首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast Mec1 kinase is a key regulator of the DNA damage response (DDR). In this issue of Genes & Development, Kumar and Burgers (pp. 313–321) report that Ddc1, Dpb11, and Dna2 function in concert to activate Mec1 during S phase of the cell cycle. Furthermore, the Tel1 kinase also contributes to the DDR in S phase when Mec1 activation is compromised.  相似文献   

2.
BACKGROUND: We have reported that protein imaging by transmission electron microscope observation based on low-angle platinum shadowing can reproduce characteristic ring structures of the replication clamp, proliferating cell nuclear antigen (PCNA), and the clamp loader protein, replication factor C (RFC). The checkpoint protein complexes, Rad9-Hus1-Rad1 (Rad9-1-1) and Rad17-RFCs2-5 (Rad17-RFC), have been predicted to function as novel clamp and clamp loader proteins, respectively, due to their amino acid sequence similarities with PCNA and RFC. RESULTS: We reconstituted human Rad9-1-1 and Rad17-RFC complexes in insect cells using a baculovirus expression system and showed purified Rad9-1-1 to be composed of equimolar amounts of Rad9, Hus1 and Rad1 proteins, exhibiting a native molecular mass of 100 kDa, in line with a trimeric complex. When Rad17 was co-expressed with the four small subunits of RFC in insect cells, these proteins formed a complex of 240 kDa that displayed DNA binding, ATPase activity and binding to its predicted target protein, Rad9-1-1. Analyses of the molecular architecture of Rad9-1-1 and Rad17-RFC using transmission electron microscopy, in comparison with PCNA and RFC, revealed the Rad9-1-1 complex to have a characteristic ring structure indistinguishable from that of PCNA in shape and size. In addition, the Rad17-RFC complex was found to be oval in structure and 26 x 22 nm in size with a cleft, reminiscent of the structure of RFC. CONCLUSION: Our direct comparison of images from the two sets of clamp and clamp loader proteins indicated that Rad9-1-1 and Rad17-RFC are, respectively, structural orthologs of PCNA and RFC, with presumed functions as novel clamp and clamp-loader proteins in eukaryotes.  相似文献   

3.
Although the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, represents an efficient vector for vaccine development. Baculovirus surface display induces strong humoral responses against viruses and parasites. A novel strategy based on capsid display carrying foreign antigens in the AcMNPV particle further improved the immune response by eliciting CD8+ T cell activation. In this study, we analyze the intracellular mechanisms and signalling pathways involved in CD8+ T cell activation by capsid display. Our results show that baculovirus can attach to the cell surface, enter dendritic cells (DCs), transit within endocytic vesicles and escape to the cytosol for further degradation by the proteasome. We found that the availability of viral proteins, endosomal acidification, and proteasome activity are needed for efficient Major Histocompatibility Complex class-I presentation by baculovirus carrying Ovalbumin in the viral capsid. Importantly, we demonstrated with this strategy that the induction of cytotoxic T cells and IL-12 production by DCs are TLR9-dependent and STING-independent. Finally, our study shows differential intracellular processing for capsid and surface baculovirus proteins in DCs and highlights the role of different danger receptors during cytotoxic T cell priming through the capsid display delivery system, which could lead to improved baculovirus-based vaccines development.  相似文献   

4.
5.
Toll-like receptors (TLRs) activate the innate immune system in response to pathogens. Here we show that TLR9 proteolytic cleavage is a prerequisite for TLR9 signaling. Inhibition of lysosomal proteolysis rendered TLR9 inactive. The carboxy-terminal fragment of TLR9 thus generated included a portion of the TLR9 ectodomain, as well as the transmembrane and cytoplasmic domains. This cleavage fragment bound to the TLR9 ligand CpG DNA and, when expressed in Tlr9(-/-) dendritic cells, restored CpG DNA-induced cytokine production. Although cathepsin L generated the requisite TLR9 cleavage products in a cell-free in vitro system, several proteases influenced TLR9 cleavage in intact cells. Lysosomal proteolysis thus contributes to innate immunity by facilitating specific cleavage of TLR9.  相似文献   

6.
The intra-S-phase checkpoint in yeast responds to stalled replication forks by activating the ATM-like kinase Mec1 and the CHK2-related kinase Rad53, which in turn inhibit spindle elongation and late origin firing and lead to a stabilization of DNA polymerases at arrested forks. A mutation that destabilizes the second subunit of the Origin Recognition Complex, orc2-1, reduces the number of functional replication forks by 30% and severely compromises the activation of Rad53 by replication stress or DNA damage in S phase. We show that the restoration of the checkpoint response correlates in a dose-dependent manner with the restoration of pre-replication complex formation in G1. Other forms of DNA damage can compensate for the reduced level of fork-dependent signal in the orc2-1 mutant, yet even in wild-type cells, the amount of damage required for Rad53 activation is higher in S phase than in G2. Our data suggest the existence of an S-phase-specific threshold that may be necessary to allow cells to tolerate damage-like DNA structures present at normal replication forks.  相似文献   

7.
DNA damage triggers the activation of checkpoints that delay cell cycle progression to allow for DNA repair. Loss of G2 checkpoints provides a growth advantage for tumor cells undergoing aberrant mitosis. However, the precise mechanisms of G2 checkpoints acting in gastric cancer are unknown. Here, we analyzed the G2 checkpoint function in two gastric cancer cells, MKN-28 cells containing a mutant p53 gene and MKN-45 cells which have wild-type p53. Two agents damaging DNA, camptothecin (CPT) or ultraviolet light (UV), were utilized to trigger a G2 phase cell cycle checkpoint response in these tumor cells. Both CPT and UV inhibited the growth of MKN-45 cells, whereas they did not affect the growth of MKN-28 cells. CPT induced cell cycle arrest at the G2/M phase and enhanced the expression of human RAD9 (hRAD9) in MKN-45 cells. In addition, hRAD9 showed perinuclear staining and similar localization with Bcl-2 in MKN-45 cells but not in MKN-28 cells after having applied CPT or UV light. These results suggest that besides p53 activity, the induction of hRAD9 is required for G2/M checkpoint signal transduction in gastric cancer cells.  相似文献   

8.
Regulatory T (Treg) cells play a central role in the suppression of excessive immune responses against both self and non-self antigens. The development and function of Treg cells are controlled by a master regulatory gene encoding the forkhead box P3 (FOXP3) protein in mammals. However, little is known regarding the functions of Treg cells and FOXP3 in non-mammalian vertebrates. In this study, we generated mutant zebrafish lacking a functional FOXP3 ortholog, and demonstrated a significant reduction in survival accompanied by a marked increase in inflammatory gene expression, mononuclear cell infiltration, and T cell proliferation in peripheral tissues. Our findings indicate that the zebrafish FOXP3 protein may have an evolutionally conserved role in the control of immune tolerance, illuminating the potential of the zebrafish as a novel model for investigating the development and functions of Treg cells.  相似文献   

9.
Type 1 (Th1) granulomas can be studied in mice sensitized with mycobacterium antigens followed by challenge of agarose beads covalently coupled to purified protein derivative. TLR9 is known to play a role in the regulation of Th1 responses; thus, we investigated the role of TLR9 in granuloma formation during challenge with mycobacterium antigens and demonstrated that mice deficient in TLR9 had increased granuloma formation, but a dramatically altered cytokine phenotype. Th1 cytokine levels of IFN-gamma and IL-12 in the lungs were decreased in TLR9(-/-) mice when compared to wild-type mice. In contrast, Th2 cytokine levels of IL-4, IL-5, and IL-13 were increased in TLR9(-/-) mice. The migration of CD4(+) T cells in the granuloma was impaired, while the number of F4/80(+) macrophages was increased in TLR9(-/-) mice. Macrophages in the lungs of the TLR9-deficient animals with developing granulomas expressed significantly lower levels of the classically activated macrophage marker, nitric oxide synthase, but higher levels of the alternatively activated macrophage markers such as 'found in inflammatory zone-1' antigen and Arginase-1. These results suggest that TLR9 plays an important role in maintaining the appropriate phenotype in a Th1 granulomatous response.  相似文献   

10.
We report on the function of the human ortholog of Saccharomyces cerevisiae Rif1 (Rap1-interacting factor 1). Yeast Rif1 associates with telomeres and regulates their length. In contrast, human Rif1 did not accumulate at functional telomeres, but localized to dysfunctional telomeres and to telomeric DNA clusters in ALT cells, a pattern of telomere association typical of DNA-damage-response factors. After induction of double-strand breaks (DSBs), Rif1 formed foci that colocalized with other DNA-damage-response factors. This response was strictly dependent on ATM (ataxia telangiectasia mutated) and 53BP1, but not affected by diminished function of ATR (ATM- and Rad3-related kinase), BRCA1, Chk2, Nbs1, and Mre11. Rif1 inhibition resulted in radiosensitivity and a defect in the intra-S-phase checkpoint. The S-phase checkpoint phenotype was independent of Nbs1 status, arguing that Rif1 and Nbs1 act in different pathways to inhibit DNA replication after DNA damage. These data reveal that human Rif1 contributes to the ATM-mediated protection against DNA damage and point to a remarkable difference in the primary function of this protein in yeast and mammals.  相似文献   

11.
The protein encoded by SNM1 in Saccharomyces cerevisiae has been shown to act specifically in DNA interstrand crosslinks (ICL) repair. There are five mammalian homologs of SNM1, including Artemis, which is involved in V(D)J recombination. Cells from mice constructed with a disruption in the Snm1 gene are sensitive to the DNA interstrand crosslinker, mitomycin (MMC), as indicated by increased radial formation following exposure. The mice reproduce normally and have normal life spans. However, a partial perinatal lethality, not seen in either homozygous mutant alone, can be noted when the Snm1 disruption is combined with a Fancd2 disruption. To explore the role of hSNM1 and its homologs in ICL repair in human cells, we used siRNA depletion in human fibroblasts, with cell survival and chromosome radials as the end points for sensitivity following treatment with MMC. Depletion of hSNM1 increases sensitivity to ICLs as detected by both end points, while depletion of Artemis does not. Thus hSNM1 is active in maintenance of genome stability following ICL formation. To evaluate the epistatic relationship between hSNM1 and other ICL repair pathways, we depleted hSNM1 in Fanconi anemia (FA) cells, which are inherently sensitive to ICLs. Depletion of hSNM1 in an FA cell line produces additive sensitivity for MMC. Further, mono-ubiquitination of FANCD2, an endpoint of the FA pathway, is not disturbed by depletion of hSNM1 in normal cells. Thus, hSNM1 appears to represent a second pathway for genome stability, distinct from the FA pathway.  相似文献   

12.
Topoisomerase II (Topo II) performs topological modifications on double-stranded DNA molecules that are essential for chromosome condensation, resolution, and segregation. In mammals, G2 and metaphase cell cycle delays induced by Topo II poisons have been proposed to be the result of checkpoint activation in response to the catenation state of DNA. However, the apparent lack of such controls in model organisms has excluded genetic proof that Topo II checkpoints exist and are separable from the conventional DNA damage checkpoint controls. But here, we define a Topo II-dependent G2/M checkpoint in a genetically amenable eukaryote, budding yeast, and demonstrate that this checkpoint enhances cell survival. Conversely, a lack of the checkpoint results in aneuploidy. Neither DNA damage-responsive pathways nor Pds1/securin are needed for this checkpoint. Unusually, spindle assembly checkpoint components are required for the Topo II checkpoint, but checkpoint activation is not the result of failed chromosome biorientation or a lack of spindle tension. Thus, compromised Topo II function activates a yeast checkpoint system that operates by a novel mechanism.  相似文献   

13.
The Menkes copper transporter is required for the activation of tyrosinase   总被引:1,自引:0,他引:1  
Menkes disease is an X-linked recessive copper deficiency disorder caused by mutations in the ATP7A (MNK) gene. The MNK gene encodes a copper-transporting P-type ATPase, MNK, which is localized predominantly in the trans-Golgi network (TGN). The MNK protein relocates to the plasma membrane in cells exposed to elevated copper where it functions in copper efflux. A role for MNK at the TGN in mammalian cells has not been demonstrated. In this study, we investigated whether the MNK protein is required for the activity of tyrosinase, a copper-dependent enzyme involved in melanogenesis that is synthesized within the secretory pathway. We demonstrate that recombinant tyrosinase expressed in immortalized Menkes fibroblast cell lines was inactive, whereas in normal fibroblasts known to express MNK protein there was substantial tyrosinase activity. Co-expression of the Menkes protein and tyrosinase from plasmid constructs in Menkes fibroblasts led to the activation of tyrosinase and melanogenesis. This MNK-dependent activation of tyrosinase was impaired by the chelation of copper in the medium of cells and after mutation of the invariant phosphorylation site at aspartic acid residue 1044 of MNK. Collectively, these findings suggest that the MNK protein transports copper into the secretory pathway of mammalian cells to activate copper-dependent enzymes and reveal a second copper transport role for MNK in mammalian cells. These findings describe a single cell-based system that allows both the copper transport and trafficking functions of MNK to be studied. This study also contributes to our understanding of the molecular basis of pigmentation in mammalian cells.  相似文献   

14.
Structural maintenance of chromosomes (SMC) proteins (SMC1, SMC3) are evolutionarily conserved chromosomal proteins that are components of the cohesin complex, necessary for sister chromatid cohesion. These proteins may also function in DNA repair. Here we report that SMC1 is a component of the DNA damage response network that functions as an effector in the ATM/NBS1-dependent S-phase checkpoint pathway. SMC1 associates with BRCA1 and is phosphorylated in response to IR in an ATM- and NBS1-dependent manner. Using mass spectrometry, we established that ATM phosphorylates S957 and S966 of SMC1 in vivo. Phosphorylation of S957 and/or S966 of SMC1 is required for activation of the S-phase checkpoint in response to IR. We also discovered that the phosphorylation of NBS1 by ATM is required for the phosphorylation of SMC1, establishing the role of NBS1 as an adaptor in the ATM/NBS1/SMC1 pathway. The ATM/CHK2/CDC25A pathway is also involved in the S-phase checkpoint activation, but this pathway is intact in NBS cells. Our results indicate that the ATM/NBS1/SMC1 pathway is a separate branch of the S-phase checkpoint pathway, distinct from the ATM/CHK2/CDC25A branch. Therefore, this work establishes the ATM/NBS1/SMC1 branch, and provides a molecular basis for the S-phase checkpoint defect in NBS cells.  相似文献   

15.
Costimulation by members of the B7 family of molecules is critical for the activation of naive CD4+ T cells. While prolonged TCR signaling is necessary for T cell activation, the duration of costimulatory signals required has not been established. In this study, murine bone marrow-derived dendritic cells (DC) and na?ve CD4+ T cells were used to determine the temporal costimulatory requirements for naive T cell activation. By blocking CD80/CD86 costimulation at various time points during DC-T cell interaction and using the CFSE technique to assess the dynamics of T cell proliferation, we found that prolonged costimulation was required for naive T cells to enter and progress through the cell cycle over a wide range of peptide concentrations. Prolonged costimulation was also important for IL-2 production and CD25/CD69 expression by naive T cells. Video microscopy demonstrated that DC and naive T cells formed stable conjugates that persisted for more than 6 h. Thus, persistent CD80/CD86 signaling during prolonged interactions with DC allows naive T cells to enter the cell cycle and programs the daughter cells to undergo subsequent divisions.  相似文献   

16.
Background: Hemoglobins (Hbs) are evolutionarily conserved heme‐containing metallo‐proteins of the Globin protein family that harbour the characteristic “globin fold.” Hemoglobins have been functionally diversified during evolution and their usual property of oxygen transport is rather a recent adaptation. Drosophila genome possesses three globin genes (glob1, glob2, and glob3), and we have reported earlier that adequate expression of glob1 is required for various aspects of development, as well as to regulate the cellular level of reactive oxygen species (ROS). The present study illustrates the explicit role of Drosophila globin1 in progression of oogenesis. Results: We demonstrate a dynamic expression pattern of glob1 in somatic and germ cell derivatives of developing egg chambers during various stages of oogenesis, which largely confines around the F‐actin‐rich cellular components. Reduced expression of glob1 leads to various types of abnormalities during oogenesis, which were primarily mediated by the inappropriately formed F‐actin‐based cytoskeleton. Our subsequent analysis in the somatic and germ line clones shows cell autonomous role of glob1 in the maintenance of the integrity of F‐actin‐based cytoskeleton components in the somatic and germ cell derivatives. Conclusions: Our study establishes a novel role of glob1 in maintenance of F‐actin‐based cytoskeleton during progression of oogenesis in Drosophila. Developmental Dynamics 245:1048–1065, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Kim HS  Dorsky RI 《Developmental dynamics》2011,240(10):2256-2264
Neural progenitor cells must be maintained during development in order to produce the full complement of neuronal and glial derivatives. While molecular pathways have been identified that inhibit progenitor differentiation, it is unclear whether the progenitor state itself is actively maintained. In this study, we have investigated the role of Tcf7l1 (formerly named Tcf3) in maintaining spinal progenitor characteristics and allowing the continued production of neurons and glia following primary neurogenesis. We find that spinal cord progenitor markers are progressively lost in embryos lacking Tcf7l1, and that the number of proliferative progenitors decreases accordingly. Furthermore, we show that the production of both neuronal and glial secondary derivatives of the pMN progenitor pool requires Tcf7l1. Together, these results indicate that Tcf7l1 plays an important role in spinal cord progenitor maintenance, indicating that this core function is conserved throughout multiple epithelial cell populations.  相似文献   

18.
The Traf-linked tumor necrosis factor receptor family member CD27 is known as a T cell costimulatory molecule. We generated CD27-/- mice and found that CD27 makes essential contributions to mature CD4+ and CD8+ T cell function: CD27 supported antigen-specific expansion (but not effector cell maturation) of na?ve T cells, independent of the cell cycle-promoting activities of CD28 and interleukin 2. Primary CD4+ and CD8+ T cell responses to influenza virus were impaired in CD27-/- mice. Effects of deleting the gene encoding CD27 were most profound on T cell memory, reflected by delayed response kinetics and reduction of CD8+ virus-specific T cell numbers to the level seen in the primary response. This demonstrates the requirement for a costimulatory receptor in the generation of T cell memory.  相似文献   

19.
Osteosarcoma (OS) displays complex karyotypes with numerical changes as well as structural abnormalities suggesting that several oncogenes and tumor suppressor genes may be implicated in the biology of OS. The aim of our study was to investigate the possible implication of the molecular alterations of the G1 to S-phase checkpoint genes in the pathogenesis of OS. We analyzed samples from 29 patients and found molecular alterations of the RB and TP53 genes in 6 (21%) and 3 (10%) cases, respectively. Homozygous deletion of the INK4A/ARF locus and methylation of INK4A was detected in 3 (10%) and 2 (7%) cases, respectively. CDK4 and MDM2 co-amplification was observed in 1 case (3%). Cyclin D3 is differentially expressed in a greater proportion than D1- and D2-type cyclins. Cytogenetically, all cases had complex karyotypes being especially significant the losses of the chromosomes 4, 13, and 17. As a whole, 11 of 29 (38%) analyzed OS presented alterations in some of the analyzed G1 to S-phase checkpoint genes. These alterations were more frequently present in adults (P = 0.032). All patients with genetic alterations in the G1/S-phase checkpoint died during their clinical follow-up, whereas more than 53% of the remaining cases were alive in this period (P = 0.007). Hence, in the pathogenesis of human OS, deregulation of the G1/S checkpoint genes, especially RB, TP53, and INK4/ARF locus, plays an important role and defines a subgroup of patients with a poor outcome.  相似文献   

20.
Initiation of DNA replication during the mitotic cell cycle requires the activation of a cyclin-dependent protein kinase (CDK). The B-type cyclins Clb5 and Clb6 are the primary activators of the S phase function of the budding yeast CDK Cdc28. However, in mitotically growing cells this role can be fulfilled by the other B-type cyclins Clb1–Clb4. We report here that cells undergoing meiotic development also require Clb dependent CDK activity for DNA replication. Diploid clb5/clb5 clb6/clb6 mutants are unable to perform premeiotic DNA replication. Despite this defect, the mutant cells progress into the meiotic program and undergo lethal segregation of unreplicated DNA suggesting that they fail to activate a checkpoint that restrains meiotic M phase until DNA replication is complete. We have found that a DNA replication checkpoint dependent on the ATM homolog MEC1 operates in wild-type cells during meiosis and can be invoked in response to inhibition of DNA synthesis. Although cells that lack clb5 and clb6 are unable to activate the meiotic DNA replication checkpoint, they do possess an intact DNA damage checkpoint which can restrain chromosome segregation in the face of DNA damage. We conclude that CLB5 and CLB6 are essential for premeiotic DNA replication and, consequently, for activation of a meiotic DNA replication checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号