首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nicotine metabolism and CYP2A6 allele frequencies in Koreans.   总被引:2,自引:0,他引:2  
CYP2A6 is a major catalyst of nicotine metabolism to cotinine. Previously, we demonstrated that the interindividual difference in nicotine metabolism is related to a genetic polymorphism of the CYP2A6 gene in Japanese. To clarify the ethnic differences in nicotine metabolism and frequencies of CYP2A6 alleles, we studied nicotine metabolism and the CYP2A6 genotype in 209 Koreans. The cotinine/nicotine ratio of the plasma concentration 2 h after chewing one piece of nicotine gum was calculated as an index of nicotine metabolism. The genotypes of CYP2A6 gene (CYP2A6*1A, CYP2A6*1B, CYP2A6*2, CYP2A6*3, CYP2A6*4 and CYP2A6*5) were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism or allele specific (AS)-PCR. There were ethnic differences in the allele frequencies of CYP2A6*1A, CYP2A6*1B, CYP2A6*4 and CYP2A6*5 between Koreans (45.7%, 42.8%, 11.0% and 0.5%, respectively) and Japanese (42.4%, 37.5%, 20.1% and 0%, respectively, our previous data). Similar to the Japanese, no CYP2A6*2 and CYP2A6*3 alleles were found in Koreans. The homozygotes of the CYP2A6*4 allele (four subjects) were completely deficient in cotinine formation, being consistent with the data among Japanese. The heterozygotes of CYP2A6*4 tended to possess a lower metabolic ratio (CYP2A6*1A/CYP2A6*4, 4.79 +/- 3.17; CYP2A6*1B/CYP2A6*4, 7.43 +/- 4.97) than that in subjects without the allele (CYP2A6*1A/CYP2A6*1A, 7.42 +/- 6.56; CYP2A6*1A/CYP2A6*1B, 9.85 +/- 16.12; CYP2A6*1B/CYP2A6*1B, 11.33 +/- 9.33). The subjects who possess the CYP2A6*1B allele appeared to show higher capabilities of cotinine formation. It was confirmed that the interindividual difference in nicotine metabolism was closely related to the genetic polymorphism of CYP2A6. The probit plot of the metabolic ratios in Koreans (8.73 +/- 11.88) was shifted to a higher ratio than that in the Japanese (3.78 +/- 3.09). In each genotype group, the Korean subjects revealed significantly higher metabolic ratios than the Japanese subjects. The ethnic difference in cotinine formation might be due to environmental and/or diet factors as well as genetic factors.  相似文献   

2.
Nicotine has roles in the addiction to smoking, replacement therapy for smoking cessation, as a potential medication for several diseases such as Parkinson's disease, Alzheimer's disease, and ulcerative colitis. The absorbed nicotine is rapidly and extensively metabolized and eliminated to urine. A major pathway of nicotine metabolism is C-oxidation to cotinine, which is catalyzed by CYP2A6 in human livers. Cotinine is subsequently metabolized to trans-3'-hydroxycotinine by CYP2A6. Nicotine and cotinine are glucuronidated to N-glucuronides mainly by UGT1A4 and partly by UGT1A9. Trans-3'-hydroxycotinine is glucuronidated to O-glucuronide mainly by UGT2B7 and partly by UGT1A9. Approximately 90% of the total nicotine uptake is eliminated as these metabolites and nicotine itself. The nicotine metabolism is an important determinant of the clearance of nicotine. Recently, advances in the understanding of the interindividual variability in nicotine metabolism have been made. There are substantial data suggesting that the large interindividual differences in cotinine formation are associated with genetic polymorphisms of the CYP2A6 gene. Interethnic differences have also been observed in the cotinine formation and the allele frequencies of the CYP2A6 alleles. Since the genetic polymorphisms of the CYP2A6 gene have a major impact on nicotine clearance, its relationships with smoking behavior or the risk of lung cancer have been suggested. The metabolic pathways of the glucuronidation of nicotine, cotinine, and trans-3'-hydroxycotinine in humans would be one of the causal factors for the interindividual differences in nicotine metabolism. This review mainly summarizes recent results from our studies.  相似文献   

3.
Nicotine is widely consumed throughout the world, and exerts a number of physiological effects. After nicotine is absorbed through the lungs by cigarette smoking, it undergoes extensive metabolism in humans. Nicotine is mainly metabolized to cotinine by cytochrome P450 (CYP) 2A6. CYP2A6 can metabolize some pharmaceutical agents such as halothane, valproic acid, and fadrozole, and activate tobacco-specific nitrosamines. There are large interindividual differences in nicotine metabolism, and it has been found that the interindividual differences are attributed to the genetic polymorphisms of CYP2A6 gene. This review describes the techniques for determination of in vivo nicotine metabolism, characteristics of each human CYP2A6 alleles, and ethnic differences. The relationship between CYP2A6 genetic polymorphism and potency of nicotine metabolism, smoking behavior, and cancer risk are extensively reviewed. Finally, the usefulness of nicotine metabolism for phenotyping of CYP2A6 in individuals and implication of the significance of CYP2A6 genetic polymorphism in a clinical perspective are discussed.  相似文献   

4.
To conduct a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty nine twin pairs [110 monozygotic (MZ) and 29 dizygotic (DZ)] underwent a 30-min infusion of stable isotope-labelled nicotine and its major metabolite, cotinine, followed by an 8-h in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic and metabolism phenotypes. DNA was genotyped to confirm zygosity and for variation in the gene for the primary enzyme involved in nicotine metabolism, CYP2A6 (alleles tested: *1, *1x2, *2, *4, *7, *9 and *12). Univariate biometric analyses quantified genetic and environmental influences on each pharmacokinetic measure in the presence and absence of covariates, including measured CYP2A6 genotype. The best-fitting model identified a substantial amount of variation in the weight-adjusted rate of total clearance of nicotine attributable to additive genetic influences [59.4%, 95% confidence interval (CI)=44.7-70.7]. The majority of variation in the clearance of nicotine via the cotinine pathway was similarly genetically influenced (60.8%, 95% CI=46.9-71.5). Heritability estimates were reduced to 54.2% and 51.8%, respectively, but remained substantial after taking into account the effect of variation in CYP2A6 genotype. These results suggest the involvement of additional genetic factors (e.g. uncharacterized or novel CYP2A6 alleles as well as other genes in the metabolic pathway) that remain to be identified.  相似文献   

5.
OBJECTIVES: CYP2A6 is the major enzyme involved in nicotine metabolism, yet large interindividual variations in the rate of nicotine metabolism exist within groups of individuals having the same CYP2A6 genotype. We investigated the influence of genetic variation in another potential nicotine-metabolizing enzyme, CYP2B6, and its interaction with CYP2A6, on the metabolism of nicotine. METHODS: Two hundred and twelve healthy Caucasian adult twin volunteers underwent an intravenous infusion of stable isotope-labeled nicotine and its major metabolite, cotinine, for characterization of pharmacokinetic and metabolism phenotypes. Five CYP2B6 genetic polymorphisms causing amino acid substitutions (R22C, Q172 H, S259R, K262R, and R487C) were analyzed. RESULTS: We observed that the CYP2B6*6 haplotype (defined as having both Q172 H and K262R variants) was associated with faster nicotine and cotinine clearance, and that such associations were more prominent among individuals having decreased-activity CYP2A6 genotypes. Statistically significant interactions between CYP2B6 and CYP2A6 genotypes were observed (P<0.003 for nicotine clearance and P<0.002 for cotinine clearance). CONCLUSIONS: Our results indicate that CYP2B6 genetic variation is associated with the metabolism of nicotine and cotinine among individuals with decreased CYP2A6 activity. Further investigation of the roles of CYP2B6 and the interaction between CYP2B6 and CYP2A6 genotypes in mediating nicotine dependence and tobacco-related diseases is merited.  相似文献   

6.
AIMS: Previously, we determined the phenotyping of in vivo nicotine metabolism and the genotyping of the CYP2A6 gene (CYP2A6*1 A, CYP2A6*1B, CYP2A6*2, CYP2A6*3, CYP2A6*4 and CYP2A6*5 ) in 92 Japanese and 209 Koreans. In the study, we found one Korean and four Japanese subjects genotyped as CYP2A6*1B/CYP2A6*4 who revealed impaired nicotine metabolism, although other many heterozygotes of CYP2A6*4 demonstrated normal nicotine metabolism (CYP2A6*4 is a whole deletion type). After our previous report, several CYP2A6 alleles, CYP2A6*6 (R128Q), CYP2A6*7 (I471T), and CYP2A6*8 (R485L), have been reported. The purpose of the present study was to clarify whether the impaired nicotine metabolism can be ascribed to these CYP2A6 alleles. Furthermore, we also determined whether the subjects possessing CYP2A6*1x2 (duplication) reveal higher nicotine metabolism. METHODS: Genotyping of CYP2A6 alleles, CYP2A6*6, CYP2A6*7, CYP2A6*8, and CYP2A6*1x2 was determined by PCR. RESULTS: The five poor metabolizers were re-genotyped as CYP2A6*7/CYP2A6*4, suggesting that a single nucleotide polymorphism (SNP) causing I471T decreases nicotine metabolism in vivo. Furthermore, we found that two subjects out of five with a lower potency of nicotine metabolism possessed SNPs of CYP2A6*7 and CYP2A6*8 simultaneously. The novel allele was termed CYP2A6*10. In the 92 Japanese and 209 Koreans, the CYP2A6*6 allele was not found. The allele frequencies of CYP2A6*7, CYP2A6*8, and CYP2A6*10 were 6.5%, 2.2%, and 1.1%, respectively, in Japanese, and 3.6%, 1.4%, and 0.5%, respectively, in Koreans. The CYP2A6*1x2 allele was found in only one Korean subject (0.5%) whose nicotine metabolic potency was not very high. CONCLUSIONS: It was clarified that the impaired in vivo nicotine metabolism was caused by CYP2A6*7 and CYP2A6*10 alleles.  相似文献   

7.
Approximately 50% of the initiation of tobacco dependence is genetically influenced, whereas maintenance of dependent smoking behavior and amount smoked have approximately 70% genetic contribution (1-5). Determining the variation in nicotine's inactivation is important because of nicotine's role in producing tobacco dependence and regulating smoking patterns (6-11). The genetically polymorphic CYP2A6 enzyme is responsible for the majority of the metabolic inactivation of nicotine to cotinine (12-14). Both in vitro and in vivo studies have demonstrated considerable interindividual variation in CYP2A6 activity (15-17). CYP2A6 is genetically polymorphic, individuals carrying inactive CYP2A6 alleles have decreased nicotine metabolism, are less likely to become smokers and if they do, they smoke fewer cigarettes per day (13,18,19). The decrease in smoking behavior was confirmed by measuring carbon monoxide (CO, a measure of smoke inhalation) levels, plasma and urine nicotine and cotinine levels, and cigarette counts (13,18,19). A duplication variant in the CYP2A6 gene locus has been identified which increases nicotine inactivation and increases smoking (19). CYP2A6 can also activate tobacco smoke procarcinogens (e.g. NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone); current studies are investigating the role of CYP2A6 in risk for lung cancer. Based on these epidemiologic data it was postulated that inhibition of CYP2A6 activity might be useful in a therapeutic context. Kinetic studies in humans indicated that selective CYP2A6 inhibitors decrease the metabolic removal of nicotine. It was also shown that inhibiting CYP2A6 in vivo (phenocopying, or mimicking the genetic defect) in smokers results in decreased smoking, making nicotine orally bioavailable, and the rerouting of procarcinogens to detoxifying pathways (20-22).  相似文献   

8.
Genetic variation in CYP2A6 (the main nicotine metabolizing enzyme) accounts for some, but not all, of the interindividual and interethnic variability in the rates of nicotine metabolism. We conducted a nicotine kinetic study in smokers and nonsmokers of black African descent (N=190), excluding those with common genetic variants in CYP2A6, to investigate the association of demographic variables with CYP2A6 activity (3HC/COT ratio) and nicotine disposition kinetics (estimated nicotine AUC). An additional aim was to examine whether impaired CYP2A6 activity and/or nicotine disposition kinetics were associated with lower cigarette consumption in a population of light smokers (mean相似文献   

9.
Cytochrome P450 2A6 (CYP2A6) is involved in the C-oxidation of nicotine and in the metabolic activation of tobacco nitrosamines. Recent data have suggested that CYP2A6 genetic polymorphisms might play a role in tobacco dependence and consumption as well as in lung cancer risk. However, the previously published studies were based on a genotyping method that overestimated the frequencies of deficient alleles, leading to misclassification for the CYP2A6 genotype. In this study, we genotyped DNA from 244 lung cancer patients and from 250 control subjects for CYP2A6 (wild-type allele CYP2A6*1, and two deficient alleles: CYP2A6*2, and CYP2A6*4, the latter corresponding to a deletion of the gene) using a more specific procedure. In this Caucasian population, we found neither a relation between genetically impaired nicotine metabolism and cigarette consumption, nor any modification of lung cancer risk related to the presence of defective CYP2A6 alleles (odds ratio = 1.1, 95% confidence interval = 0.7-1.9).  相似文献   

10.
Tricker AR 《Toxicology》2003,183(1-3):151-173
Large interindividual differences occur in human nicotine disposition, and it has been proposed that genetic polymorphisms in nicotine metabolism may be a major determinant of an individual's smoking behaviour. Hepatic cytochrome P4502A6 (CYP2A6) catalyses the major route of nicotine metabolism: C-oxidation to cotinine, followed by hydroxylation to trans-3'-hydroxycotinine. Nicotine and cotinine both undergo N-oxidation and pyridine N-glucuronidation. Nicotine N-1-oxide formation is catalysed by hepatic flavin-containing monooxygenase form 3 (FMO3), but the enzyme(s) required for cotinine N-1'-oxide formation has not been identified. trans-3'-Hydroxycotinine is conjugated by O-glucuronidation. The uridine diphosphate-glucuronosyltransferase (UGT) enzyme(s) required for N- and O-glucuronidation have not been identified. CYP2A6 is highly polymorphic resulting in functional differences in nicotine C-oxidation both in vitro and in vivo; however, population studies fail to consistently and conclusively demonstrate any associations between variant CYP2A6 alleles encoding for either reduced or enhanced enzyme activity with self-reported smoking behaviour. The functional consequences of FMO3 and UGT polymorphisms on nicotine disposition have not been investigated, but are unlikely to significantly affect smoking behaviour. Therefore, current evidence does not support the hypothesis that genetic polymorphisms associated with nicotine metabolism are a major determinant of an individual's smoking behaviour and exposure to tobacco smoke.  相似文献   

11.
Cytochromes P450 are members of a superfamily of hemoproteins that catalyze a variety of oxidative reactions in the metabolism of endogenous and exogenous hydrophobic substrates. Fifty-eight cytochrome P450 (CYP) isoenzymes belonging to 18 families have been identified in human cells; the corresponding genes are highly polymorphic, and genetic variability underlies interindividual differences in drug response. The polymorphisms of CYP2D6 significantly affect the pharmacokinetics of about 50% of the drugs in clinical use, which are CYP2D6 substrates. The number of functional CYP2D6 alleles per genome determines the existence of four different phenotypes, i.e. poor, intermediate, extensive, and ultrarapid metabolizers. CYP2D6 genetic variants include copy number variations, single nucleotide substitutions, frameshift and insertion/deletion mutations. This review reports some of the different methodological approaches used to screen for CYP2D6 variants and focuses on methods that have improved variation detection, from conventional techniques to more recent microarray technology and high throughput DNA sequencing. In addition, this review reports some results on clinical relevance of CYP2D6 polymorphisms and provides examples of variability in drug response associated with interindividual phenotypic differences.  相似文献   

12.
The human cytochrome P450, CYP2B6, is involved in the metabolism of several therapeutically important drugs and environmental or abused toxicants. In this study, we present the first systematic investigation of genetic polymorphism in the CYP2B6 gene on chromosome 19. A specific direct sequencing strategy was developed based on CYP2B6 and CYP2B7 genomic sequence information and DNA from 35 subjects was completely analysed for mutations throughout all nine exons and their exon-intron boundaries. A total of nine novel point mutations were identified, of which five result in amino acid substitutions in exon 1 (C64T, Arg22Cys), exon 4 (G516T, Gln172His), exon 5 (C777A, Ser259Arg and A785G, Lys262Arg) and exon 9 (C1459T, Arg487Cys) and four are silent mutations (C78T, G216C, G714A and C732T). Polymerase chain reaction-restriction fragment length polymorphism tests were developed to detect each of the five nonsynonymous mutations in genomic DNA. By screening a population of 215 subjects the C64T, G516T, C777A, A785G and C1459T mutations were found at frequencies of 5.3%, 28.6%, 0.5%, 32.6% and 14.0%, respectively. Haplotype analysis revealed six different mutant alleles termed CYP2B6*2 (C64T), *3 (C777A), *4 (A785G), *5 (C1459T), *6 (G516T and A785G) and *7 (G516T, A785G and C1459T). By analysing a large number of human liver samples, significantly reduced CYP2B6 protein expression and S-mephenytoin N-demethylase activity were found in carriers of the C1459T (R487C) mutation (alleles *5 and *7). These data demonstrate that the extensive interindividual variability of CYP2B6 expression and function is not only due to regulatory phenomena, but also caused by a common genetic polymorphism.  相似文献   

13.
CYP2C9-dependent drug metabolism is subject to large interindividual variation. To some extent, this is explained by genetic polymorphism with expression of enzyme variants that differ in catalytic activity. The aim of this study was to characterize the variation in CYP2C9 phenotype in relation to genotype, with further analysis of the CYP2C9 gene in metabolic outliers. A study population of 126 healthy white subjects were recruited and genotyped for the variant alleles, CYP2C9*1-3. In CYP2C9 phenotyping with losartan, three subpopulations were distinguished that differed in the number of CYP2C9*3 alleles (0, 1, or 2). A three-fold higher metabolic ratio (MR; urinary losartan/carboxymetabolite) was found comparing CYP2C9*1/*3 (n = 20) to CYP2C9*1/*1 (n = 81), but there was considerable variation within each genotype. Subjects genotyped as CYP2C9*1/*1, but with an unexpectedly slow oxidation of losartan, were selected for DNA-sequencing analysis of the CYP2C9 gene. Interestingly, single nucleotide polymorphisms (SNPs) could not be identified either in the 5'-flanking region, the nine exons, or exon-intron boundaries. However, sequencing of the CYP2C9 gene was also carried out in patients genotyped as CYP2C9*1/*1 but with an exceptionally low steady-state clearance of S-warfarin. Here, five different SNPs were identified. In further analysis of the healthy volunteers, it became evident that women on oral contraceptives (OCs) had slower oxidation of losartan (MR of losartan: 1.7) than women without OCs (MR of losartan: 0.86). This novel finding was not explained by a different frequency of variant alleles. In summary, CYP2C9 genotype and oral contraceptives both contribute to a large interindividual variation in CYP2C9 activity.  相似文献   

14.
In humans, 80% of nicotine is metabolized to the inactive metabolite cotinine by the enzyme CYP2A6, which can also activate tobacco smoke procarcinogens (e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). Previously, we demonstrated that individuals who are nicotine-dependent and have defective CYP2A6 alleles (*2, *3) smoked fewer cigarettes; however, we recognize that the genotyping method used for the CYP2A6*3 allele gave a high false-positive rate. In the current study we used improved genotyping methods to examine the effects of the defective CYP2A6*2 and CYP2A6*4 alleles on smoking behavior. We found that those with the defective alleles (N = 14) smoked fewer cigarettes per day than those homozygous (N = 277) for wild-type alleles (19 versus 28 cigarettes per day, P <.001). In addition, we identified a duplicated form of the CYP2A6 gene, corresponding to the gene deletion CYP2A6*4 allele, developed a genotyping assay, assessed the gene copy number, and examined its prevalence in Caucasian smokers (N = 296). We observed an ascending rank order for plasma cotinine and breath carbon monoxide levels (an index of smoke inhalation) in individuals with null (CYP2A6*2 and CYP2A6*4) alleles (N = 14), those homozygous for wild-type (CYP2A6*1/*1) alleles (N = 277), and those with our newly identified CYP2A6 gene duplication (N = 5). The phenotype, as determined by plasma nicotine/cotinine ratios, had a descending rank order for these three genotype groups that did not reach significance. Although further characterization is required for the duplication gene variant, these results extend our previous findings and suggest a substantial influence of CYP2A6 genotype and phenotype on smoking behavior.  相似文献   

15.
OBJECTIVES: CYP2A6 is the main enzyme involved in nicotine metabolism in humans. We have identified a novel allele, CYP2A6*23 (2161C>T, R203C), in individuals of Black-African descent and investigated its impact on enzyme activity and association with smoking status. METHODS: Wild-type and variant enzymes containing amino acid changes R203C (CYP2A6*23), R203S (CYP2A6*16) and V365M (CYP2A6*17) were expressed in Escherichia coli. The effect of CYP2A6*23 in vivo was examined in individuals of Black-African descent given 4 mg oral nicotine. RESULTS: CYP2A6*23 occurred at an allele frequency of 2.0% in individuals of Black-African descent (N=560 alleles, 95% confidence interval, 0.8-3.1%) and was not detected in Caucasians (N=334 alleles), Chinese (N=288 alleles) or Japanese (N=104 alleles). In vitro, CYP2A6.23 had greatly reduced activity toward nicotine C-oxidation similar to CYP2A6.17, as well as reduced coumarin 7-hydroxylation. Conversely, CYP2A6.16 did not differ in activity compared with the wild-type enzyme. The trans-3'-hydroxycotinine to cotinine ratio, a phenotypic measure of CYP2A6 activity in vivo, was lower in CYP2A6*1/*23 and CYP2A6*23/*23 individuals (mean adjusted ratio of 0.60, n=5) compared with CYP2A6*1/*1 individuals (mean adjusted ratio of 1.21, n=150) (P<0.04). CYP2A6*23 trended toward a higher allele frequency in nonsmokers (3.1%, N=9/286 alleles) compared with smokers (0.7%, N=2/274 alleles) (P=0.06). CONCLUSION: These results suggest the novel CYP2A6*23 allele impairs enzyme function in vitro and in vivo and trends toward an association with lower risk of smoking.  相似文献   

16.
During the last couple of years, cytochrome P450 2A6 (CYP2A6; coumarin 7-hydroxylase) has received a lot of attention because it has been shown that it is the principle human nicotine C-oxidase. This enzyme also activates a number of structurally unrelated precarcinogens including many nitrosamines and aflatoxin B1, and metabolizes certain clinically used drugs. There is a pronounced interindividual and interethnic variability in CYP2A6 levels and activity, and much of this can be attributed to polymorphisms in the CYP2A6 gene, where a few inactivating mutations as well as gene deletions have been described. The frequency of the inactive alleles is low in European populations and very few poor metabolizers for the probe drug coumarin have been described in these populations. In contrast, a relatively high allele frequency (15-20%) of the CYP2A6 gene deletion has been found in Asians, resulting in a generally reduced activity in these populations. Because of the importance of CYP2A6 in nicotine metabolism, it has been suggested that the CYP2A6 genotype influences the interindividual differences in smoking behavior as well as lung cancer susceptibility. Several case-control studies have been conducted in this area, but these have yielded conflicting results. The recent progress in the field of CYP2A6 genetics and the development of more specific genotyping methods will facilitate molecular epidemiological studies aimed at clarifying these important issues.  相似文献   

17.
The idea that the liver enzyme cytochrome P450 2A6 (CYP2A6), known also as nicotine C-oxidase, is one of the determinants of smoking addiction and smoking behavior is primarily based on its role in nicotine metabolism and disposition. The results of studies linking the CYP2A6 genetic polymorphism with smoking dependence and smoking behavior however remain controversial. The most likely causes of the controversies appeared to be consideration given to a few allelic variants coupled with the uses of the CYP2A6 alleles lacking in vivo phenotypic validation. In the present review, we summarize research findings on biological significance of CYP2A6 and gene polymorphisms together with a discussion on CYP2A6 inhibitors that hold the promise of uses in smoking cessation. In addition, we provide the phenotype/genotype information derived from our systematic investigation on the relationship between CYP2A6 genotypes, smoking habits and coumarin metabolism phenotypes in a group of 393 normal adults (197 women and 196 men), 16 to 60 years of age, whose exposure to cadmium and lead were also determined, enabling us to assess the CYP2A6 phenotypic variability associated with CYP2A6 genotypes and environmental exposure. The results indicate that the phenotype of CYP2A6 enzyme in liver is an outcome of interactions between the CYP2A6 gene, cadmium, nicotine and possibly its metabolites.  相似文献   

18.
19.
Cytochrome P450 2D6 (CYP2D6) is an important drug-metabolizing enzyme exhibiting extensive interindividual variability predominantly caused by genetic polymorphism. Predicting CYP2D6 function based on genotype may be used to personalize pharmacotherapy, but the process of translating CYP2D6 genotype into predicted phenotype is complex and has suffered from a lack of consensus. The Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group have proposed a standardized translation scheme based on the activity score system aiming to facilitate more consistent CYP2D6 genotype–phenotype translation. However, this system remains suboptimal particularly with regards to decreased function alleles and substrate-specific behaviour. This review summarizes the process and challenges for functional assignment of CYP2D6 alleles. We discuss population pharmacokinetics (popPK) as a tool for estimating CYP2D6 function and present findings from three popPK meta-analyses quantifying the impact of individual CYP2D6 alleles in the metabolism of vortioxetine, tedatioxetine and brexpiprazole. Findings from these analyses indicate that the activity values currently assigned to decreased function alleles CYP2D6*9, *17 and *41 overestimate their function. Moreover, the CYP2D6*2 allele exhibited reduced activity in the metabolism of brexpiprazole, indicating substrate-specific behaviour. Considering the totality of the evidence, the activity score system may be further refined to better reflect the enzyme function associated with these alleles.  相似文献   

20.
Cytochrome P450 2D6 monooxygenase metabolizes several commonly used drugs, particularly psychotropics and cardiovascular agents. The gene that encodes this isoenzyme is highly polymorphic, with 1-10% of the population carrying mutations that produce an inactive enzyme, and 1-29% of individuals who possess additional copies of functional CYP2D6 genes. The genotypic features of the CYP2D6 gene have already been studied in many ethnic groups; however, the genetic characteristics of this enzyme are unknown in the Colombian population. The allelic variants and mutations of this polymorphic isoenzyme are the main cause of interindividual and interethnic differences in the therapeutic efficacy and adverse effects at standard doses of drugs metabolized by the products of the CYP2D6 gene. In the present study we have isolated, sequenced and genotyped the CYP2D6 gene in the Colombian population. The distribution of allelic frequencies of 10 alleles associated with normal, diminished or increased CYP2D6 activity has been studied in 121 healthy volunteers. The commonest alleles detected in the Colombian people were the functional alleles *1 (38.8%) and *2 (37%). Among the seven nonfunctional alleles studied in our sample, we found frequencies of 19.4%, 1.6%, 1.2% and 0.8%, for the *4, *17, *3 and *5 alleles, respectively. The alleles *6, *7 and *8 could not be identified in any of the subjects studied. The frequency of the duplicate allele was 1.2%. In this Colombian sample, 91.7% of the individuals were normal metabolizers (EM), 6.6% were poor metabolizers (PM), and 1.7% were ultrarapid metabolizers (UM). These results show that the allelic distribution of the CYP2D6 gene in the Colombian population of mestizo-prevalent subjects is compatible with the genomic assembly of the constitutive tri-ethnic origin of this Latin American country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号