首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Ca(2+) release through ryanodine receptors, located in the membrane of the junctional sarcoplasmic reticulum (SR), initiates contraction of cardiac muscle. Ca(2+)influx through plasma membrane L-type Ca(2+)channels is thought to be an important trigger for opening ryanodine receptors ("Ca(2+)-induced Ca(2+)-release"). Optimal transmission of the transmembrane Ca(2+)influx signal to SR release is predicted to involve spatial juxtaposition of L-type Ca(2+)channels to the ryanodine receptors of the junctional SR. Although such spatial coupling has often been implicitly assumed, and data from immunofluorescence microscopy are consistent with its existence, the definitive demonstration of such a structural organization in mammalian tissue is lacking at the electron-microscopic level. To determine the spatial distribution of plasma membrane L-type Ca(2+)channels and their location in relation to underlying junctional SR, we applied two high-resolution immunogold-labeling techniques, label-fracture and cryothin-sectioning, combined with quantitative analysis, to guinea-pig ventricular myocytes. Label-fracture enabled visualization of colloidal gold-labeled L-type Ca(2+)channels in planar freeze-fracture electron-microscopic views of the plasma membrane. Mathematical analysis of the gold label distribution (by nearest-neighbor distance distribution and the radial distribution function) demonstrated genuine clustering of the labeled channels. Gold-labeled cryosections showed that labeled L-type Ca(2+)channels quantitatively predominated in domains of the plasma membrane overlying junctional SR. These findings provide an ultrastructural basis for functional coupling between L-type Ca(2+)channels and junctional SR and for excitation-contraction coupling in guinea-pig cardiac muscle.  相似文献   

2.
Accumulating evidence indicates that plasma membrane (PM) microdomains and the subjacent "junctional" sarcoplasmic/endoplasmic reticulum (jS/ER) constitute specialized Ca(2+) signaling complexes in many cell types. We examined the possibility that some Ca(2+) signals arising in the junctional space between the PM and jS/ER may represent cross-talk between the PM and jS/ER. The Ca(2+) sensor protein, GCaMP2, was targeted to different PM domains by constructing genes for fusion proteins with either the alpha1 or alpha2 isoform of the Na(+) pump catalytic (alpha) subunit. These fusion proteins were expressed in primary cultured mouse brain astrocytes and arterial smooth muscle cells. Immunocytochemistry demonstrated that alpha2(f)GCaMP2, like native Na(+) pumps with alpha2-subunits, sorted to PM domains that colocalized with subjacent S/ER; alpha1(f)GCaMP2, like Na(+) pumps with alpha1-subunits, was more uniformly distributed. The GCaMP2 moieties in both constructs were tethered just beneath the PM. Both constructs detected global Ca(2+) signals evoked by serotonin (in arterial smooth muscle cells) and ATP, and by store-operated Ca(2+) channel-mediated Ca(2+) entry after S/ER unloading with cyclopiazonic acid (in Ca(2+)-free medium). When cytosolic Ca(2+) diffusion was markedly restricted with EGTA, however, only alpha2(f)GCaMP2 detected the local, store-operated Ca(2+) channel-mediated Ca(2+) entry signal. Thus, alpha1 Na(+) pumps are apparently excluded from the PM microdomains occupied by alpha2 Na(2+) pumps. The jS/ER and adjacent PM may communicate by Ca(2+) signals that are confined to the tiny junctional space between the two membranes. Similar methods may be useful for studying localized Ca(2+) signals in other subPM microdomains and signals associated with other organelles.  相似文献   

3.
Receptor-induced Ca(2+) signals are key to the function of all cells and involve release of Ca(2+) from endoplasmic reticulum (ER) stores, triggering Ca(2+) entry through plasma membrane (PM) "store-operated channels" (SOCs). The identity of SOCs and their coupling to store depletion remain molecular and mechanistic mysteries. The single transmembrane-spanning Ca(2+)-binding protein, STIM1, is necessary in this coupling process and is proposed to function as an ER Ca(2+) sensor to provide the trigger for SOC activation. Here we reveal that, in addition to being an ER Ca(2+) sensor, STIM1 functions within the PM to control operation of the Ca(2+) entry channel itself. Increased expression levels of STIM1 correlate with a gain in function of Ca(2+) release-activated Ca(2+) (CRAC) channel activity. Point mutation of the N-terminal EF hand transforms the CRAC channel current (I(CRAC)) into a constitutively active, Ca(2+) store-independent mode. Mutants in the EF hand and cytoplasmic C terminus of STIM1 alter operational parameters of CRAC channels, including pharmacological profile and inactivation properties. Last, Ab externally applied to the STIM1 N-terminal EF hand blocks both I(CRAC) in hematopoietic cells and SOC-mediated Ca(2+) entry in HEK293 cells, revealing that STIM1 has an important functional presence within the PM. The results reveal that, in addition to being an ER Ca(2+) sensor, STIM1 functions within the PM to exert control over the operation of SOCs. As a cell surface signaling protein, STIM1 represents a key pharmacological target to control fundamental Ca(2+)-regulated processes including secretion, contraction, metabolism, cell division, and apoptosis.  相似文献   

4.
Intracellular Ca(2+) plays an important role in the control of the heart rate through the interaction between Ca(2+) release by ryanodine receptors in the sarcoplasmic reticulum (SR) and the extrusion of Ca(2+) by the sodium-calcium exchanger which generates an inward current. A second type of SR Ca(2+) release channel, the inositol 1,4,5-trisphosphate receptor (IP(3)R), can release Ca(2+) from SR stores in many cell types, including cardiac myocytes. However, it is still uncertain whether IP(3)Rs play any functional role in regulating the heart rate. Accumulated evidence shows that IP(3) and IP(3)R are involved in rhythm control in non-cardiac pacemaker tissues and in the embryonic heart. In this review we focus on intracellular Ca(2+) oscillations generated by Ca(2+) release from IP(3)R that initiates membrane depolarization and provides a common mechanism producing spontaneous activity in a range of cells with pacemaker function. Emerging new evidence also suggests that IP(3)/IP(3)Rs play a functional role in normal and diseased hearts and in cardiac rhythm control. Several membrane currents, including a store-operated Ca(2+) current, might be activated by Ca(2+) release from IP(3)Rs. IP(3)/IP(3)R may thus add another dimension to the complex regulation of heart rate.  相似文献   

5.
During cardiac development, there is a reciprocal relationship between cardiac morphogenesis and force production (contractility). In the early embryonic myocardium, the sarcoplasmic reticulum is poorly developed, and plasma membrane calcium (Ca(2+)) channels are critical for maintaining both contractility and excitability. In the present study, we identified the Ca(V)3.1d mRNA expressed in embryonic day 14 (E14) mouse heart. Ca(V)3.1d is a splice variant of the alpha1G, T-type Ca(2+) channel. Immunohistochemical localization showed expression of alpha1G Ca(2+) channels in E14 myocardium, and staining of isolated ventricular myocytes revealed membrane localization of the alpha1G channels. Dihydropyridine-resistant inward Ba(2+) or Ca(2+) currents were present in all fetal ventricular myocytes tested. Regardless of charge carrier, inward current inactivated with sustained depolarization and mirrored steady-state inactivation voltage dependence of the alpha1G channel expressed in human embryonic kidney-293 cells. Ni(2+) blockade discriminates among T-type Ca(2+) channel isoforms and is a relatively selective blocker of T-type channels over other cardiac plasma membrane Ca(2+) handling proteins. We demonstrate that 100 micromol/L Ni(2+) partially blocked alpha1G currents under physiological external Ca(2+). We conclude that alpha1G T-type Ca(2+) channels are functional in midgestational fetal myocardium.  相似文献   

6.
Stromal interaction molecule 1 (STIM1) has recently been identified by our group and others as an endoplasmic reticulum (ER) Ca(2+) sensor that responds to ER Ca(2+) store depletion and activates Ca(2+) channels in the plasma membrane (PM). The molecular mechanism by which STIM1 transduces signals from the ER lumen to the PM is not yet understood. Here we developed a live-cell FRET approach and show that STIM1 forms oligomers within 5 s after Ca(2+) store depletion. These oligomers rapidly dissociated when ER Ca(2+) stores were refilled. We further show that STIM1 formed oligomers before its translocation within the ER network to ER-PM junctions. A mutant STIM1 lacking the C-terminal polybasic PM-targeting motif oligomerized after Ca(2+) store depletion but failed to form puncta at ER-PM junctions. Using fluorescence recovery after photobleaching measurements to monitor STIM1 mobility, we show that STIM1 oligomers translocate on average only 2 mum to reach ER-PM junctions, arguing that STIM1 ER-to-PM signaling is a local process that is suitable for generating cytosolic Ca(2+) gradients. Together, our live-cell measurements dissect the STIM1 ER-to-PM signaling relay into four sequential steps: (i) dissociation of Ca(2+), (ii) rapid oligomerization, (iii) spatially restricted translocation to nearby ER-PM junctions, and (iv) activation of PM Ca(2+) channels.  相似文献   

7.
Cardiac sarcoplasmic reticulum (SR) consists of three continuous yet distinct regions: longitudinal, corbular, and junctional. Ca(2+)uptake, catalyzed by the Ca(2+)-dependent ATPase, is thought to occur throughout the SR whereas Ca(2+)release occurs in the region of the junctional SR. In the SR, Ca(2+)is stored in a complex with Ca(2+)-binding proteins such as calsequestrin. In the present study, the distribution of the high-affinity calcium-binding protein, calreticulin, in canine cardiac SR was determined and compared with the distribution of other SR proteins. Three types of distribution were observed. Many proteins, including the Ca(2+)-ATPase and two mannose-containing glycoproteins (52 and 131 kDa), were present in all subfractions. These proteins were absent or depleted from the sarcolemma-enriched fraction. The ryanodine receptor/Ca(2+)release channel and calsequestrin were localized to the junctional SR. Calreticulin immunoreactivity was detected in fractions containing longitudinal SR but not in fractions enriched in sarcolemma or junctional SR. Hence calreticulin is present in a unique vesicular fraction and the Ca(2+)-binding proteins calreticulin and calsequestrin display different patterns of distribution in canine heart.  相似文献   

8.
We recently showed that phosphoinositide-3-kinase-gamma-deficient (PI3Kgamma(-/-)) mice have enhanced cardiac contractility attributable to cAMP-dependent increases in sarcoplasmic reticulum (SR) Ca(2+) content and release but not L-type Ca(2+) current (I(Ca,L)), demonstrating PI3Kgamma locally regulates cAMP levels in cardiomyocytes. Because phosphodiesterases (PDEs) can contribute to cAMP compartmentation, we examined whether the PDE activity was altered by PI3Kgamma ablation. Selective inhibition of PDE3 or PDE4 in wild-type (WT) cardiomyocytes elevated Ca(2+) transients, SR Ca(2+) content, and phospholamban phosphorylation (PLN-PO(4)) by similar amounts to levels observed in untreated PI3Kgamma(-/-) myocytes. Combined PDE3 and PDE4 inhibition caused no further increases in SR function. By contrast, only PDE3 inhibition affected Ca(2+) transients, SR Ca(2+) loads, and PLN-PO(4) levels in PI3Kgamma(-/-) myocytes. On the other hand, inhibition of PDE3 or PDE4 alone did not affect I(Ca,L) in either PI3Kgamma(-/-) or WT cardiomyocytes, whereas simultaneous PDE3 and PDE4 inhibition elevated I(Ca,L) in both groups. Ryanodine receptor (RyR(2)) phosphorylation levels were not different in basal conditions between PI3Kgamma(-/-) and WT myocytes and increased in both groups with PDE inhibition. Our results establish that L-type Ca(2+) channels, RyR(2), and SR Ca(2+) pumps are regulated differently in distinct subcellular compartments by PDE3 and PDE4. In addition, the loss of PI3Kgamma selectively abolishes PDE4 activity, not PDE3, in subcellular compartments containing the SR Ca(2+)-ATPase but not RyR(2) or L-type Ca(2+) channels.  相似文献   

9.
Voltage-gated L-type Ca(2+) channels (LCCs) provide Ca(2+) ingress into cardiac myocytes and play a key role in intracellular Ca(2+) homeostasis and excitation-contraction coupling. We investigated the effects of a constitutive increase of LCC density on Ca(2+) signaling in ventricular myocytes from 4-month-old transgenic (Tg) mice overexpressing the alpha(1) subunit of LCC in the heart. At this age, cells were somewhat hypertrophic as reflected by a 20% increase in cell capacitance relative to those from nontransgenic (Ntg) littermates. Whole cell I(Ca) density in Tg myocytes was elevated by 48% at 0 mV compared with the Ntg group. Single-channel analysis detected an increase in LCC density with similar conductance and gating properties. Although the overexpressed LCCs triggered an augmented SR Ca(2+) release, the "gain" function of EC coupling was uncompromised, and SR Ca(2+) content, diastolic cytosolic Ca(2+), and unitary properties of Ca(2+) sparks were unchanged. Importantly, the enhanced I(Ca) entry and SR Ca(2+) release were associated with an upregulation of the Na(+)-Ca(2+) exchange activity (indexed by the half decay time of caffeine-elicited Ca(2+) transient) by 27% and SR Ca(2+) recycling by approximately 35%. Western analysis detected a 53% increase in the Na(+)-Ca(2+) exchanger expression but no change in the abundance of ryanodine receptor (RyR), SERCA2, and phospholamban. Analysis of I(Ca) kinetics suggested that SR Ca(2+) release-dependent inactivation of LCCs remains intact in Tg cells. Thus, in spite of the modest cardiac hypertrophy, the overexpressed LCCs form functional coupling with RyRs, preserving both orthograde and retrograde Ca(2+) signaling between LCCs and RyRs. These results also suggest that a modest but sustained increase in Ca(2+) influx triggers a coordinated remodeling of Ca(2+) handling to maintain Ca(2+) homeostasis.  相似文献   

10.
Transgenic mice with cardiac-specific overexpression of G alpha q exhibit a biochemical and physiological phenotype of load-independent cardiac hypertrophy with contractile dysfunction. To elucidate the cellular basis for altered contractility, we measured cellular contraction, Ca(2+)transients, and l -type Ca(2+)channel currents (I(Ca)) in left ventricular (LV) myocytes isolated from non transgenic (NT) controls or G alpha q hearts. Although baseline contractile function (% shortening) and the amplitude of Ca(2+)transients in G alpha q myocytes were similar to NT myocytes, the rates of cellular shortening and relengthening and the duration of Ca(2+)transients were prolonged in G alpha q myocytes. Myocytes from G alpha q hearts had larger cell capacitance but no change in I(Ca)density, voltage-dependence of activation and inactivation. The responses of I(Ca)to dihydropyridine drugs and a membrane permeable cAMP analog, 8-(4-chlorophenylthio) cAMP, were not altered; however, the time course of I(Ca)inactivation was significantly slower in G alpha q myocytes compared to NT myocytes. The kinetic difference in inactivation was abolished when Ba(2+)was used as the charge carrier or when the sarcoplasmic reticulum (SR) Ca(2+)was depleted by ryanodine, suggesting that Ca(2+)-dependent inactivation is reduced in G alpha q myocytes due to altered SR Ca(2+)release. Consistent with this hypothesis, the function of SR as assessed by the maximal Ca(2+)uptake rates and the apparent affinity of SR Ca(2+)-ATPase for Ca(2+)was reduced in ventricles of G alpha q heart. These results suggest that the reduced SR function contributes to the depressed contractility associated with this form of cardiac hypertrophy.  相似文献   

11.
Triadin 1 (TRD) is an integral membrane protein that associates with the ryanodine receptor (RyR2), calsequestrin (CASQ2) and junctin to form a macromolecular Ca signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). To define the functional role of TRD, we examined the effects of adenoviral-mediated overexpression of the wild-type protein (TRD(WT)) or a TRD mutant lacking the putative CASQ2 interaction domain residues 200 to 224 (TRD(Del.200-224)) on intracellular Ca signaling in adult rat ventricular myocytes. Overexpression of TRD(WT) reduced the amplitude of I(Ca)- induced Ca transients (at 0 mV) but voltage dependency of the Ca transients was markedly widened and flattened, such that even small I(Ca) at low and high depolarizations triggered maximal Ca transients. The frequency of spontaneous Ca sparks was significantly increased in TRD(WT) myocytes, whereas the amplitude of individual sparks was reduced. Consistent with these changes in Ca release signals, SR Ca content was decreased in TRD(WT) myocytes. Periodic electrical stimulation of TRD(WT) myocytes resulted in irregular, spontaneous Ca transients and arrhythmic oscillations of the membrane potential. Expression of TRD(Del.200-224) failed to produce any of the effects of the wild-type protein. The lipid bilayer technique was used to record the activity of single RyR2 channels using microsome samples obtained from control, TRD(WT) and TRD(Del.200-224) myocytes. Elevation of TRD(WT) levels increased the open probability of RyR2 channels, whereas expression of the mutant protein did not affect RyR2 activity. We conclude that TRD enhances cardiac excitation-contraction coupling by directly stimulating the RyR2. Interaction of TRD with RyR2 may involve amino acids 200 to 224 in C-terminal domain of TRD.  相似文献   

12.
Luminal Ca(2+) in the endoplasmic and sarcoplasmic reticulum (ER/SR) plays an important role in regulating vital biological processes, including store-operated capacitative Ca(2+) entry, Ca(2+)-induced Ca(2+) release, and ER/SR stress-mediated cell death. We report rapid and substantial decreases in luminal [Ca(2+)], called "Ca(2+) blinks," within nanometer-sized stores (the junctional cisternae of the SR) during elementary Ca(2+) release events in heart cells. Blinks mirror small local increases in cytoplasmic Ca(2+),orCa(2+) sparks, but changes of [Ca(2+)] in the connected free SR network were below detection. Store microanatomy suggests that diffusional strictures may account for this paradox. Surprisingly, the nadir of the store depletion trails the peak of the spark by about 10 ms, and the refilling of local store occurs with a rate constant of 35 s(-1), which is approximately 6-fold faster than the recovery of local Ca(2+) release after a spark. These data suggest that both local store depletion and some time-dependent inhibitory mechanism contribute to spark termination and refractoriness. Visualization of local store Ca(2+) signaling thus broadens our understanding of cardiac store Ca(2+) regulation and function and opens the possibility for local regulation of diverse store-dependent functions.  相似文献   

13.
Vasoconstrictors that bind to phospholipase C-coupled receptors elevate inositol-1,4,5-trisphosphate (IP(3)). IP(3) is generally considered to elevate intracellular Ca(2+) concentration ([Ca(2+)](i)) in arterial myocytes and induce vasoconstriction via a single mechanism: by activating sarcoplasmic reticulum (SR)-localized IP(3) receptors, leading to intracellular Ca(2+) release. We show that IP(3) also stimulates vasoconstriction via a SR Ca(2+) release-independent mechanism. In isolated cerebral artery myocytes and arteries in which SR Ca(2+) was depleted to abolish Ca(2+) release (measured using D1ER, a fluorescence resonance energy transfer-based SR Ca(2+) indicator), IP(3) activated 15 pS sarcolemmal cation channels, generated a whole-cell cation current (I(Cat)) caused by Na(+) influx, induced membrane depolarization, elevated [Ca(2+)](i), and stimulated vasoconstriction. The IP(3)-induced I(Cat) and [Ca(2+)](i) elevation were attenuated by cation channel (Gd(3+), 2-APB) and IP(3) receptor (xestospongin C, heparin, 2-APB) blockers. TRPC3 (canonical transient receptor potential 3) channel knockdown with short hairpin RNA and diltiazem and nimodipine, voltage-dependent Ca(2+) channel blockers, reduced the SR Ca(2+) release-independent, IP(3)-induced [Ca(2+)](i) elevation and vasoconstriction. In pressurized arteries, SR Ca(2+) depletion did not alter IP(3)-induced constriction at 20 mm Hg but reduced IP(3)-induced constriction by approximately 39% at 60 mm Hg. [Ca(2+)](i) elevations and constrictions induced by endothelin-1, a phospholipase C-coupled receptor agonist, were both attenuated by TRPC3 knockdown and xestospongin C in SR Ca(2+)-depleted arteries. In summary, we describe a novel mechanism of IP(3)-induced vasoconstriction that does not occur as a result of SR Ca(2+) release but because of IP(3) receptor-dependent I(Cat) activation that requires TRPC3 channels. The resulting membrane depolarization activates voltage-dependent Ca(2+) channels, leading to a myocyte [Ca(2+)](i) elevation, and vasoconstriction.  相似文献   

14.
We have demonstrated for the first time the isolation of sarcoplasmic reticulum (SR) membranes from adult rat ventricular myocytes obtained from a single rat heart. The myocyte SR preparation exhibits similar Ca(2+)-transport and Ca2+/K(+)-ATPase activity as well as a similar protein profile to SR membranes isolated from intact rat heart tissue. This SR preparation exhibited a Ca2+/K(+)-ATPase activity of 371 +/- 55 nmol/min/mg protein (mean +/- S.E.M.; n = 5) and an oxalate-stimulated Ca(2+)-uptake activity of 103 +/- 4 nmol/min/mg protein (mean +/- S.E.M.; n = 6). Pretreatment of the SR vesicles with 5 microM ruthenium red increased the oxalate-stimulated Ca(2+)-uptake to 204 +/- 12 nmol/min/mg protein demonstrating the presence of junctional SR membranes. Sodium dodecyl sulphate polyacrylamide gel electrophoresis shows that the isolated SR membranes contained protein bands at 430 (Ca(2+)-release channel), 100 (Ca2+/K(+)-ATPase), 55 (calsequestrin and/or calreticulin) and 53 kDa (glycoprotein). Western blots of myocyte SR membranes stained with ruthenium red detected 2 major Ca(2+)-binding protein bands in this preparation at 53-55 kDa (calsequestrin and/or calreticulin) and 97-100 kDa (Ca2+/K(+)-ATPase). The presence of phospholamban, a regulatory protein of the Ca2+/K(+)-ATPase of cardiac SR, was confirmed in the myocyte SR membranes by western blots probed with a monoclonal antibody to phospholamban. Isoproterenol stimulation of intact [32P]orthophosphate equilibriated myocytes was associated with an increase in the phosphorylation of 3 distinct proteins (27, 31 and 152 kDa) in myocyte homogenates. The 27 kDa phosphorylated protein was identified in purified SR membranes as phospholamban my migration on electrophoretic gels and by immunoblotting. The ability to prepare SR membranes from intact isolated adult rat ventricular myocytes makes this system a potentially useful model for the study of SR regulation by protein phosphorylation.  相似文献   

15.
This study compared Ca(2+) homeostasis in ventricular myocytes from 8-month-old female C57BL/6J mice that had either a bilateral ovariectomy (OVX) or a sham surgery at 3 weeks of age. Cells were loaded with fura-2 and field-stimulated or voltage-clamped with steps to membrane potentials between -40 and +80 mV (37°C). Peak Ca(2+) transients increased by two-fold in OVX myocytes when compared to sham, and Ca(2+) transient rates of rise and decay were faster in OVX cells. In contrast, Ca(2+) current densities were similar in sham and OVX cells. Sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine, also was higher in OVX compared to sham cells (111.7 ± 11.9 vs. 61.2 ± 10.4 nM; p<0.05). Furthermore, the gain of Ca(2+) release (Ca(2+) release/Ca(2+) current) was significantly greater in OVX than in sham cells (16.3 ± 2.5 vs. 7.7 ± 2.0 nM/pApF(-1) at 0 mV; p<0.05). As changes in unitary Ca(2+) release might account for the increased gain in OVX cells, spontaneous Ca(2+) sparks were compared in fluo-4-loaded myocytes (37°C). Spark frequency was higher in OVX cells than in sham cells. In addition, spark amplitudes were greater in OVX than in sham myocytes (ΔF/F(0)=0.379 ± 0.006 vs. 0.342 ± 0.006; p<0.05). However, spark widths and time courses were similar in the two groups. These data suggest that the size of individual SR Ca(2+) release units is larger and the SR Ca(2+) content is greater in myocytes of OVX mice, producing augmented gain and SR Ca(2+) release. These observations show that OVX disrupts intracellular Ca(2+) homeostasis and suggest that sex steroid hormones modulate unitary Ca(2+) release in individual cardiac myocytes.  相似文献   

16.
The cardiac ryanodine receptor (RyR2) is the sarcoplasmic reticulum (SR) Ca(2+) release channel which is responsible for generation of the cytosolic Ca(2+) transient required for activation of cardiac contraction. RyR2 functional activity is governed by changes in [Ca(2+)] on both the cytosolic and luminal phase of the RyR2 channel. Activation of RyR2 by cytosolic Ca(2+) results in Ca(2+)-induced Ca(2+) release (CICR) from the SR. The decline in luminal [Ca(2+)] following release contributes to termination of CICR and Ca(2+) signalling refractoriness through the process of luminal Ca(2+)-dependent deactivation of RyR2s. The control of RyR2s by luminal Ca(2+) involves coordinated interaction of the channel with several SR proteins, including the Ca(2+)-binding protein calsequestrin (CASQ2), and the integral proteins triadin 1 (TRD) and junctin (JCN). CASQ2 in addition to serving as a Ca(2+) storage site and a luminal Ca(2+) buffer modulates RyR2 function more directly as a putative luminal Ca(2+) sensor. TRD and JCN, stimulatory by themselves, mediate the interactions between CASQ2 and RyR2. Acquired and genetic defects in proteins of this junctional Ca(2+) signalling complex lead to disease states such as cardiac arrhythmia and heart failure by impairing luminal Ca(2+) regulation of RyR2.  相似文献   

17.
Although the existence of t-tubules in mammalian cardiac ventricular myocytes has been recognized for a long time, it now appears that their structure and function are more complex than previously believed. Recent work has provided evidence that many of the key proteins underlying excitation-contraction coupling are located predominantly at the t-tubules. L-type Ca(2+) current (I(Ca)) flowing across the t-tubule membrane provides a rapidly inactivating Ca(2+) influx that triggers Ca(2+) release from the sarcoplasmic reticulum (SR), thereby allowing rapid and synchronous Ca(2+) release throughout the cell; I(Ca) at the t-tubules also appears to be more sensitive than that at the surface membrane to regulation by beta-adrenergic stimulation and intracellular Ca(2+). In contrast, although its density is lower, I(Ca) flowing across the surface membrane inactivates slowly, and thus may help load the SR with Ca(2+). There is also increasing evidence that many of the mechanisms that remove Ca(2+) from the cytoplasm are located predominantly at the t-tubules, which therefore play an important role in determining cellular, and hence SR, Ca(2+) content. Thus, the t-tubules appear to play a central role in the increase and subsequent decrease of Ca(2+) during the systolic Ca(2+) transient. Remodelling of the t-tubules has been reported in cardiac pathologies, and may play a role in the altered cellular, and hence cardiac, function observed in such conditions.  相似文献   

18.
Rationale: Mitochondrial Ca(2+) uptake is essential for the bioenergetic feedback response through stimulation of Krebs cycle dehydrogenases. Close association of mitochondria to the sarcoplasmic reticulum (SR) may explain efficient mitochondrial Ca(2+) uptake despite low Ca(2+) affinity of the mitochondrial Ca(2+) uniporter. However, the existence of such mitochondrial Ca(2+) microdomains and their functional role are presently unresolved. Mitofusin (Mfn) 1 and 2 mediate mitochondrial outer membrane fusion, whereas Mfn2 but not Mfn1 tethers endoplasmic reticulum to mitochondria in noncardiac cells. Objective: To elucidate roles for Mfn1 and 2 in SR-mitochondrial tethering, Ca(2+) signaling, and bioenergetic regulation in cardiac myocytes. Methods and Results: Fruit fly heart tubes deficient of the Drosophila Mfn ortholog MARF had increased contraction-associated and caffeine-sensitive Ca(2+) release, suggesting a role for Mfn in SR Ca(2+) handling. Whereas cardiac-specific Mfn1 ablation had no effects on murine heart function or Ca(2+) cycling, Mfn2 deficiency decreased cardiomyocyte SR-mitochondrial contact length by 30% and reduced the content of SR-associated proteins in mitochondria-associated membranes. This was associated with decreased mitochondrial Ca(2+) uptake (despite unchanged mitochondrial membrane potential) but increased steady-state and caffeine-induced SR Ca(2+) release. Accordingly, Ca(2+)-induced stimulation of Krebs cycle dehydrogenases during β-adrenergic stimulation was hampered in Mfn2-KO but not Mfn1-KO myocytes, evidenced by oxidation of the redox states of NAD(P)H/NAD(P)(+) and FADH(2)/FAD. Conclusions: Physical tethering of SR and mitochondria via Mfn2 is essential for normal interorganelle Ca(2+) signaling in the myocardium, consistent with a requirement for SR-mitochondrial Ca(2+) signaling through microdomains in the cardiomyocyte bioenergetic feedback response to physiological stress.  相似文献   

19.
For almost half a century it has been thought that the initiation of each heartbeat is driven by surface membrane voltage-gated ion channels (M clocks) within sinoatrial nodal cells. It has also been assumed that pacemaker cell automaticity is initiated at the maximum diastolic potential (MDP). Recent experimental evidence based on confocal cell imaging and supported by numerical modelling, however, shows that initiation of cardiac impulse is a more complex phenomenon and involves yet another clock that resides under the sarcolemma. This clock is the sarcoplasmic reticulum (SR): it generates spontaneous, but precisely timed, rhythmic, submembrane, local Ca(2+) releases (LCR) that appear not at the MDP but during the late, diastolic depolarization (DD). The Ca(2+) clock and M clock dynamically interact, defining a novel paradigm of robust cardiac pacemaker function and regulation. Rhythmic LCRs during the late DD activate inward Na(+)/Ca(2+) exchanger currents and ignite action potentials, which in turn induceCa(2+) transients and SR depletions, resetting the Ca(2+) clock. Both basal and reserve protein kinaseA-dependent phosphorylation of Ca(2+) cycling proteins control the speed and amplitude of SR Ca(2+) cycling to regulate the beating rate by strongly coupled Ca(2+) and M clocks.  相似文献   

20.
L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein caveolin-3 in muscle. Here we demonstrate that a subpopulation of L-type Ca(2+) channels is localized to caveolae in ventricular myocytes as part of a macromolecular signaling complex necessary for beta(2)-adrenergic receptor (AR) regulation of I(Ca,L). Immunofluorescence studies of isolated ventricular myocytes using confocal microscopy detected extensive colocalization of caveolin-3 and the major pore-forming subunit of the L-type Ca channel (Ca(v)1.2). Immunogold electron microscopy revealed that these proteins colocalize in caveolae. Immunoprecipitation from ventricular myocytes using anti-Ca(v)1.2 or anti-caveolin-3 followed by Western blot analysis showed that caveolin-3, Ca(v)1.2, beta(2)-AR (not beta(1)-AR), G protein alpha(s), adenylyl cyclase, protein kinase A, and protein phosphatase 2a are closely associated. To determine the functional impact of the caveolar-localized beta(2)-AR/Ca(v)1.2 signaling complex, beta(2)-AR stimulation (salbutamol plus atenolol) of I(Ca,L) was examined in pertussis toxin-treated neonatal mouse ventricular myocytes. The stimulation of I(Ca,L) in response to beta(2)-AR activation was eliminated by disruption of caveolae with 10 mM methyl beta-cyclodextrin or by small interfering RNA directed against caveolin-3, whereas beta(1)-AR stimulation (norepinephrine plus prazosin) of I(Ca,L) was not altered. These findings demonstrate that subcellular localization of L-type Ca(2+) channels to caveolar macromolecular signaling complexes is essential for regulation of the channels by specific signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号