significance in pathological states involving this system, or during pharmacotherapy with drugs affecting noradrenergic transmission.  相似文献   

17.
18.
19.
Benzodiazepines have wide-spread used in pharmacotherapy for their anxiolytic, myorelaxant, hypnotic, amnesic and anticonvulsive properties. Despite benzodiazepines are used in clinics over 50 years, they have not been surprisingly tested for capability to induce major drug-metabolizing cytochromes P450. In the current study, we have examined the potency of Alprazolam, Bromazepam, Chlordiazepoxide, Clonazepam, Diazepam, Lorazepam, Medazepam, Midazolam, Nitrazepam, Oxazepam, Tetrazepam and Triazolam to induce CYP1A2 and CYP3A4 in primary cultures of human hepatocytes. Benzodiazepines were tested in therapeutic concentrations and in concentrations corresponding to their plasma levels in intoxicated patients. We found weak but significant induction of CYP3A4 mRNA by Midazolam and Medazepam, while other benzodiazepines did not induce CYP3A4 expression. None of the tested compounds induced CYP1A2 mRNA in three independent human hepatocytes cultures. In addition, employing gene reporter assays with transiently transfected hepatocarcinoma cells, we found that tested benzodiazepines did not activate aryl hydrocarbon receptor (AhR), whereas Midazolam and Medazepam slightly activated pregnane X receptor (PXR). Consistently, two-hybrid mammalian assay using hybrid fusion plasmids GAL4-PXR ligand-binding domain (LBD) and VP16-SRC-1-receptor-interacting domain (RID) confirmed PXR activation by Midazolam and Medazepam. In conclusion, Alprazolam, Bromazepam, Chlordiazepoxide, Clonazepam, Diazepam, Lorazepam, Nitrazepam, Oxazepam, Tetrazepam and Triazolam can be considered as safe drugs in term of their inability to induce PXR- and AhR-dependent cytochrome P450 enzymes CYP1A2 and CYP3A4. Medazepam and Midazolam slightly activated pregnane X receptor and displayed weak potency to induce CYP3A4 mRNA in human hepatocytes.  相似文献   

20.
Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号