首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Effects of okadaic acid, a toxin isolated from marine sponges, on smooth muscle contraction and platelet activation were examined. 2. Contractions in rabbit aorta induced by high concentrations of K+ and noradrenaline were inhibited by 0.1-1 microM okadaic acid in a concentration-dependent manner. Spontaneous rhythmic contractions as well as high K+-induced contraction in guinea-pig taenia caeci were also inhibited by 1 microM okadaic acid. 3. High K+-induced contraction in rabbit aorta was accompanied by increased Ca2+ influx measured with 45Ca2+ and increased cytosolic Ca2+ [( Ca2+]cyt) measured with fura-2-Ca2+ fluorescence. Okadaic acid inhibited the contraction without inhibiting Ca2+ influx and produced only a small decrease in [Ca2+]cyt. 4. In a saponin-skinned taenia, Ca2+-induced contraction was not inhibited but rather potentiated by okadaic acid. 5. Okadaic acid, 1 microM, inhibited aggregation, ATP release and increased in [Ca2+]cyt induced by thrombin in washed rabbit platelets. Okadaic acid itself did not change the platelet activities. 6. Okadaic acid did not change the cyclic AMP content of rabbit aorta although the inhibitory effects of okadaic acid were similar to those of cyclic AMP. 7. Although the mechanism of the inhibitory effect of okadaic acid was not clarified in the present experiments, it is suggested that okadaic acid acts by inhibiting protein phosphatases resulting in an indirect activation of cyclic AMP-dependent protein phosphorylation.  相似文献   

2.
Okadaic acid is a potent tumor promoter and an inhibitor of serine/threonine-specific protein phosphatases. We studied the effect of okadaic acid in human T cell activation and phosphorylation of internal substrates. Okadaic acid at up to 4 nM enhanced phorbol myristate acetate (PMA)-induced proliferation and CD25 (IL-2 receptor, p55) expression, although it showed no activation by itself. Okadaic acid induced hyperphosphorylation of a 60 kDa protein in T cells as well as non-T cells, as reported in fibroblasts and keratinocytes. Preincubation with 4 nM okadaic acid enhanced PMA induced phosphorylation of the 80 kDa protein, an internal substrate of protein kinase C in T cells. These results suggest that okadaic acid inhibited dephosphorylation of protein kinase C specific substrates, and as a result, enhanced T cell activation mediated by protein kinase C pathway.  相似文献   

3.
1. Okadaic acid, a cell permeant inhibitor of protein serine/threonine phosphatases (PPs), attenuated the IgE-mediated release of the pre-formed mediator, histamine from human basophils in a time- and dose-dependent manner. Optimal inhibition (77 +/- 4%, P < 0.0001) of histamine release was observed following a 2 h incubation with 1 microM okadaic acid. 2. Okadaic acid and two analogues of okadaic acid were also studied and were found to inhibit the IgE-dependent release of histamine. Concentrations required to inhibit release by 50% (IC50) were 0.6 microM for okadaic acid and 7.5 microM for okadaol, whereas okadaone was inactive. 3. The structurally-unrelated PP inhibitor, calyculin A, also inhibited IgE-dependent histamine release from basophils dose-dependently and was approximately six fold more potent than okadaic acid. 4. The IgE-mediated generation of sulphopeptidoleukotrienes (sLT) from basophils was inhibited by okadaic acid and related analogues with the following rank order of potency; okadaic acid (approx. IC50 0.3 microM) > okadaol (3 microM) > okadaone (inactive). 5. Okadaic acid, okadaol and okadaone (all at 3 microM) inhibited the IgE-mediated generation of the cytokine interleukin 4 (IL4) from human basophils by 67 +/- 9% (P < 0.002), 48 +/- 14% (P < 0.05) and 8 +/- 7% (P = 0.31), respectively. 6. Extracts of purified human basophils liberated 32P from radiolabelled glycogen phosphorylase and this PP activity was inhibited by 17 +/- 3% (P < 0.0005) by a low (2 nM) concentration of okadaic acid and was inhibited by 96 +/- 1% (P < 0.0001) by a higher (5 microM) concentration of okadaic acid. Because a low (2 nM) concentration of okadaic acid inhibits PP2A selectively whereas a higher (5 microM) concentration inhibits both PP1 and PP2A, these findings suggest that both PP1 and PP2A are present in basophils. 7. In total these data suggest that PPs are resident in human basophils and that PPs may be important in the regulation of basophil function.  相似文献   

4.
Vasodilator responses induced by okadaic acid were investigated in canine basilar artery precontracted with 80 mM KCl. Okadaic acid (1 microM) relaxed the artery and this relaxant effect was partially inhibited by G?6976, a conventional protein kinase C inhibitor, and calphostin C, an inhibitor of conventional and novel PKCs. Rottlerin, a specific inhibitor of PKCdelta, did not influence okadaic acid's effect. KCl increased phosphorylation of 20,000-Dalton myosin light chain (MLC(20)) at Ser-19. Okadaic acid additionally increased MLC(20) phosphorylation at Thr-18 and Thr-9, resulting in triphosphorylation of MLC(20). This phosphorylation was inhibited by G?6976. Okadaic acid stimulated phosphorylation of PKCalpha and 17,000-Dalton PKC-potentiated inhibitory phosphoprotein (CPI-17), and G?6976 inhibited these phosphorylations. These results suggest that okadaic acid's relaxant effect involves MLC(20) triphosphorylation through a direct phosphorylation by PKCalpha and an indirect phosphorylation by inhibition of myosin light chain phosphatase through PKCalpha-mediated CPI-17 phosphorylation.  相似文献   

5.
The serologic activities of structurally related okadaic acid derivatives have been determined. Binding of [3H]okadaic acid to rabbit anti-okadaic acid is inhibited with equal effectiveness by okadaic acid, dinophysistoxin-1, acanthifolicin, okadaic acid tetramethyl ether, and okadaic acid spiroketal II. Okadaic acid spiroketal I, which lacks the F- and G-rings of okadaic acid, inhibits serologic binding about 60 times less effectively. The F- and G-rings of okadaic acid may comprise part of the epitopes recognized by some of the polyclonal antibodies.  相似文献   

6.
We have studied the effect of protein kinase C and protein kinase A activation, and phosphatase inhibition on two different stimuli with distinct mechanisms of action. The first stimulus is compound 48/80, and its action is mediated probably by a Gi-protein, while the other is sodium fluoride, which unspecifically activates G-proteins. We established a comparative study because the action of compound 48/80 is calcium-independent, while fluoride is strictly calcium-dependent. The activation of protein kinase C was attained with the phorbol esther 12-O-tetradecanoylphorbol-13-acetate, protein kinase A was activated by increasing cAMP levels with forskolin or rolipram, and the phosphatase activity was inhibited with okadaic acid (OA), which inhibits phosphatases type 1 and 2A. Our results show that OA enhances the response to fluoride and compound 48/80 in the absence of calcium, and we conclude that calcium has a negative feedback role on the cell response. Protein kinase A activation strongly inhibits the response to fluoride, and the results show a positive regulation of protein kinase C and a negative regulation of protein kinase A over fluoride response. As previously reported by other authors for the ionophore A23187, TPA notably potentiates the response to fluoride, which supports its possible modulatory role on extracellular calcium-dependent stimuli.  相似文献   

7.
目的通过研究冈田酸对大鼠三叉神经元电压门控性钾、钙电流的影响,探讨磷酸酯酶在细胞信号转导中的调节作用。方法采用全细胞膜片钳方法。结果冈田酸1μmol.L-1对瞬时外向钾电流(IA)的抑制率为28.6%,对延迟整流钾电流(IK)和钙电流(ICa)的增加率分别为22.7%和20.0%。冈田酸1μmol.L-1使IA和IK的激活曲线以及IA的失活曲线发生超级化位移,对ICa激活和失活曲线的影响没有统计学意义。结论①蛋白丝/苏氨酸磷酸酯酶1和2A可能参与了大鼠三叉神经节神经元电压门控性钾和钙通道的调节。②电压门控性钾和钙通道对蛋白丝/苏氨酸磷酸酯酶1和2A的去磷酸化反应表现出不同的依赖性。  相似文献   

8.
Okadaic acid is one of the toxins responsible for the human intoxication known as diarrhetic shellfish poisoning, which appears after the consumption of contaminated shellfish. The main diarrhetic shellfish poisoning toxins are okadaic acid, dinophysistoxin-1, -2, and -3. In vivo, after intraperitoneal injection, dinophysistoxin-2 is approximately 40% less toxic than okadaic acid in mice. The cytotoxic and genotoxic effect of okadaic acid varies very significantly in different cell lines, so similar responses could be expected for dinophysistoxin-2. In order to determine whether this was the case, we studied the effect of okadaic acid and dinophysistoxin-2 in two hepatic cell lines (HepG2 and Clone 9). The cytotoxicity of these toxins, as well as their effects on the cell cycle and its regulation on both cell lines, were determined. Okadaic acid and dinophysistoxin-2 resulted to be equipotent in clone 9 cultures, while okadaic acid was more potent than dinophysistoxin-2 in HepG2 cell cultures. Both toxins had opposite effects on the cell cycle; they arrested the cell cycle of clone 9 cells in G2/M inducing aberrant mitosis while arresting the cell cycle of HepG2 in G0/G1. When the effect of the toxins on p53 subcellular distribution was studied, p53 was detected in the nuclei of both cell types. The effect of the toxins on the gene expression of cyclins and cyclin-dependent kinases was different for both cell lines. The toxins induced an increase in gene expression of cyclins A, B, and D in clone 9 cells while they induced a decrease in cyclins A and B in HepG2 cells. They also induced a decrease in cyclin-dependent kinase 1 in HepG2 cells.  相似文献   

9.
目的通过研究蛋白丝/苏氨酸磷酸酶1和2A特异性抑制药冈田酸对大鼠三叉神经元电压依赖性钠电流的影响,探讨磷酸酶在细胞信号转导中的作用。方法在成年大鼠三叉神经元上进行全细胞膜片钳记录。结果1μmol·L-1冈田酸显著抑制总钠电流(INa-T) ,仅轻微抑制毒素不敏感型钠电流(INa-TTX-R) ,其抑制率分别为(20±13) %(n=9,P<0 .05)和(4±3) %(n=6, P<0 .05)。冈田酸对INa-T的激活曲线产生明显的超极化位移,半激活电压从给药前的-(13±8)mV升至给药后的-(16±7)mV(P<0 .05) ,但是对INa-TTX-R的激活曲线没有影响。结论①蛋白丝/苏氨酸磷酸酶参与了大鼠三叉神经元电压依赖性钠通道的调节。②大鼠三叉神经元存在多种电压依赖性钠通道,它们对冈田酸具有不同的敏感性。  相似文献   

10.
Okadaic acid, a protein phosphatase inhibitor, and phorbol myristate acetate, an activator of protein kinase C, increased the phosphorylation state of alpha1A-adrenergic receptors. The effects of these agents were of similar magnitude but that of okadaic acid developed more slowly. Wortmannin (inhibitor of phosphoinositide 3-kinase), but not staurosporine (inhibitor of protein kinase C), abolished the effect of okadaic acid on the alpha1A-adrenoceptor phosphorylation state. The effect of phorbol myristate acetate on this parameter was blocked by staurosporine and only partially inhibited by wortmannin. Okadaic acid markedly increased the co-immunoprecipitation of both the catalytic and regulatory subunits of phosphatidylinositol 3-kinase and of Akt/protein kinase B with the adrenoceptor and only marginally increases receptor association with protein kinase C epsilon. Okadaic acid induced desensitization of alpha1A-adrenoceptors as evidenced by a decreased ability of noradrenaline to increase intracellular calcium. Such desensitization was fully reverted by wortmannin. Our data indicate that inhibition of serine/threonine protein phosphatases increases the phosphorylation state of alpha1A-adrenergic receptor and alters the adrenoceptor function.  相似文献   

11.
Abstract— The effect of okadaic acid, a potent inhibitor of protein phosphatase 1 and 2A, on histamine release from mast cells has been investigated. Okadaic acid strongly and dose-dependently inhibited histamine release from mast cells induced by anti-IgE. The IC50 value of okadaic acid on histamine release induced by anti-IgE was 3·2 Nm. However, okadaic acid failed to inhibit histamine release induced by A23187 and compound 48/80. Moreover, okadaic acid showed no effect on the initial rise in intracellular Ca2+, Ca2+-mobilization from intracellular Ca2+-stores and the generation of inositol trisphosphate. These results suggest a possible involvement of protein phosphatase 2A in the histamine release from mast cells induced by anti-IgE.  相似文献   

12.
Okadaic acid is known as a diarrheal shellfish poison. It is thought that there is no specific target organ for okadaic acid after it has been absorbed into the body. However, the details of its pharmacokinetics are still unknown.In this study, we demonstrated that okadaic acid was more toxic to the hepatocyte-specific uptake transporter OATP1B1- or OATP1B3-expressing cells than control vector-transfected cells. In addition, PP2A activity, which is a target molecule of okadaic acid, was more potently inhibited by okadaic acid in OATP1B1- or OATP1B3-expressing cells compared with control vector-transfected cells. The cytotoxicity of okadaic acid in OATP1B1- or OATP1B3-expressing cells was attenuated by known substrates of OATP1B1- and OATP1B3, but not in control vector-transfected cells. Furthermore, after uptake inhibition study using OATP1B3-expressing cells, Dixon plot showed that okadaic acid inhibited the uptake of hepatotoxin microcystin-LR, which is a substrate for OATP1B1 and OATP1B3, in a competitive manner. These results strongly suggested that okadaic acid is a substrate for OATP1B3 and probably for OATP1B1, and could be involved in unknown caused liver failure and liver cancer. Since okadaic acid possesses cytotoxicity and cell proliferative activity by virtue of its known phosphatase inhibition activity.  相似文献   

13.
In the present work we studied the effect of protein phosphatase inhibitors on the phosphorylation state and function of alpha(1b)-adrenoceptors. Okadaic acid increased receptor phosphorylation in a time- and concentration-dependent fashion (maximum at 30 min, EC(50) of 30 nM). Other inhibitors of protein phosphatases (calyculin A, tautomycin and cypermethrin) mimicked this effect. Staurosporine and Ro 31-8220, inhibitors of protein kinase C, blocked the effect of okadaic acid on receptor phosphorylation. Neither genistein nor wortmannin altered the effect of okadaic acid. The intense adrenoceptor phosphorylation induced by okadaic acid altered the adrenoceptor-G protein coupling, as evidenced by a small decreased noradrenaline-stimulated [(35)S]GTPgammaS binding. Okadaic acid did not alter the noradrenaline-stimulated increases in intracellular calcium or the production of inositol trisphosphate. Our data indicate that inhibition of protein phosphatases increases the phosphorylation state of alpha(1b)-adrenoceptors; this effect seems to involve protein kinase C. In spite of inducing an intense receptor phosphorylation, okadaic acid alters alpha(1b)-adrenergic actions to a much lesser extent than the direct activation of protein kinase C by phorbol myristate acetate.  相似文献   

14.
The effect of carvedilol on oxidative and cell damage induced by okadaic acid in N1E-115 cells were studied. The effects of okadaic acid were evaluated as changes in: the quantity of lipid peroxidation products, protein carbonyl groups, reduced glutathione content (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase and total lactate dehydrogenase (cell LDH). Additionally, a dose of carvedilol (10(-5)M) was added 2h before incubation with okadaic acid (50 nM) and was present until the end of the experiment (2h later added okadaic acid). Our results reveal that okadaic acid induces oxidative stress and an increase of cell LDH in N1E-115 cells, whereas carvedilol prevented the changes prompted by okadaic acid. In conclusion, the data show the protective effect of carvedilol, as well as its ability to modify cell response to okadaic acid, involving like cytoprotective mechanism its antioxidative properties.  相似文献   

15.
Summary 1. Okadaic acid isolated from black sponge (Halichondria okadai), at the concentration of 10 mol/l, caused contraction in saponin-treated skinned smooth muscle of guinea-pig taenia coli in the absence of Ca2+. In the presence of low concentration (0.3 mol/l) of Ca2+ okadaic acid induced a greater contraction than in the absence of Ca2+ 2. Okadaic acid potentiated the contractions induced by Ca2+ and pCa2+-tension curve was shifted to the left as well as upward by 1 mol/l okadaic acid. 3. Native actomyosin preparation (myosin B) containing calmodulinmyosin light chain kinase system and phosphatase was obtained from taenia coli. Okadaic acid (10 mol/l) increased the actomyosin Mg2+-ATPase activity in the presence or absence of Ca2+. 4. Okadaic acid (1–100 mol/l) had no effect on calmodulin activity as monitored by Ca2+-calmodulin activated cyclic nucleotide phosphodiesterase activity and the (Ca2+ + Mg2+)-ATPase activity of erythrocyte membranes. 5. These results suggest that okadaic acid directly activates contractile elements of smooth muscle. Send offprint requests to H. Ozaki at the above address  相似文献   

16.
Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.  相似文献   

17.
1. The effect of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A), on human platelets has been investigated. 2. Okadaic acid exerts a general increase in phosphorylation of platelet proteins but did not induce aggregation or secretion of 5-hydroxytryptamine (5-HT). Okadaic acid, however, did inhibit thrombin-induced functional responses. 3. Maximally effective concentrations of prostacyclin, to elevate adenosine 3'-5'-cyclic monophosphate (cyclic AMP), or phorbol dibutyrate, to activate protein kinase C, inhibited the formation of inositol phosphates by thrombin by approximately 60%. When used in combination, prostacyclin and phorbol dibutyrate reduced the levels of inositol phosphates induced by thrombin to 11%. 4. Okadaic acid (1 microM) decreased thrombin-induced formation of inositol phosphates by approximately 55% and increased the inhibitory action of prostacyclin or phorbol dibutyrate. Okadaic acid had no further effect when prostacyclin and phorbol dibutyrate were used in combination. 5. These results suggest that protein kinases A and C act to inhibit phospholipase C by distinct mechanisms and that their action is reversed by PP1 and/or PP2A.  相似文献   

18.
Okadaic acid (OA) is a tumour promoter that induces apoptosis in several cell models. Following previous findings, the objective of this work was to elucidate the pathways involved in OA-triggered apoptosis in BE(2)-M17 cells by using a combination of pharmacological agents and apoptosis-related assays. OA-induced apoptosis involves disruption of F-actin cytoskeleton, activation of caspase-3, collapse of mitochondrial membrane potential, DNA fragmentation and decreased levels of monomeric Bcl-2 and Bax proteins. All the agents tested were unable to obliterate changes in F-actin levels, caspase-3 activation or DNA fragmentation, but all of them prevented OA-induced decrease of mitochondrial potential and changes in Bax/Bcl-2 levels. Taken together, these results demonstrate that collapse of mitochondrial membrane potential is accessory in the execution of apoptosis, which is directly dependent on cytoskeletal changes. Mitochondrial changes are mediated by complex associations among the Bcl-2 proteins. Cytochrome c release from mitochondria is a late event, occurring 24 h after OA exposure. Moreover, okadaic acid triggers activation of upstream caspases resembling the extrinsic pathway of apoptosis.  相似文献   

19.
Two structurally different inhibitors of ser/thr phosphatases 1 and 2A, okadaic acid and calyculin A, time- and concentration-dependently stimulated and inhibited cell-specific function (hormone gene expression) in pituitary GH3 cells. The negative effect was associated with the appearance of apoptotic cell death. Nanomolar concentrations of both agents produced the characteristic morphological alterations and a DNA fragmentation ladder. Calyculin A treatment resulted in comparable changes with 10fold lower concentrations than okadaic acid. Observations with derivatives of okadaic acid with no or lower phosphatase inhibitory potency supported the conclusion that apoptosis induction is related to inhibition of ser/thr phosphatases, presumably types 1 and 2A. Membrane damage as measured by lactate dehydrogenase liberation into medium was significantly lower in apoptotic vs. necrotic cells. DNA fragmentation could be reduced by the addition of zinc but not by removal of extracellular calcium with EGTA. Apoptotic changes were reduced by the concomitant activation of protein kinase A by a membrane permeable cAMP analogue. Incubation of cells for 4 months in successively increased concentrations of okadaic acid resulted in a population that proliferated at the initially lethal concentration of 30 nM. Received: 6 February 1997 / Accepted: 1 April 1997  相似文献   

20.
The effects of okadaic acid and its interactions with various agents known to increase, by different mechanisms, the intracellular levels of cyclic AMP and/or cyclic GMP were investigated in isolated strips of rat myometrium. Okadaic acid showed inhibitory effects at concentrations between 10(-7) M and 3 x 10(-6) M. At higher concentrations, a biphasic, contractile and then relaxant response was observed. The results obtained suggest that, in rat uterine smooth muscle, the inhibitory effects of okadaic acid are not entirely mediated by the activation of cyclic AMP- and/or cyclic GMP-dependent pathways. The data also point to the existence of a clear interaction between okadaic acid and methylxanthines, although further studies are needed to clarify the mechanisms involved in this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号