首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A yeast artificial chromosome (YAC) containing a complete human adenovirus type 2 genome was constructed, and viral DNA derived from the YAC was shown to be infectious upon introduction into mammalian cells. The adenovirus YAC could be manipulated efficiently using homologous recombination-based methods in the yeast host, and mutant viruses, including a variant that expresses the human analog of the Saccharomyces cerevisiae CDC27 gene, were readily recovered from modified derivatives of the YAC. The application of powerful yeast genetic techniques to an infectious adenovirus clone promises to significantly enhance the genetic analysis of adenovirus and to simplify the construction of adenovirus-based vectors for vaccines or for gene transfer to mammalian cells or whole animals. The adenovirus YAC was produced by homologous recombination in vivo between adenovirus 2 virion DNA and YAC vector plasmids carrying segments of the viral left and right genomic termini. This recombinational cloning strategy is generally applicable to the construction of YACs containing other DNA segments, such as the genomes of other viruses. Further, it is very efficient and may permit the targeted cloning of segments of the genomes of higher organisms directly from genomic DNA.  相似文献   

2.
We examined the proposed role of human chromosome 21 in determining the cellular sensitivity to human alpha, beta, and gamma interferons (HuIFN-alpha, -beta, and -gamma) and the expression of the receptors for the HuIFNs with the use of mouse-human hybrid cells containing human chromosome 21. Hybrid cells (WA17) containing three copies of human chromosome 21 showed specific displaceable binding of 125I-labeled HuIFN-alpha 2 (125I-HuIFN-alpha 2), which was not observed with mouse parent (A9) cells. Crosslinking of 125I-HuIFN-alpha 2 bound to WA17 cells with disuccinimidyl suberate yielded a complex of Mr approximately equal to 150,000 similar to the 125I-HuIFN-alpha 2-receptor complex obtained with human cells as described earlier. Such a complex was not obtained with mouse parent (A9) cells or with hybrid cells containing certain other human chromosomes but not chromosome 21. Mice inoculated with mouse-human hybrid cells containing human chromosome 21 produce antibodies that block the antiviral action of HuIFN-alpha and -beta on human cells. Such antibodies could immunoprecipitate the 125I-HuIFN-alpha 2-receptor complex obtained from human cells but not free 125I-HuIFN-alpha 2, indicating that these antibodies were directed against the receptor. WA17 hybrid cells were highly sensitive to the antiviral action of HuIFN-alpha 2, -alpha (Le) and -beta but were completely insensitive to HuIFN-gamma. Furthermore, 125I-HuIFN-gamma showed specific binding to human WISH cells but not to WA17 hybrid cells or A9 mouse cells. The results indicate that the receptors for HuIFN-alpha and -beta but not for HuIFN-gamma are specified by human chromosome 21. Hybrid cells containing one, two, or three copies of human chromosome 21 were found to be increasingly sensitive to HuIFN-alpha 2, indicating that a chromosome 21-specified component (possibly the HuIFN-alpha receptor) may be a limiting factor in the cellular sensitivity to HuIFN-alpha.  相似文献   

3.
Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to greater than 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtained from a mouse-human hybrid, ranging in size from 200 to greater than 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes (corresponding to the YAC ends recovered in Escherichia coli) to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from approximately equal to 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.  相似文献   

4.
5.
6.
7.
When 32P-labeled human recombinant immune interferon gamma (Hu-[32P]IFN-gamma) is crosslinked to human cells with disuccinimidyl suberate, a complex with a molecular size of approximately equal to 117,000 Da was identified by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The formation of this complex is inhibited when the binding is performed in the presence of excess unlabeled Hu-IFN-gamma. The specific formation of the 117,000-Da complex is not observed in mouse L cells or Chinese hamster ovary cells. This complex shows all of the criteria that identify it as the Hu-IFN-gamma receptor or its binding subunit. The same complex can be formed following binding and covalent crosslinking of Hu-[32P]IFN-gamma to some hamster-human or mouse-human somatic cell hybrids. The presence of human chromosome 6 in the hybrids is necessary and sufficient for the formation of this complex. More specifically, the long arm of chromosome 6 seems sufficient. Therefore, we have localized the gene for the Hu-IFN-gamma receptor (or its binding subunit) to the long arm of human chromosome 6. The presence of this chromosome in the somatic cell hybrids is not adequate, however, to confer antiviral resistance to the hybrids in the presence of Hu-IFN-gamma.  相似文献   

8.
Well-characterized large genomic clones obtained from yeast artificial chromosome (YAC) libraries provide the framework to localize genes and approach genetic disease. We developed universally applicable approaches to establish authenticity, localize and orient internal genes, map restriction sites, and rescue the distal ends of large human genomic DNA inserts. We selected human chromosome segment 18q21.3 as a model system. Molecular cloning of this segment was initiated by characterizing three plasminogen activator inhibitor type 2 (PAI-2) clones [290, 180, and 60 kilobases (kb)] isolated from a YAC library. Comparison of YAC and bacteriophage lambda genomic DNA clones confirmed the fidelity of the PAI-2 locus. Detailed rare cutting restriction maps were generated by ramped contour-clamped homogeneous electric field electrophoresis. The PAI-2 locus was located and oriented within the YACs, which span a distance 70 kb 5' to 220 kb 3' of PAI-2. Moreover, both left and right ends of the YAC genomic DNA inserts were rescued by amplifying circularized cloning sites with an inverted form of the polymerase chain reaction. These unique terminal genomic DNA fragments were used to rescreen the YAC library and isolate overlapping clones that extend the map. These approaches will enable neighboring loci to be definitively linked and establish the feasibility of using YAC technology to clone and map chromosomal segments.  相似文献   

9.
Fabry disease is an X-linked inborn error of metabolism resulting from the deficient activity of the lysosomal hydrolase, alpha-galactosidase A (alpha-Gal A; alpha-D-galactoside galactohydrolase, EC 3.2.1.22). To investigate the structure, organization, and expression of alpha-Gal A, as well as the nature of mutations in Fabry disease, a clone encoding human alpha-Gal A was isolated from a lambda gt11 human liver cDNA expression library. To facilitate screening, an improved affinity purification procedure was used to obtain sufficient homogeneous enzyme for production of monospecific antibodies and for amino-terminal and peptide microsequencing. On the basis of an amino-terminal sequence of 24 residues, two sets of oligonucleotide mixtures were synthesized corresponding to adjacent, but not overlapping, amino acid sequences. In addition, an oligonucleotide mixture was synthesized based on a sequence derived from an alpha-Gal A internal tryptic peptide isolated by reversed-phase HPLC. Four positive clones were initially identified by antibody screening of 1.4 X 10(7) plaques. Of these, only one clone (designated lambda AG18) demonstrated both antibody binding specificity by competition studies using homogeneous enzyme and specific hybridization to synthetic oligonucleotide mixtures corresponding to amino-terminal and internal amino acid sequences. Nucleotide sequencing of the 5' end of the 1250-base-pair EcoRI insert of clone lambda AG18 revealed an exact correspondence between the predicted and known amino-terminal amino acid sequence. The insert of clone lambda AG18 appears to contain the full-length coding region of the processed, enzymatically active alpha-Gal A, as well as sequences coding for five amino acids of the amino-terminal propeptide, which is posttranslationally cleaved during enzyme maturation.  相似文献   

10.
11.
12.
We have isolated a c-erbA cDNA clone from a GH3 cell library. The clone, denoted erb62, is 4.5 kilobases long and encodes a 461-amino acid beta-type c-erbA protein. This c-erbA protein binds 3,5,3'-triiodothyronine (T3) and T3 analogs with affinities similar to those of the authentic T3 receptor. By RNA gel blot analysis, erb62 hybridizes to a 6-kilobase RNA found in organs that express T3 receptors--e.g., heart, kidney, and brain. A COS-cell transient cotransfection system was used to show that erb62 encodes a biologically active T3 receptor. An oligonucleotide, corresponding to a portion of the rat growth hormone gene 5'-flanking region that contains a T3 response element, was inserted on the 5' side of the herpes simplex virus thymidine kinase promoter in a chloramphenicol acetyltransferase-expressing plasmid. Reporter gene expression directed by this hybrid promoter was T3 inducible only if this plasmid was cotransfected with an erb62-expressing plasmid.  相似文献   

13.
A receptor protein for mouse interferon gamma has been purified from solubilized plasma membranes of the mouse monomyelocytic cell line WEHI-3. Sequential wheat germ agglutinin and ligand affinity chromatography of membranes extracted with octyl beta-D-glucopyranoside resulted in at least a 680-fold purification of the receptor, as measured by precipitating it in association with liposomes composed of phosphatidylcholine. The purified receptor bound 125I-labeled recombinant mouse interferon gamma (rMuIFN-gamma) with a Kd of 10 nM, a value comparable to that obtained with isolated membranes (3.5 nM). PAGE analysis of radiolabeled (with either 35S or 125I) receptor preparations consistently revealed a major band of 95 kDa. This species was degraded with time to smaller fragments, principally one of 60 +/- 5 kDa. Treatment with peptide:N-glycosidase F reduced the apparent molecular masses of the proteins in the 95- and 60-kDa regions by 15-20 kDa each. GR-20, a monoclonal antibody against the receptor, completely inhibited specific binding of 125I-labeled rMuIFN-gamma to WEHI-3 cells, blocked the induction of priming by rMuIFN-gamma of macrophage-mediated tumor cell killing, removed binding activity for 125I-labeled rMuIFN-gamma from solubilized membranes, and immunoprecipitated a single 95-kDa protein from the extract of surface labeled (125I) WEHI-3 cells. Cross-linking of 125I-labeled rMuIFN-gamma to its receptor yielded a complex of 125 +/- 5 kDa, consistent with the binding of the dimeric form of mouse interferon gamma (32 kDa) to a membrane protein of 95 kDa. These data suggest that the receptor for mouse interferon gamma (or a ligand-binding subunit thereof) is a glycoprotein of 95 kDa.  相似文献   

14.
Purified recombinant human gamma interferon (HuIFN-gamma), labeled with 125I (125I-HuIFN-gamma), was used to study receptors for HuIFN-gamma on human WISH cells. 125I-HuIFN-gamma was bound to WISH cells, and this binding was displaced by unlabeled HuIFN-gamma but not by unlabeled recombinant HuIFN-alpha 2 or [Ser17]HuIFN-beta (HuIFN-beta with serine substituted for cysteine at position 17), indicating the presence of specific binding sites for HuIFN-gamma. The cell-bound 125I-HuIFN-gamma was crosslinked with disuccinimidyl suberate or ethylene glycol bis(succinimidyl succinate), which yielded a complex of Mr approximately 105,000 +/- 5000 as analyzed by NaDodSO4/PAGE. The formation of this complex was prevented by preincubation of cells with unlabeled HuIFN-gamma but not with HuIFN-alpha 2 or [Ser17]HuIFN-beta, indicating that HuIFN-gamma binds to a specific receptor molecule and that HuIFN-alpha 2 or HuIFN-beta do not interact with this receptor. Experiments were carried out with 125I-labeled recombinant [Ser17]HuIFN-beta (125I-[Ser17]HuIFN-beta) to verify this conclusion. Binding and crosslinking of 125I-[Ser17]HuIFN-beta to human WISH cells and Daudi cells yielded a complex of Mr approximately 150,000 similar to that obtained with 125I-HuIFN-alpha 2 as described earlier. The formation of this Mr 150,000 complex with 125I-[Ser17]HuIFN-beta was displaced by unlabeled [Ser17]HuIFN-beta and by HuIFN-alpha 2 but not by HuIFN-gamma, indicating that [Ser17]HuIFN-beta binds to the same receptor as does HuIFN-alpha 2, identified earlier, and that HuIFN-gamma does not compete with 125I-[Ser17]HuIFN-beta for this receptor. We conclude that HuIFN-gamma interacts with specific receptors that are distinctly different from the receptors recognized by HuIFN-alpha and HuIFN-beta.  相似文献   

15.
Mouse cells deficient in the enzyme hypoxanthine phosphoribosyltransferase (HPRT; EC 2.4.2.8) have been transfected with total human DNA, and cells producing human enzyme were isolated by growth in selective medium. DNA from several such cell lines has been used to generate secondary transfectants that make human HPRT. Blots of the DNA of these secondary cells have been hybridized with total human DNA probes or with cloned human Alu sequences, and one of several common bands has been cloned in pBR322. Colonies of transformed Escherichia coli containing human sequences were detected by their homology with human DNA, and subclones of resulting recombinant plasmids were prepared. Two subclones free of Alu sequences were found to contain human sequences that hybridized to human X chromosome DNA. One of these, pBR1.5, also hybridized to a single RNA band on gel blots of human and secondary transfectant cytoplasmic poly(A)+RNA but not to RNA from the parent mouse cell line. These results indicate that these clones represent human HPRT gene fragments. This has been confirmed by using pBR1.5 as a probe to isolate an authentic and expressible human HPRT cDNA clone from a library prepared by H. Okayama and P. Berg.  相似文献   

16.
Prior to constructing a library of yeast artificial chromosomes (YACs) containing very large human DNA fragments, we performed a series of preliminary experiments aimed at developing a suitable protocol. We found an inverse relationship between YAC insert size and transformation efficiency. Evidence of occasional rearrangement within YAC inserts was found resulting in clonally stable internal deletions or clonally unstable size variations. A protocol was developed for preparative electrophoretic enrichment of high molecular mass human DNA fragments from partial restriction digests and ligation with the YAC vector in agarose. A YAC library has been constructed from large fragments of DNA from an Epstein-Barr virus-transformed human lymphoblastoid cell line. The library presently contains 50,000 clones, 95% of which are greater than 250 kilobase pairs in size. The mean YAC size of the library, calculated from 132 randomly isolated clones, is 430 kilobase pairs. The library thus contains the equivalent of approximately seven haploid human genomes.  相似文献   

17.
To test the feasibility of transferring yeast artificial chromosomes (YACs) into mammalian cells, we modified a YAC that carries approximately 450 kilobases (kb) of human DNA, by inserting a neomycin-resistance gene. Saccharomyces cerevisiae cells carrying this YAC were fused by polyethylene glycol to mouse L cells and G418-resistant colonies were obtained. A high percentage of these clones contained virtually intact YAC sequences as revealed by "Alu fingerprint" analysis and restriction enzyme analysis using pulsed-field gel electrophoresis. Furthermore, the YAC sequences were stably integrated into the mouse chromosomes, as shown by in situ hybridization and by the stability of the G418 resistance. These results establish that large segments of the mammalian genome, cloned in yeast, can be efficiently transferred into cultured mammalian cells.  相似文献   

18.
We report the isolation of the gene for origin binding factor 1 (OBF1) from the yeast Saccharomyces cerevisiae by screening a yeast genomic DNA library in lambda gt11 with an ARS-specific oligonucleotide probe. One recombinant encoded a fusion protein of approximately 180 kDa that bound ARS-specific oligonucleotide probes in vitro. The restriction map of this gene was determined after isolation of the complete gene by screening a yeast genomic DNA library in YEp24. Characterization of the gene for OBF1 by pulsed-field gel electrophoresis and Northern and Southern blot analyses demonstrated that (i) the gene is located in chromosome IV, (ii) the gene is a single-copy gene, (iii) the mRNA is approximately 3.8 kilobases, which could code for an approximately 130-kDa polypeptide, consistent with the reported size of OBF1. An antibody, affinity-purified using the lysogen-encoded fusion protein, specifically detected an approximately 130-kDa polypeptide in yeast extract. The isolation of the gene for OBF1 should allow further analysis of the mechanism of action of this protein in vitro and in vivo.  相似文献   

19.
20.
Expression cloning of the murine interferon gamma receptor cDNA.   总被引:2,自引:2,他引:2       下载免费PDF全文
A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号