首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.  相似文献   

2.
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. Hypocretin 2-immunoreactive fibers were observed throughout the caudal NTS. In whole-cell recordings from neurons in acute slices, hypocretin 2 depolarized 48% and hyperpolarized 10% of caudal NTS neurons, effects that were not observed when Cs(+) was used as the primary cation carrier. Hypocretin 2 also increased the amplitude of tractus solitarius-evoked excitatory postsynaptic currents (EPSCs) in 36% of neurons and significantly enhanced the frequency of spontaneous EPSCs in most (59%) neurons. Spontaneous inhibitory postsynaptic currents (IPSCs) were relatively unaffected by the peptide. The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals.These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.  相似文献   

3.
The effects of activating dopaminergic D(2/3) and D(4) receptors during activation of the subthalamic projection to the globus pallidus (GP) were explored in rat brain slices using the whole cell patch-clamp technique. Byocitin labeling and both orthodromic and antidromic activation demonstrated the integrity of some subthalamopallidal connections in in vitro parasagittal brain slices. Excitatory postsynaptic currents (EPSCs) that could be blocked by CNQX and AP5 were evoked onto pallidal neurons by local field stimulation of the subthalamopallidal pathway in the presence of bicuculline. Bath application of dopamine and quinpirole, a dopaminergic D(2)-class receptor agonist, reduced evoked EPSCs by about 35%. This effect was only partially blocked by sulpiride, a D(2/3) receptor antagonist. The sulpiride-sensitive reduction of the subthalamopallidal EPSC was associated with an increase in the paired-pulse ratio (PPR) and a reduction in the frequency but not the mean amplitude of spontaneous EPSCs (sEPSCs), indicative of a presynaptic site of action, which was confirmed by variance-mean analysis. The sulpiride-resistant EPSC reduction was mimicked by PD 168,077 and blocked by L-745,870, selective D(4) receptor agonist and antagonist, respectively, suggesting the involvement of D(4) receptors. The reduction of EPSCs produced by PD 168,077 was not accompanied by changes in PPR or the frequency of sEPSCs; however, it was accompanied by a reduction in mean sEPSC amplitude, indicative of a postsynaptic site of action. These results show that dopamine modulates subthalamopallidal excitation by presynaptic D(2/3) and postsynaptic D(4) receptors. The importance of this modulation is discussed.  相似文献   

4.
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in membrane potential. In cells voltage-clamped at -65 mV, dopamine dose dependently and reversibly decreased evoked, pharmacologically isolated, excitatory postsynaptic currents with an EC50 of 31 microM. The reduction in excitatory postsynaptic current was accompanied by an increase in paired pulse ratio (a protocol used to detect presynaptic site of action) with no change in the holding current or in the decay of the evoked excitatory postsynaptic currents. In addition, dopamine altered neither postsynaptic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced currents, nor steady-state current voltage curves. Miniature excitatory postsynaptic current analysis revealed that dopamine caused a rightward shift of the frequency-distribution curve with no change in the amplitude-distribution curve, which is consistent with a presynaptic mechanism. The dopamine-induced attenuation of the excitatory postsynaptic current was almost completely blocked by the D1-like receptor antagonist SCH23390 (10 microM), although the D2-like antagonist sulpiride (10 microM) also partially blocked it. Combined application of both antagonists blocked all dopamine-induced synaptic effects. The synaptic effect of dopamine was mimicked by the D1-like agonist SKF38393 (50 microM), but the D2-1ike agonist quinpirole (50 microM) also had a small effect. Combined application of both agonists did not produce potentiated responses. Dopamine's effect on the excitatory postsynaptic current was independent of serotonin, GABA and adenosine receptors, but may have some interactions with adrenergic receptors. These results suggest that dopamine directly modulates excitatory synaptic events in the parabrachial nucleus predominantly via presynaptic D1-like receptors.  相似文献   

5.
Ohi Y  Kato F  Haji A 《Neuroscience》2007,146(3):1425-1433
Although codeine is the most prominent and centrally acting antitussive agent, the precise sites and mode of its action have not been fully understood yet. In the present study, we examined the effects of codeine on synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS), which is the first central relay site receiving tussigenic afferent fibers, by using whole-cell patch-clamp recordings in guinea-pig brainstem slices. Codeine (0.3-3 mM) significantly decreased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of the tractus solitarius in a naloxone-reversible and concentration-dependent manner, but it had no effect on the decay time of evoked EPSCs (eEPSCs). The inhibition of eEPSCs was accompanied by an increased paired-pulse ratio of two consecutive eEPSCs. The inward current induced by application of AMPA remained unchanged after codeine application. A voltage-sensitive K+ channel blocker, 4-aminopyridine (4-AP) attenuated the inhibitory effect of codeine on eEPSCs. These results suggest that codeine inhibits excitatory transmission from the primary afferent fibers to the second-order NTS neurons through the opioid receptors that activate the 4-AP sensitive K+ channels located at presynaptic terminals.  相似文献   

6.
Zhu W  Pan ZZ 《Neuroscience》2005,133(1):97-103
The central nucleus of the amygdala (CeA) plays an important role both in stimulus-reward learning for the reinforcing effects of drugs of abuse and in environmental condition-induced analgesia. Both of these two CeA functions involve the opioid system within the CeA. However, the pharmacological profiles of its opioid receptor system have not been fully studied and the synaptic actions of opioid receptors in the CeA are largely unknown. In this study with whole-cell voltage-clamp recordings in brain slices in vitro, we examined actions of opioid agonists on glutamate-mediated excitatory postsynaptic currents (EPSCs) in CeA neurons. Opioid peptide methionine-enkephalin (ME; 10 microM) produced a significant inhibition (38%) in the amplitude of evoked EPSCs, an action mimicked by the mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO; 1 microM, 44%). Both effects of ME and DAMGO were abolished by the mu receptor antagonist CTAP (1 microM), suggesting a mu receptor-mediated effect. Neither delta-opioid receptor agonist [D-Pen(2),D-Pen(5)]-enkephalin (1 microM) nor kappa-opioid receptor agonist U69593 (300 nM) had any effect on the glutamate EPSC. ME significantly increased the paired-pulse ratio of the evoked EPSCs and decreased the frequency of miniature EPSCs without altering the amplitude of miniature EPSCs. Furthermore, the mu-opioid inhibition of the EPSC was blocked by 4-aminopyridine (4AP; 100 microM), a voltage-dependent potassium channel blocker, and by phospholipase A(2) inhibitors AACOCF(3) (10 microM) and quinacrine (10 microM). These results indicate that only the mu-opioid receptor is functionally present on presynaptic glutamatergic terminals in normal CeA neurons, and its activation reduces the probability of glutamate release through a signaling pathway involving phospholipase A(2) and the presynaptic, 4AP-sensitive potassium channel. This study provides evidence for the presynaptic regulation of glutamate synaptic transmission by mu-opioid receptors in CeA neurons.  相似文献   

7.
Within the brain stem, the nucleus tractus solitarii (NTS) serves as a principal central site for sensory afferent integration from the cardiovascular and respiratory reflexes. Neuronal activity and synaptic transmission in the NTS are highly pliable and subject to neuromodulation. In the central nervous system, hydrogen sulfide (H?S) is a gasotransmitter generated primarily by the enzyme cystathionine-β-synthase (CBS). We sought to determine the role of H?S, and its generation by CBS, in NTS excitability. Real-time RT-PCR, immunoblot, and immunohistochemistry analysis identified the presence of CBS in the NTS. Patch-clamp electrophysiology in brain stem slices examined excitatory postsynaptic currents (EPSCs) and membrane properties in monosynaptically driven NTS neurons. Confocal imaging of labeled afferent synaptic terminals in NTS slices monitored intracellular calcium. Exogenous H?S significantly increased the amplitude of evoked solitary tract (TS)-EPSCs, frequency of miniature (m)EPSCs, and presynaptic terminal calcium fluorescence in the NTS. H?S did not alter action potential discharge or postsynaptic properties. On the other hand, the CBS inhibitor aminooxyacetate (AOA) significantly reduced the amplitude of TS-EPSCs and presynaptic terminal calcium fluorescence in the NTS without altering postsynaptic properties. Taken together, these data support a presynaptic role for endogenous H?S in modulation of excitatory neurotransmission in the NTS.  相似文献   

8.
Rat prefrontal cortex (PFC) receives substantial dopamine (DA) input. This DA innervation appears critical for modulation of PFC cognitive functions. Clinical and experimental studies have also implicated DA in the pathogenesis of a number of neurological and psychiatric disorders including epilepsy and schizophrenia. However, the actions of DA at the cellular level are incompletely understood. Both inhibitory interneurons and pyramidal cells are targets of DA and may express different DA receptor types. Our recent findings suggest that DA can directly excite cortical interneurons and increase the frequency of spontaneous inhibitory postsynaptic currents (IPSCs). The present study was undertaken to determine the effect of specific DA receptor agonists on evoked (e) IPSCs. Visually identified pyramidal neurons were studied using whole cell voltage-clamp techniques. Bath application of DA 30 microM reduced IPSC amplitude to 80 +/- 4% (mean +/- SE) of control without any significant change in IPSC kinetics or passive membrane properties. The D1-like DA receptor agonist SKF 38393 reduced IPSC amplitude to 71.5 +/- 8%, whereas the D2-like specific agonist quinpirole has no effect on amplitude (94.5 +/- 5%). The D1-like receptor antagonist SCH 23390 prevented DA inhibition of IPSC amplitude (98.2 +/- 4%), whereas IPSCs were still reduced in amplitude (79.7 +/- 4%) by DA in the presence of the D2-like receptor antagonist sulpiride. DA increased significantly paired-pulse inhibition, whereas responses to puff applied GABA were unaffected. Addition of the PKA inhibitor H-8 blocked the effect of DA on IPSCs. These results suggest that DA can decrease IPSCs in layer II-III PFC neocortical pyramidal cells by activating presynaptic D1-like receptors.  相似文献   

9.
Activation of opioid receptors in the periphery and centrally in the brain results in inhibition of gastric and other vagally mediated functions. The aim of this study was to examine the role of the endogenous opioid agonist endomorphin 1 (EM-1) in regulating synaptic transmission within the nucleus tractus solitarius (NTS), an integration site for autonomic functions. We performed whole cell patch-clamp recordings from coronal brain slices of the rat medulla. A subset of the neurons studied was prelabeled with a stomach injection of the transsynaptic retrograde virus expressing EGFP, PRV-152. Solitary tract stimulation resulted in constant latency excitatory postsynaptic currents (EPSCs) that were decreased in amplitude by EM-1 (0.01-10 microM). The paired-pulse ratio was increased with little change in input resistance, suggesting a presynaptic mechanism. Spontaneous EPSCs were decreased in both frequency and amplitude by EM-1, and miniature EPSCs were reduced in frequency but not amplitude, suggesting a presynaptic mechanism for the effect. Spontaneous inhibitory postsynaptic currents (IPSCs) were also reduced in frequency by EM-1, but the effect was blocked by TTX, suggesting activity at receptors on the somata of local inhibitory neurons. Synaptic input arising from local NTS neurons, which were activated by focal photolysis of caged glutamate, was inhibited by EM-1. The actions of EM-1 were similar to those of D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and were blocked by naltrexone, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). These results suggest that EM-1 acts at mu-opioid receptors to modulate viscerosensory input and specific components of local synaptic circuitry in the NTS.  相似文献   

10.
The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.  相似文献   

11.
We tested the hypothesis that endogenous N-acetylaspartylglutamate (NAAG) presynaptically inhibits glutamate release at mossy fiber-CA3 synapses. For this purpose, we made use of 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), an inhibitor of glutamate carboxypeptidase II [GCP II; also known as N-acetylated alpha-linked acidic dipeptidase (NAALADase)], the enzyme that hydrolyzes NAAG into N-acetylaspartate and glutamate. Application of 2-MPPA (1-20 microM) had no effect on intrinsic membrane properties of CA3 pyramidal neurons recorded in vitro in whole cell current- or voltage-clamp mode. Bath application of 10 microM 2-MPPA suppressed evoked excitatory postsynaptic current (EPSC) amplitudes. Attenuation of EPSC amplitudes was accompanied by a significant increase in paired-pulse facilitation (50-ms interpulse intervals), suggesting that a presynaptic mechanism is involved. The group II metabotropic glutamate receptor (mGluR) antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-y l) propanoic acid (LY341495) prevented the 2-MPPA-dependent suppression of EPSC amplitudes. 2-MPPA reduced the frequencies of TTX-insensitive miniature EPSCs (mEPSC), without affecting their amplitudes, further supporting a presynaptic action for GCP II inhibition. 2-MPPA-induced reduction of mEPSC frequencies was prevented by LY341495, reinforcing the role of presynaptic group II mGluR. Because GCP II inhibition is thought to increase NAAG levels, these results suggest that NAAG suppresses synaptic transmission at mossy fiber-CA3 synapses through presynaptic activation of group II mGluRs.  相似文献   

12.
Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS). GABAergic neurons are scattered throughout the NTS, but their relation to solitary tract (ST) afferent pathways is imprecisely known. We hypothesized that most GABAergic NTS neurons would be connected only indirectly to the ST. We identified GABAergic neurons in brain stem horizontal slices using transgenic mice in which enhanced green fluorescent protein (EGFP) expression was linked to glutamic acid decarboxylase expression (GAD(+)). Finely graded electrical shocks to ST recruit ST-synchronized synaptic events with all-or-none thresholds and individual waveforms did not change with greater suprathreshold intensities--evidence consistent with initiation by single afferent axons. Most (approximately 70%) GAD(+) neurons received ST-evoked excitatory postsynaptic currents (EPSCs) that had minimally variant latencies (jitter, SD of latency <200 micros) and waveforms consistent with single, direct ST connections (i.e., monosynaptic). Increasing stimulus intensity evoked additional ST-synchronized synaptic responses with jitters >200 micros including inhibitory postsynaptic currents (IPSCs), indicating indirect connections (polysynaptic). Shocks of suprathreshold intensity delivered adjacent (50-300 microm) to the ST failed to excite non-ST inputs to second-order neurons, suggesting a paucity of axons passing near to ST that connected to these neurons. Despite expectations, we found similar ST synaptic patterns in GAD(+) and unlabeled neurons. Generally, ST information that arrived indirectly had small amplitudes (EPSCs and IPSCs) and frequency-dependent failures that reached >50% for IPSCs to bursts of stimuli. This ST afferent pathway organization is strongly use-dependent--a property that may tune signal propagation within and beyond NTS.  相似文献   

13.
The effect of cannabinoids on excitatory transmission in the substantia gelatinosa was investigated using intracellular recording from visually identified neurons in a transverse slice preparation of the juvenile rat spinal cord. In the presence of strychnine and bicuculline, perfusion of the cannabinoid receptor agonist WIN55,212-2 reduced the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Furthermore, the frequency of miniature EPSCs (mEPSCs) was also decreased by WIN55,212-2, whereas their amplitude was not affected. Similar effects were reproduced using the endogenous cannabinoid ligand anandamide. The effects of both agonists were blocked by the selective CB(1) receptor antagonist SR141716A. Electrical stimulation of high-threshold fibers in the dorsal root evoked a monosynaptic EPSC in lamina II neurons. In the presence of WIN55,212-2, the amplitude of the evoked EPSC (eEPSCs) was reduced, and the paired-pulse ratio was increased. The reduction of the eEPSC following CB(1) receptor activation was unlikely to have a postsynaptic origin because the response to AMPA, in the presence of 1 microM TTX, was unchanged. To investigate the specificity of this synaptic inhibition, we selectively activated the nociceptive C fibers with capsaicin, which induced a strong increase in the frequency of EPSCs. In the presence of WIN55,212-2, the response to capsaicin was diminished. In conclusion, these results strongly suggest a presynaptic location for CB(1) receptors whose activation results in inhibition of glutamate release in the spinal dorsal horn. The strong inhibitory effect of cannabinoids on C fibers may thereby contribute to the modulation of the spinal excitatory transmission, thus producing analgesia at the spinal level.  相似文献   

14.
The mechanisms underlying the depression of evoked fast excitatory postsynaptic currents (EPSCs) following superfusion with medium deprived of oxygen and glucose (in vitro ischemia) for a 4-min period in hippocampal CA1 neurons were investigated in rat brain slices. The amplitude of evoked fast EPSCs decreased by 85 +/- 7% of the control 4 min after the onset of in vitro ischemia. In contrast, the exogenous glutamate-induced inward currents were augmented, while the spontaneous miniature EPSCs obtained in the presence of tetrodotoxin (TTX, 1 microM) did not change in amplitude during in vitro ischemia. In a normoxic medium, a pair of fast EPSCs was elicited by paired-pulse stimulation (40-ms interval), and the amplitude of the second fast EPSC increased to 156 +/- 24% of the first EPSC amplitude. The ratio of paired-pulse facilitation (PPF ratio) increased during in vitro ischemia. Pretreatment of the slices with adenosine 1 (A1) receptor antagonist, 8-cyclopenthyltheophiline (8-CPT) antagonized the depression of the fast EPSCs, in a concentration-dependent manner: in the presence of 8-CPT (1-10 microM), the amplitude of the fast EPSCs decreased by only 20% of the control during in vitro ischemia. In addition, 8-CPT antagonized the enhancement of the PPF ratio during in vitro ischemia. A pair of presynaptic volleys and excitatory postsynaptic field potentials (fEPSPs) were extracellularly recorded in a proximal part of the stratum radiatum in the CA1 region. The PPF ratio for the fEPSPs also increased during in vitro ischemia. On the other hand, the amplitudes of the first and second presynaptic volley, which were abolished by TTX (0.5 microM), did not change during in vitro ischemia. The maximal slope of the Ca(2+)-dependent action potential of the CA3 neurons, which were evoked in the presence of 8-CPT (1 microM), nifedipine (20 microM), TTX (0.5 microM), and tetraethyl ammonium chloride (20 mM), decreased by 12 +/- 6% of the control 4 min after the onset of in vitro ischemia. These results suggest that in vitro ischemia depresses the evoked fast EPSCs mainly via the presynaptic A1 receptors, and the remaining 8-CPT-resistant depression of the fast EPSCs is probably due to a direct inhibition of the Ca(2+) influx to the axon terminals.  相似文献   

15.
1. Intracellular recordings were made from the shell region of the nucleus accumbens in an in vitro slice preparation. The mean resting membrane potential, input resistance, and action potential amplitude of these neurons were -76 +/- 1 mV, 87 +/- 5 M omega and 94 +/- 2 mV (N = 108), respectively. A sample of these neurons (N = 18) was identified as medium spiny neurons with the use of the biocytin-avidin labeling technique. 2. Electrical stimulation of the fornix, subcortical fibers, or neuropil within the nucleus accumbens shell itself elicited a depolarizing postsynaptic potential (PSP). Dopamine (10-100 microM) attenuated PSPs elicited by stimulation of all of these sites. In a paired-pulse stimulation protocol, dopamine was observed to enhance the facilitation of the test response with respect to the conditioning response. 3. The suppressive effect of dopamine was mimicked by the D1 receptor agonist SKF 82958 (10-30 microM), whereas the D2 receptor agonist quinpirole (10-30 microM) was ineffective. The action of dopamine was antagonized by the D1 receptor antagonist Sch 23390 (10-30 microM), but not by the D2 receptor antagonist sulpiride (10-50 microM) or various adrenergic receptor antagonists. 4. The PSP was usually composed of an excitatory postsynaptic potential (EPSP)-inhibitory postsynaptic potential (IPSP) sequence. Dopamine equally attenuated the excitatory and inhibitory component of the synaptic response. The attenuation of both EPSP and IPSP did not depend on membrane potential. 5. Dopamine effects on the resting membrane potential and input resistance were variable and did not correlate with changes in the PSP. Two further indications were found in favor of a presynaptic locus of dopaminergic modulation. First, the time course of the PSP was not altered during dopamine application. Second, dopamine did not attenuate depolarizations induced by bath-applied L-glutamate. In extracellular recordings, it was found that dopamine reduced the population spike but not the presynaptic fiber volley. 6. These findings strongly indicate that dopaminergic modulation of synaptic responses in neurons located in the accumbens shell region is mediated by presynaptic D1 receptors. Notably, dopamine does not exert a purely inhibitory effect on synaptic excitability in the nucleus accumbens, because it suppresses both the excitatory and inhibitory component of the synaptic response.  相似文献   

16.
An ischemia-induced change in glutamatergic transmission was investigated in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique; the ischemia was simulated by superfusing an oxygen- and glucose-free medium (ISM). Following ISM superfusion, 21 of 37 SG neurons tested produced an outward current (23 +/- 4 pA at a holding potential of -70 mV), which was followed by a slow and subsequent rapid inward current; the remaining neurons had only inward currents. During such a change in holding currents, spontaneous excitatory postsynaptic currents (EPSCs) were remarkably decreased in a frequency with time (half-decay time of the frequency: about 65 s). The frequency of spontaneous EPSCs was reduced to 28 +/- 13% (n = 37) of the control level during the generation of the slow inward current (about 4 min after the beginning of ISM superfusion) without a change in the amplitude of spontaneous EPSCs. When ISM was superfused together with either bicuculline (10 microM) or CGP35348 (20 microM; GABA(A) and GABA(B) receptor antagonists, respectively), spontaneous EPSC frequency reduced by ISM recovered to the control level and then the frequency markedly increased [by 325 +/- 120% (n = 22) and 326 +/- 91% (n = 17), respectively, 4 min after ISM superfusion]; this alteration in the frequency was not accompanied by a change in spontaneous EPSC amplitude. Superfusing TTX (1 microM)-containing ISM resulted in a similar recovery of spontaneous EPSC frequency and following increase (by 328 +/- 26%, n = 12) in the frequency; strychnine (1 microM) did not affect ISM-induced changes in spontaneous EPSC frequency (n = 5). It is concluded that the ischemic simulation inhibits excitatory transmission to SG neurons, whose action is in part mediated by the activation of presynaptic GABA(A) and GABA(B) receptors, probably due to GABA released from interneurons as a result of an ischemia-induced increase in neuronal activities. This action might protect SG neurons from an excessive excitation mediated by L-glutamate during ischemia.  相似文献   

17.
Dopaminergic (DAergic) neurons possess D2-like somatodendritic and terminal autoreceptors that modulate cellular excitability and dopamine (DA) release. The cellular and molecular processes underlying the rapid presynaptic inhibition of DA release by D2 receptors remain unclear. Using a culture system in which isolated DAergic neurons establish self-innervating synapses ("autapses") that release both DA and glutamate, we studied the mechanism by which presynaptic D2 receptors inhibit glutamate-mediated excitatory postsynaptic currents (EPSCs). Action-potential evoked EPSCs were reversibly inhibited by quinpirole, a selective D2 receptor agonist. This inhibition was slightly reduced by the inward rectifier K(+) channel blocker barium, largely prevented by the voltage-dependent K(+) channel blocker 4-aminopyridine, and completely blocked by their combined application. The lack of a residual inhibition of EPSCs under these conditions argues against the implication of a direct inhibition of presynaptic Ca(2+) channels. To evaluate the possibility of a direct inhibition of the secretory process, spontaneous miniature EPSCs were evoked by the Ca(2+) ionophore ionomycin. Ionomycin-evoked release was insensitive to cadmium and dramatically reduced by quinpirole, providing evidence for a direct inhibition of quantal release at a step downstream to Ca(2+) influx through voltage-dependent Ca(2+) channels. Surprisingly, this effect of quinpirole on ionomycin-evoked release was blocked by 4-aminopyridine. These results suggest that D2 receptor activation decreases neurotransmitter release from DAergic neurons through a presynaptic mechanism in which K(+) channels directly inhibit the secretory process.  相似文献   

18.
Weng HR  Chen JH  Pan ZZ  Nie H 《Neuroscience》2007,149(4):898-907
Glutamatergic synaptic transmission is a dynamic process determined by the amount of glutamate released by presynaptic sites, the clearance of glutamate in the synaptic cleft, and the properties of postsynaptic glutamate receptors. Clearance of glutamate in the synaptic cleft depends on passive diffusion and active uptake by glutamate transporters. In this study, we examined the role of glial glutamate transporter 1 (GLT-1) in spinal sensory processing. Excitatory postsynaptic currents (EPSCs) of substantia gelatinosa neurons recorded from spinal slices of young adult rats were analyzed before and after GLT-1 was pharmacologically blocked by dihydrokainic acid. Inhibition of GLT-1 prolonged the EPSC duration and the EPSC decay phase. The EPSC amplitudes were increased in neurons with weak synaptic input but decreased in neurons with strong synaptic input upon inhibition of GLT-1. We suggest that presynaptic inhibition, desensitization of postsynaptic AMPA receptors, and glutamate "spillover" contributed to the kinetic change of EPSCs induced by the blockade of GLT-1. Thus, GLT-1 is a key component in maintaining the spatial and temporal coding in signal transmission at the glutamatergic synapse in substantia gelatinosa neurons.  相似文献   

19.
Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1'-dioctadecyl-3,3,3',3'-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 μM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 μM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function.  相似文献   

20.
Activation of spinal alpha(2)-adrenergic receptors by the descending noradrenergic system and alpha(2)-adrenergic agonists produces analgesia. However, the sites and mechanisms of the analgesic action of spinally administered alpha(2)-adrenergic receptor agonists such as clonidine are not fully known. The dorsal horn neurons in the outer zone of lamina II (lamina II(o)) are important for processing nociceptive information from C-fiber primary afferents. In the present study, we tested a hypothesis that activation of presynaptic alpha(2)-adrenergic receptors by clonidine inhibits the excitatory synaptic input to lamina II(o) neurons. Whole cell voltage-clamp recordings were performed on visualized lamina II(o) neurons in the spinal cord slice of rats. The miniature excitatory postsynaptic currents (mEPSCs) were recorded in the presence of tetrodotoxin, bicuculline, and strychnine. The evoked EPSCs were obtained by electrical stimulation of the dorsal root entry zone or the attached dorsal root. Both mEPSCs and evoked EPSCs were abolished by application of 6-cyano-7-nitroquinoxaline-2,3-dione. Clonidine (10 microM) significantly decreased the frequency of mEPSCs from 5.8 +/- 0.9 to 2.7 +/- 0.6 Hz (means +/- SE) without altering the amplitude and the decay time constant of mEPSCs in 25 of 27 lamina II(o) neurons. Yohimbine (2 microM, an alpha(2)-adrenergic receptor antagonist), but not prazosin (2 microM, an alpha(1)-adrenergic receptor antagonist), blocked the inhibitory effect of clonidine on the mEPSCs. Clonidine (1-20 microM, n = 8) also significantly attenuated the peak amplitude of evoked EPSCs in a concentration-dependent manner. The effect of clonidine on evoked EPSCs was abolished in the presence of yohimbine (n = 5). These data suggest that clonidine inhibits the excitatory synaptic input to lamina II(o) neurons through activation of alpha(2)-adrenergic receptors located on the glutamatergic afferent terminals. Presynaptic inhibition of glutamate release from primary afferents onto lamina II(o) neurons likely plays an important role in the analgesic action produced by activation of the descending noradrenergic system and alpha(2)-adrenergic agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号