首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Paroxysmal atrial fibrillation (PAF) is a serious arrhythmia associated with morbidity and mortality. We explore the possibility of distant prediction of PAF by analyzing changes in heart rate variability (HRV) dynamics of non-PAF rhythms immediately before PAF event. We use that model for distant prognosis of PAF onset with artificial intelligence methods. METHODS AND MATERIALS: We analyzed 30-min non-PAF HRV records from 51 subjects immediately before PAF onset and at least 45min distant from any PAF event. We used spectral and complexity analysis with sample (SmEn) and approximate (ApEn) entropies and their multiscale versions on extracted HRV data. We used that features to train the artificial neural networks (ANNs) and support vector machine (SVM) classifiers to differentiate the subjects. The trained classifiers were further tested for distant PAF event prognosis on 16 subjects from independent database on non-PAF rhythm lasting from 60 to 320 min before PAF onset classifying the 30-min segments as distant or leading to PAF. RESULTS: We found statistically significant increase in 30-min non-PAF HRV recordings from 51 subjects in the VLF, LF, HF bands and total power (p<0.0001) before PAF event compared to PAF distant ones. The SmEn and ApEn analysis provided significant decrease in complexity (p<0.0001 and p<0.001) before PAF onset. For training ANN and SVM classifiers the data from 51 subjects were randomly split to training, validation and testing. ANN provided better results in terms of sensitivity (Se), specificity (Sp) and positive predictivity (Pp) compared to SVM which became biased towards positive case. The validation results of the ANN classifier we achieved: Se 76%, Sp 93%, Pp 94%. Testing ANN and SVM classifiers on 16 subjects with non-PAF HRV data preceding PAF events we obtained distant prediction of PAF onset with SVM classifier in 10 subjects (58+/-18 min in advance). ANN classifier provided distant prediction of PAF event in 13 subjects (62+/-21 min in advance). CONCLUSION: From the results of distant PAF prediction we conclude that ANN and SVM classifiers learned the changes in the HRV dynamics immediately before PAF event and successfully identified them during distant PAF prognosis on independent database. This confirms the reported in the literature results that corresponding changes in the HRV data occur about 60 min before PAF onset and proves the possibility of distant PAF prediction with ANN and SVM methods.  相似文献   

2.
The aim of this study is to assess the ability of radial basis function (RBF) classifiers as an assistant tool for the diagnosis of the obstructive sleep apnoea syndrome (OSAS). A total of 187 subjects suspected of suffering from OSAS were available for our research. The initial population was divided into training, validation and test sets for deriving and testing our neural classifiers. We used nonlinear features from nocturnal oxygen saturation (SaO2) to perform patients’ classification. We evaluated three different RBF construction techniques based on the following algorithms: k-means (KM), fuzzy c-means (FCM) and orthogonal least squares (OLS). A diagnostic accuracy of 86.1, 84.7 and 85.5% was provided by the networks developed with KM, FCM and OLS, respectively. The three proposed networks achieved an area under the receiver operating characteristic (ROC) curve over 0.90. Our results showed that a useful non-invasive method could be applied to diagnose OSAS from nonlinear features of SaO2 with RBF classifiers.  相似文献   

3.
为实现睡眠分期,为穿戴式生理参数监测技术在慢病监测领域的应用提供技术支撑,发展基于心率变异性和支持向量机模型的睡眠分期算法。从心率时间间期序列中提取时域、频域和非线性等86个特征,将多导睡眠图仪的三分类结果(醒、快速眼动期、非快速眼动期)作为“金标准”,采用支持向量机作为多分类器模型;为保证训练集数据质量,使用开放睡眠数据库SHHS中由专家确认挑选的67例PSG样本作为训练集,实现特征筛选和模型参数训练。为验证模型的泛化性能,从SHHS数据库中进一步随机提取939例PSG样本,对模型性能进行测试。睡眠分期模型在训练集上的五折交叉验证的准确率为84.00%±1.33%,卡帕系数为0.70±0.03;在939例测试集上的准确率为76.10%±10.80%,卡帕系数为0.57±0.15。剔除RR间期异常(110例)和明显睡眠结构异常(29例)的样本后,测试集(800例)的准确率为82.00%±5.60%,卡帕系数为0.67±0.14。所提出的基于心率变异性分析的睡眠分期算法具有较高的准确性,大样本人群测试结果表明,该模型具有较好的普适性。  相似文献   

4.
The risk of cardiovascular disease is known to be increased in obstructive sleep apnea syndrome (OSAS). Its mechanism can be explained by the observation that the sympathetic tone increases due to repetitive apneas accompanied by hypoxias and arousals during sleep. Heart rate variability (HRV) representing cardiac autonomic function is mediated by respiratory sinus arrhythmia, baroreflex-related fluctuation, and thermoregulation-related fluctuation. We evaluated the heart rate variability of OSAS patients during night to assess their relationship with the severity of the symptoms. We studied overnight polysomnographies of 59 male untreated OSAS patients with moderate to severe symptoms (mean age 45.4+/- 11.7 yr, apnea-hypopnea index [AHI]=43.2+/-23.4 events per hour, and AHI >15). Moderate (mean age 47.1+/-9.4 yr, AHI=15-30, n=22) and severe (mean age 44.5 +/-12.9 yr, AHI >30, n=37) OSAS patients were compared for the indices derived from time and frequency domain analysis of HRV, AHI, oxygen desaturation event index (ODI), arousal index (ArI), and sleep parameters. As a result, the severe OSAS group showed higher mean powers of total frequency (TF) (p=0.012), very low frequency (VLF) (p= 0.038), and low frequency (LF) (p=0.002) than the moderate OSAS group. The LF/HF ratio (p=0.005) was higher in the severe group compared to that of the moderate group. On the time domain analysis, the HRV triangular index (p=0.026) of severe OSAS group was significantly higher. AHI was correlated best with the LF/HF ratio (r(p))=0.610, p<0.001) of all the HRV indices. According to the results, the frequency domain indices tended to reveal the difference between the groups better than time domain indices. Especially the LF/HF ratio was thought to be the most useful parameter to estimate the degree of AHI in OSAS patients.  相似文献   

5.
OBJECTIVE: This paper presents an effective cardiac arrhythmia classification algorithm using the heart rate variability (HRV) signal. The proposed algorithm is based on the generalized discriminant analysis (GDA) feature reduction scheme and the support vector machine (SVM) classifier. METHODOLOGY: Initially 15 different features are extracted from the input HRV signal by means of linear and nonlinear methods. These features are then reduced to only five features by the GDA technique. This not only reduces the number of the input features but also increases the classification accuracy by selecting most discriminating features. Finally, the SVM combined with the one-against-all strategy is used to classify the HRV signals. RESULTS: The proposed GDA- and SVM-based cardiac arrhythmia classification algorithm is applied to input HRV signals, obtained from the MIT-BIH arrhythmia database, to discriminate six different types of cardiac arrhythmia. In particular, the HRV signals representing the six different types of arrhythmia classes including normal sinus rhythm, premature ventricular contraction, atrial fibrillation, sick sinus syndrome, ventricular fibrillation and 2 degrees heart block are classified with an accuracy of 98.94%, 98.96%, 98.53%, 98.51%, 100% and 100%, respectively, which are better than any other previously reported results. CONCLUSION: An effective cardiac arrhythmia classification algorithm is presented. A main advantage of the proposed algorithm, compared to the approaches which use the ECG signal itself is the fact that it is completely based on the HRV (R-R interval) signal which can be extracted from even a very noisy ECG signal with a relatively high accuracy. Moreover, the usage of the HRV signal leads to an effective reduction of the processing time, which provides an online arrhythmia classification system. A main drawback of the proposed algorithm is however that some arrhythmia types such as left bundle branch block and right bundle branch block beats cannot be detected using only the features extracted from the HRV signal.  相似文献   

6.
Using the Volterra–Wiener approach, we employed a minimal model to quantitatively characterize the linear and nonlinear effects of respiration (RCC) and arterial blood pressure (ABR) on heart rate variability (HRV) in normal controls and subjects with moderate-to-severe obstructive sleep apnea syndrome (OSAS). Respiration, R–R interval (RRI), blood pressure (BP) and other polysomnographic variables were recorded in eight normal controls and nine OSAS subjects in wakefulness, Stage 2 and rapid eye-movement sleep. To increase respiratory and cardiovascular variability, a preprogrammed ventilator delivered randomly timed inspiratory pressures that were superimposed on a baseline continuous positive airway pressure. Except for lower resting RRI in OSAS subjects, summary statistical measures of RRI and BP and their variabilities were similar in controls and OSAS. In contrast, RCC and ABR gains were significantly lower in OSAS. Nonlinear ABR gain and the interaction between respiration and blood pressure in modulating RRI were substantially reduced in OSAS. ABR gain increased during sleep in controls but remained unchanged in OSAS. These findings suggest that normotensive OSAS subjects have impaired daytime parasympathetic and sympathetic function. Nonlinear minimal modeling of HRV provides a useful, insightful, and comprehensive approach for the detection and assessment of abnormal autonomic function in OSAS. Supported by NIH Grants HL-58725, EB-001978, and M01 RR-43  相似文献   

7.
We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.  相似文献   

8.
A multichannel statistical classifier for detecting prostate cancer was developed and validated by combining information from three different magnetic resonance (MR) methodologies: T2-weighted, T2-mapping, and line scan diffusion imaging (LSDI). From these MR sequences, four different sets of image intensities were obtained: T2-weighted (T2W) from T2-weighted imaging, Apparent Diffusion Coefficient (ADC) from LSDI, and proton density (PD) and T2 (T2 Map) from T2-mapping imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy results, served as tumor "ground truth." Textural features were extracted from the images using co-occurrence matrix (CM) and discrete cosine transform (DCT). Anatomical location of voxels was described by a cylindrical coordinate system. A statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum likelihood (ML) classifiers were based on 1 of the 4 basic image intensities. Our multichannel classifiers: support vector machine (SVM) and Fisher linear discriminant (FLD), utilized five different sets of derived features. Each classifier generated a summary statistical map that indicated tumor likelihood in the peripheral zone (PZ) of the prostate gland. To assess classifier accuracy, the average areas under the receiver operator characteristic (ROC) curves over all subjects were compared. Our best FLD classifier achieved an average ROC area of 0.839(+/-0.064), and our best SVM classifier achieved an average ROC area of 0.761(+/-0.043). The T2W ML classifier, our best single-channel classifier, only achieved an average ROC area of 0.599(+/-0.146). Compared to the best single-channel ML classifier, our best multichannel FLD and SVM classifiers have statistically superior ROC performance (P=0.0003 and 0.0017, respectively) from pairwise two-sided t-test. By integrating the information from multiple images and capturing the textural and anatomical features in tumor areas, summary statistical maps can potentially aid in image-guided prostate biopsy and assist in guiding and controlling delivery of localized therapy under image guidance.  相似文献   

9.
A new approach based on the implementation of multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is presented for classification of electroencephalogram (EEG) signals. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the EEG signals by the combination of eigenvector methods and multiclass SVM. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrated that the eigenvector methods are the features which well represent the EEG signals and the multiclass SVM trained on these features achieved high classification accuracies.  相似文献   

10.
针对可穿戴睡眠监测缺乏有效的自动睡眠分期和睡眠质量评价方法这一问题,提出一种适用于睡眠呼吸暂停综合征患者的自动睡眠分期方法。通过心电图R-R间期序列,分别得到心率变异性、呼吸幅度变异性和呼吸率变异性信号。以此为基础,提取时域、频域及非线性特征共55个。利用门控循环单元网络,分别构建清醒-睡眠二分类、清醒-快速眼动-非快速眼动睡眠三分类、清醒-快速眼动-浅睡-慢波睡眠四分类、清醒-快速眼动-非快速眼动Ⅰ-Ⅱ-Ⅲ期五分类等共4个不同分类粒度的睡眠分期模型;采用损失函数类别加权方法,有效降低数据非平衡对分期结果的影响。验证数据来自SHRS数据库的274例患者。借助准确率、Cohen's Kappa系数和睡眠结构指标对该睡眠分期方法进行性能评价。结果表明4个分类器的准确率分别为85.06%、75.44%、63.80%、62.13%,Cohen's Kappa系数达到了0.54、0.49、0.41、0.41,睡眠结构分析评估与临床结果之间的差异无统计学意义。所提出的方法基本满足睡眠质量评估的需求,适用于可穿戴睡眠监测应用。  相似文献   

11.
Magnetic resonance imaging (MRI) is playing an important role in the classification of breast tumors. MRI can be used to obtain multiparametric (mp) information, such as structural, hemodynamic, and physiological information. Quantitative analysis of mp-MRI data has shown potential in improving the accuracy of breast tumor classification. In general, a large set of quantitative and texture features can be generated depending upon the type of methodology used. A suitable combination of selected quantitative and texture features can further improve the accuracy of tumor classification. Machine learning (ML) classifiers based upon features derived from MRI data have shown potential in tumor classification. There is a need for further research studies on selecting an appropriate combination of features and evaluating the performance of different ML classifiers for accurate classification of breast tumors. The objective of the current study was to develop and optimize an ML framework based upon mp-MRI features for the characterization of breast tumors (malignant vs. benign and low- vs. high-grade). This study included the breast mp-MRI data of 60 female patients with histopathology results. A total of 128 features were extracted from the mp-MRI tumor data followed by features selection. Five ML classifiers were evaluated for tumor classification using 10-fold crossvalidation with 10 repetitions. The support vector machine (SVM) classifier based on optimum features selected using a wrapper method with an adaptive boosting (AdaBoost) technique provided the highest sensitivity (0.96 ± 0.03), specificity (0.92 ± 0.09), and accuracy (94% ± 2.91%) in the classification of malignant versus benign tumors. This method also provided the highest sensitivity (0.94 ± 0.07), specificity (0.80 ± 0.05), and accuracy (90% ± 5.48%) in the classification of low- versus high-grade tumors. These findings suggest that the SVM classifier outperformed other ML methods in the binary classification of breast tumors.  相似文献   

12.
Abstract

Coronary artery disease (CAD) is a highly considered dangerous disease which may lead to myocardial infarction and even sudden cardiac death. The objective of this work is to evaluate the diagnostic performance features derived from linear and non-linear methods of Heart Rate Variability (HRV) analysis for classification software modules with Normal (NOR) subjects and CAD patients. The proposed methodology follows the recording of electrocardiogram from 60 NOR subjects and 64 CAD patients, RR interval tachogram generation, computing the features from time domain, frequency domain, non-linear methods and its analysis, feature dimension reduction by Principal Component Analysis (PCA) and classification by probabilistic neural network, K nearest neighbour and Support Vector Machine (SVM) classifiers. The results of the study indicate a clear difference in NOR subjects and CAD affected patients by using PCA-SVM classifier with an accuracy of 91.67%, sensitivity of 86.67% and 96.67% for NOR and CAD classes, respectively.  相似文献   

13.
组织学分级是乳腺癌的重要预后指标。探讨磁共振(MRI)T2加权影像特征与乳腺癌组织学分级的关联性, 可为术前预测乳腺癌组织学分级提供有意义的参考作用。回顾性分析167例术前行MRI检查并经病理诊断为浸润性乳腺癌患者, 其中组织学分级Ⅱ级和Ⅲ级的分别为72例和95例。利用计算机半自动方法, 分割患者乳腺磁共振T2加权影像的病灶区域, 并对其提取包括纹理特征和形态特征的40维影像特征。采用留一法交叉验证方法(LOOCV), 通过统计学方法分析比较影像特征在组织分级Ⅱ级和Ⅲ级组间的差异, 并设计多变量分类预测模型。绘制受试者工作特征曲线(ROC), 并计算对应曲线下的面积(AUC);计算敏感性、特异性、F1-Measure等指标, 对预测模型进行综合评估。对每一维特征进行单变量逻辑回归分析, 在低分级和高分级组间进行统计检验分析(t检验)。形态特征中最优单特征为病灶半径, AUC值为0.742(P<0.05);纹理特征中最优特征为大面积高灰度级增强, AUC值为0.742(P<0.05)。设计多元逻辑回归(MLR)、支持向量机(SVM)、多任务学习(MTL)等3种分类器, 预测乳腺癌组织学分级, 其AUC值分别为0.767±0.036、0.772±0.036和0.771±0.037, 对应特异性分别为0.667、0.653、0.708, 灵敏度分别为0.747、0.737、0.684。研究表明, 乳腺癌的T2加权影像特征在一定程度上反映其组织学分级, 对乳腺癌的预后判断具有潜在价值。  相似文献   

14.
In this study, wavelet-based features of single-channel scalp EEGs recorded from subjects with intractable seizure are examined for epileptic seizure classification. The wavelet-based features extracted from scalp EEGs are simply based on detail and approximation coefficients obtained from the discrete wavelet transform. Support vector machine (SVM), one of the most commonly used classifiers, is applied to classify vectors of wavelet-based features of scalp EEGs into either seizure or non-seizure class. In patient-based epileptic seizure classification, a training data set used to train SVM classifiers is composed of wavelet-based features of scalp EEGs corresponding to the first epileptic seizure event. Overall, the excellent performance on patient-dependent epileptic seizure classification is obtained with the average accuracy, sensitivity, and specificity of, respectively, 0.9687, 0.7299, and 0.9813. The vector composed of two wavelet-based features of scalp EEGs provide the best performance on patient-dependent epileptic seizure classification in most cases, i.e., 19 cases out of 24. The wavelet-based features corresponding to the 32–64, 8–16, and 4–8 Hz subbands of scalp EEGs are the mostly used features providing the best performance on patient-dependent classification. Furthermore, the performance on both patient-dependent and patient-independent epileptic seizure classifications are also validated using tenfold cross-validation. From the patient-independent epileptic seizure classification validated using tenfold cross-validation, it is shown that the best classification performance is achieved using the wavelet-based features corresponding to the 64–128 and 4–8 Hz subbands of scalp EEGs.  相似文献   

15.
Translation of electroencephalographic (EEG) recordings into control signals for brain–computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes the application of a fuzzy support vector machine (FSVM) with a radial basis function kernel for classifying motor imagery tasks, while the statistical features over the set of the wavelet coefficients were extracted to characterize the time–frequency distribution of EEG signals. In the proposed FSVM classifier, a low fraction of support vectors was used as a criterion for choosing the kernel parameter and the trade-off parameter, together with the membership parameter based solely on training data. FSVM and support vector machine (SVM) classifiers outperformed the winner of the BCI Competition 2003 and other similar studies on the same Graz dataset, in terms of the competition criterion of the mutual information (MI), while the FSVM classifier yielded a better performance than the SVM approach. FSVM and SVM classifiers perform much better than the winner of the BCI Competition 2005 on the same Graz dataset for the subject O3 according to the competition criterion of the maximal MI steepness, while the FSVM classifier outperforms the SVM method. The proposed FSVM model has potential in reducing the effects of noise or outliers in the online classification of EEG signals in BCIs.  相似文献   

16.
Early (or preclinical) diagnosis of Parkinson's disease (PD) is crucial for its early management as by the time manifestation of clinical symptoms occur, more than 60% of the dopaminergic neurons have already been lost. It is now established that there exists a premotor stage, before the start of these classic motor symptoms, characterized by a constellation of clinical features, mostly non-motor in nature such as Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) and olfactory loss. In this paper, we use the non-motor features of RBD and olfactory loss, along with other significant biomarkers such as Cerebrospinal fluid (CSF) measurements and dopaminergic imaging markers from 183 healthy normal and 401 early PD subjects, as obtained from the Parkinson's Progression Markers Initiative (PPMI) database, to classify early PD subjects from normal using Naïve Bayes, Support Vector Machine (SVM), Boosted Trees and Random Forests classifiers. We observe that SVM classifier gave the best performance (96.40% accuracy, 97.03% sensitivity, 95.01% specificity, and 98.88% area under ROC). We infer from the study that a combination of non-motor, CSF and imaging markers may aid in the preclinical diagnosis of PD.  相似文献   

17.
Abstract

The use of wearable recorders for long-term monitoring of physiological parameters has increased in the last few years. The ambulatory electrocardiogram (A-ECG) signals of five healthy subjects with four body movements or physical activities (PA)—left arm up down, right arm up down, waist twisting and walking—have been recorded using a wearable ECG recorder. The classification of these four PAs has been performed using neuro-fuzzy classifier (NFC) and support vector machines (SVM). The PA classification is based on the distinct, time-frequency features of the extracted motion artifacts contained in recorded A-ECG signals. The motion artifacts in A-ECG signals have been separated first by the discrete wavelet transform (DWT) and the time–frequency features of these motion artifacts have then been extracted using the Gabor transform. The Gabor energy feature vectors have been fed to the NFC and SVM classifiers. Both the classifiers have achieved a PA classification accuracy of over 95% for all subjects.  相似文献   

18.
False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.  相似文献   

19.
In this paper a novel automatic approach to identify brain structures in magnetic resonance imaging (MRI) is presented for volumetric measurements. The method is based on the idea of active contour models and support vector machine (SVM) classifiers. The main contributions of the presented method are effective modifications on brain images for active contour model and extracting simple and beneficial features for the SVM classifier. The segmentation process starts with a new generation of active contour models, i.e., vector field convolution (VFC) on modified brain images. VFC results are brain images with the least non-brain regions which are passed on to the SVM classification. The SVM features are selected according to the structure of brain tissues, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). SVM classifiers are trained for each brain tissue based on the set of extracted features. Although selected features are very simple, they are both sufficient and tissue separately effective. Our method validation is done using the gold standard brain MRI data set. Comparison of the results with the existing algorithms is a good indication of our approach's success.  相似文献   

20.
Sleep apnoea is a sleep breathing disorder which causes changes in cardiac and neuronal activity and discontinuities in sleep pattern when observed via electrocardiogram (ECG) and electroencephalogram (EEG). Using both statistical analysis and Gaussian discriminative modelling approaches, this paper presents a pilot study of assessing the cross-correlation between EEG frequency bands and heart rate variability (HRV) in normal and sleep apnoea clinical patients. For the study we used EEG (delta, theta, alpha, sigma and beta) and HRV (LFnu, HFnu and LF/HF) features from the spectral analysis. The statistical analysis in different sleep stages highlighted that in sleep apnoea patients, the EEG delta, sigma and beta bands exhibited a strong correlation with HRV features. Then the correlation between EEG frequency bands and HRV features were examined for sleep apnoea classification using univariate and multivariate Gaussian models (UGs and MGs). The MG outperformed the UG in the classification. When EEG and HRV features were combined and modelled with MG, we achieved 64% correct classification accuracy, which is 2 or 8% improvement with respect to using only EEG or ECG features. When delta and acceleration coefficients of the EEG features were incorporated, then the overall accuracy improved to 71%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号