首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
INTRODUCTION: Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. AREAS COVERED: This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. EXPERT OPINION: Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.  相似文献   

3.
The transfer of salicylic acid and of three sulphonamides from an aqueous phase of pH 2 or pH 5 through an intervening organic phase to an aqueous phase of pH 7.4 has been studied using a rotating cell. The manner of operation of the cell promotes rapid drug transfer without vortexing or emulsification of the phases. The rates of transfer of the drugs showed the anticipated pH dependance.  相似文献   

4.
Kim BS  Won M  Lee KM  Kim CS 《Drug delivery》2008,15(7):465-469
We prepared a nanoemulsion system with benzyl alcohol/ ethanol/Solutol/smash(R) HS 15 /water. Ketoprofen was used as a model drug in this study. The nanoemulsions of this system evidenced a high degree of stability. The droplet diameter did not change over a period of at least 3 months. The nanoemulsion containing 4% benzyl alcohol evidenced a permeation rate higher than was observed with the 1% and 2% nanoemulsions. Also the nanoemulsion containing 1% Solutol(R) HS 15 provided a permeation rate higher than was seen with the 2% and 4% nanoemulsions. All ketoprofen-loaded nanoemulsions enhanced the in vitro permeation rate through mouse skins as compared to the control.  相似文献   

5.
Serially passaged normal human bronchial epithelial (NHBE) cell monolayers were established on Transwell inserts via an air-liquid interface (ALI) culture method. NHBE cells were seeded on polyester Transwell inserts, followed by an ALI culture from day 3, which resulted in peak TEER value of 766+/-154 Omegaxcm2 on the 8th day. Morphological characteristics were observed by light microscopy and SEM, while the formation of tight junctions was visualized by actin staining, and confirmed successful formation of a tight monolayer. The transepithelial permeability (Papp) of model drugs significantly increased with the increase of lipophilicity and showed a good linear relationship, which indicated that lipophilicity is an important factor in determining the Papp value. The expression of P-gp transporter in NHBE cell monolayers was confirmed by the significantly higher basolateral to apical permeability of rhodamine123 than that of reverse direction and RT-PCR of MDR1 mRNA. However, the symmetric transport of fexofenadine.HCl in this NHBE cell monolayers study seems to be due to the low expression of P-gp transporter and/or to its saturation with high concentration of fexofenadine.HCl. Thus, the development of tight junction and the expression of P-gp in the NHBE cell monolayers in this study imply that they could be a suitable in vitro model for evaluation of systemic drug absorption via airway delivery, and that they reflect in vivo condition better than P-gp over-expressed cell line models.  相似文献   

6.
Lee MK  Yoo JW  Lin H  Kim YS  Kim DD  Choi YM  Park SK  Lee CH  Roh HJ 《Drug delivery》2005,12(5):305-311
The objective of this study was to establish a drug transport study using human nasal epithelial (HNE) cell monolayers cultured by the air-liquid interface (ALI) method using serum-free medium (BEGM:DME/F12, 50:50). The cells were developed and characterized in comparison to those that have been previously cultured by the liquid-covered culture (LCC) method. The epithelial cell monolayer cultured by the ALI method resulted in a significantly higher transepithelial electrical resistance value (3,453 +/- 302 ohm x cm(2)) that was maintained (>1,000 ohm x cm(2)) for up to 20 days compared with that cultured by the LCC method. Observation by scanning electron microscopy revealed mature cilia after 2 weeks in the ALI culture, while flatten unhealthy ciliated cells were observed in the LCC method. After 21 days, higher level of MUC5AC and 8 mRNA were expressed in ALI culture which confirmed the secretory differentiation of HNE monolayers in vitro. No significant difference in the permeability coefficients of a model hydrophilic marker ((14)C-mannitol) and a lipophilic drug (budesonide) was observed between the two conditions on day 7. The passage 2-3 of the HNE monolayer using ALI condition retained the morphology and differentiated features of normal epithelium. Thus it would be a suitable model for in vitro nasal drug delivery studies.  相似文献   

7.
A flow-through diffusion cell was validated for in vitro human epidermal penetration studies of organophosphorus compounds (OPCs) applied by infinite dosing. By testing OPCs with similar molecular weight but different physicochemical properties, it was shown that hydrophilic and lipophilic properties are major determinants for the penetration rate. Lipophilic OPCs displayed maximum cumulative penetration in the 20–75% agent concentration range whereas the hydrophilic OPCs displayed maximum cumulative penetration at 10 or 20% agent concentration. Low penetration was observed for all agents at 1% agent concentration or when applied as neat agents. The impact of the receptor solution composition was evaluated by comparing the penetration using receptor solutions of different ratios of ethanol and water. For diluted OPCs, a high concentration of ethanol in the receptor solution significantly increased the penetration compared to lower concentrations. When OPCs were applied as neat agents, the composition of the receptor solution only affected the penetration for one of four tested compounds. In conclusion, the flow-through diffusion cell was useful for examining the penetration of OPCs through the epidermal membrane. It was also demonstrated that the penetration rates of OPCs are strongly influenced by dilution in water and the receptor fluid composition.  相似文献   

8.
Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.  相似文献   

9.
10.
The possible stereoselectivity in DNA-photosensitization by carprofen (a NSAID drug) and ofloxacin (a fluoroquinolone agent) was investigated. The different drug stereoisomers or racemic mixtures were UVA-irradiated and the relaxation of the supercoiled circular pBR322 quantified by electrophoresis. Formation of single strand breaks was compared for each group of compounds. Moreover a mechanistic study by means of repair enzymes: T4 endonuclease V (specific of cyclobutane pyrimidine dimers), E. coli endonuclease III (revealing oxidized pyrimidines) and E. coli Formamidopyrimidine-DNA glycosylase (revealing oxidized purines) provided further insights into a possible stereoselectivity of the different reaction pathways in drug photosensitized-DNA damage. Ofloxacin and levofloxacin (its S stereoisomer) were responsible of single strand breaks formation as well as oxidation of pyrimidine and purine bases. No pyrimidine dimers were observed. Racemic, R and S stereoisomers of carprofen were less efficient than ofloxacin in DNA single strand breaks formation and did not induce enzyme-sensitive sites. The photoproducts distribution of drug-photosensitized reactions of 2′-deoxyguanosine and thymidine were established by HPLC as fingerprints for assignment of the DNA-photosensitization mechanism. Both Type I and Type II mechanisms were assigned to nucleoside-photosensitization by ofloxacin and levofloxacin. In the case of carprofen, a weak nucleoside degradation was obtained. The data suggest that levofloxacin, the (S) stereoisomer, might be slightly more efficient than racemic ofloxacin. In the case of carprofen the (S) isomer appears to be somewhat less active than its (R) enantiomer. However, due to the small differences found, the possible stereoselectivity has to be confirmed by future studies.  相似文献   

11.
Methacrylate monomers are major components of resin-based biomaterials. The polymerization of these materials is never complete, and methacrylates leaking from cured materials cause exposure of patients. Only some selected methacrylates have thoroughly been tested for possible interaction with living cells. In the current study, we compared the effects of 2-hydroxyethyl-methacrylate (HEMA; a carefully studied methacrylate) and hydroxypropyl-methacrylate (HPMA; a scarcely investigated methacrylate). Five cell lines differing in both source and cell type were used.The cells were exposed to methacrylates (1–8 mM). Cell viability, cell death, glutathione levels, reactive oxygen species (ROS), and cell growth pattern were measured.Both methacrylates reduced cell viability, and glutathione depletion was observed in all cell lines. The cell death pattern varied among the cell lines. The ROS levels and cell growth pattern also differed between the cell lines after exposure to methacrylate monomers. No difference between HEMA and HPMA exposures were observed in any of the cell lines.The variation between cell lines shows that the measured methacrylate toxicity depends heavily on the test system chosen. Further, the conformity between HEMA and HPMA effects suggests that the two methacrylates similarly affect living cells.  相似文献   

12.
The passage of substances across the blood-brain barrier (BBB) is regulated in the cerebral capillaries, which possess certain distinct different morphological and enzymatic properties compared with the capillaries of other organs. Investigations of the functional characteristics of brain capillaries have been facilitated by the use of cultured brain endothelial cells, but in most studies some characteristics of the in vivo BBB are lost. To provide an in vitro system for studying brain capillary functions, we have developed a process of coculture that closely mimics the in vivo situation by culturing brain capillary endothelial cells on one side of a filter and astrocytes on the other. In order to assess the drug transport across the blood-brain barrier, we compared the extraction ratios in vivo to the permeability of the in vitro model. The in vivo and the in vitro values showed a strong correlation. The relative ease with which such cocultures can be produced in large quantities facilitates the screening of new centrally active drugs. This model provides an easier, reproducible and mass-production method to study the blood-brain barrier in vitro.  相似文献   

13.
Filter-grown monolayers of porcine alveolar epithelial cells (pAEpC) in primary culture have been characterized as an in vitro model for pulmonary absorption screening of xenobiotics, including substrates of efflux systems. Experimental conditions and a protocol for transport experiments were optimized using transepithelial electrical resistances (TEER) and permeability of marker compounds as acceptance criteria. Since new drugs often feature poor water solubility, monolayer integrity in the presence of a solubilizer (dimethyl sulfoxide) was tested. Transport studies were carried out with budesonide and triamcinolone acetonide, i.e., two drugs commonly administered to the lungs. Furthermore, expression of P-glycoprotein (P-gp) was assessed by immunofluorescence microscopy and transport studies employing the substrates rhodamine 123 and digoxin. Hydrocortisone-supplemented (0.5 microg/ml) small airway basal medium as transport buffer and a maximal solubilizer concentration of 1.5% dimethyl sulfoxide were found to provide suitable conditions for drug transport studies across pAEpC, as reflected, e.g., by a minimum TEER of 600 Omega cm(2). Permeation of marker compounds was reproducible throughout several cell preparations and proved the model successful in distinguishing between low- and high-permeable drugs. P-gp expression was confirmed by immunocytochemistry, even though transport studies revealed no polarity in transepithelial marker transport. In conclusion, our results demonstrate that filter-grown monolayers of pAEpC can be used to study drug transport across alveolar epithelial barrier and thus, may represent a suitable in vitro model for pulmonary drug absorption and delivery.  相似文献   

14.
15.
Mechanisms of corneal drug penetration. I: In vivo and in vitro kinetics   总被引:1,自引:0,他引:1  
Corneal penetration studies were conducted in unanesthetized albino rabbits using various organic compounds representing both polar and nonpolar species. Very low molecular weight compounds demonstrate rapid uptake into the aqueous humor despite the lipid-like barrier imposed by the corneal epithelium. Evidence that these compounds may have access to a diffusional channel for corneal transport is presented. In vitro permeability studies were also conducted in an effort to quantitate the corneal diffusion of compounds covering a range of molecular weights and partition coefficients; the results corresponded well with the results of in vivo experiments. Calculations of energies of activation, taken from Arrhenius plots, indicate that the diffusion of drug across the cornea may be by two different mechanisms that depend on the physical-chemical characteristics of the perfusant. One mechanism appears similar to drug movement in an aqueous environment and is characterized by an activation energy similar to that for diffusion in water. The other relates to the expected partitioning of a compound across cellular membranes represented by a relatively high activation energy for diffusion. For hyrdophilic compounds, the epithelium appears to be rate limiting to drug movement, whereas for hydrophobic compounds, the stroma is rate limiting. In the presence of calcium-chelating agents, glycerol demonstrated an increase in corneal penetration in vivo. This effect appears to be reversible at specific concentrations of chelator. In contrast, divalent cations reduced corneal penetration of glycerol. The known calcium chelator EDTA was shown to penetrate the cornea, conjunctiva, and iris/ciliary body from a topically applied dose. The implications of this observation pertain to toxicity effects when EDTA is incorporated into ocular drug products for stability purposes, or novel stratagems for improving ocular bioavailability of topically applied drugs are employed. The addition of calcium-chelating agents to in vivo mounted corneas demonstrated increases in permeability of the cornea to glycerol which were directly related to the concentration of chelating agent used. These results paralleled the findings of similar in vivo studies. The results of these studies are consistent with a currently proposed 'pore' model for the penetration of drugs through the cornea which demonstrates both a partition coefficient and molecular weight dependency on the permeability of the cornea to transported compounds.  相似文献   

16.
Glyceryl monooleate/water cubic phase systems were investigated as drug delivery systems, using salicylic acid as a model drug. The liquid crystalline phases formed by the glyceryl monooleate (GMO)/water systems were characterized by polarizing microscopy. In vitro drug release studies were performed and the influences of initial water content, swelling and drug loading on the drug release properties were evaluated. Water uptake followed second-order swelling kinetics. In vitro release profiles showed Fickian diffusion control and were independent on the initial water content and drug loading, suggesting GMO cubic phase gels suitability for use as drug delivery system.  相似文献   

17.
Transfer rates of individual enantiomers of propranolol across human skin were determined in vitro. Percutaneous penetration of propranolol from propylene glycol was negligible at the concentration previously reported to show enantioselective transfer in rat skin. Transfer of (R)- and (S)-propranolol from aqueous solutions of both the racemate and the pure enantiomers showed no differences in the rates of penetration demonstrating that the rate of transfer of propranolol across human skin from these solutions was independent of the stereochemistry of the drug. In addition there was no evidence for racemisation during the transfer process.  相似文献   

18.
Polyurethane matrices containing up to 39% of the terpenes eucalyptol, L-limonene, D-limonene, dipentene or terpinolene were produced. Release of the terpenes directly to the acceptor fluid, as well as through isolated human epidermis and dermis, was studied. In the presence of dermis the penetration profiles were very similar to the release profiles, indicating that dermis does not present a barrier for penetration of terpenes. For all terpenes the penetration was slower in the presence of epidermis (K(p) was in the range 0.21-1.8x10(-3) cm/h). Release and penetration through the epidermis and dermis were fastest for dipenetene (mixture of D-limonene and L-limonene), being at least 3-4 times faster than for D-limonene and L-limonene. Large amounts of terpenes found in epidermis (approximately 1.5 mg/cm(2)) indicate that affinity of these compounds to the stratum corneum is very high.  相似文献   

19.
1. The three-dimensional structure of human lung tumour spheroids conferred a degree of resistance to the anthracyclines adriamycin, 4'-deoxydoxorubicin, daunomycin and daunomycin-low density lipoprotein complex in comparison with cells grown as a monolayer, as assessed by delayed growth and clonogenic cell survival. 2. 4'-Deoxydoxorubicin induced a longer growth delay and greater clonogenic cell kill than adriamycin in spheroids, although it was no more cytotoxic in monolayer. 3. Fluorescent microscopy demonstrated that the more lipophilic analogues partitioned into the spheroid more rapidly and to a greater degree than adriamycin. 4. The spheroid model demonstrated that penetration is an important aspect of resistance to anthracycline drugs, and this approach may represent a better in vitro system for testing lipophilic analogues of cytotoxic drugs.  相似文献   

20.
The effect of therapeutic concentration of sulfisuxazole (sulfa) on the bilirubin uptake and viability of 8402 cells in culture was studied. The total bilirubin was kept constant at 24 μM and albumin was added to obtain bilirubin-albumin molar ration (BAMR) ranging from 0.5 to 2. The effect of sulfa on unbound bilirubin (UB) was measured by the peroxidase assay. Sulfa increased UB at all BAMR's more so at 1.5 and 2.0 (P < 0.05). Significant increase in bilirubin uptake/cell with a corresponding decrease in cell viability was noted with sulfa at BAMR's > 1 (P < 0.05). The LD50 of these cells was 73–86 nM of UB. A plot of cell viability versus UB for the combined control and sulfa data (r2 = 0.94) confirms that the decrease in cell viability with increasing BAMR is explained by the corresponding rise in UB. Therefore, increase in UB by sulfa leads to toxicity of 8402 cells. Thus, we speculate that they may be used to study the mechanism of bilirubin neurotoxicity induced by similar drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号