首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives The aim was to study the effect of naringenin, a biologically active compound, on tissue antioxidant status and lipid peroxidation in ethanol‐induced hepatotoxicity in rats. Methods Rats were divided into four groups: Groups 1 and 2 received isocaloric glucose and 0.5% carboxymethyl cellulose; groups 3 and 4 received 20% ethanol equivalent to 6 g/kg daily for 60 days. In addition, groups 2 and 4 were given naringenin (50 mg/kg) daily for the last 30 days of the experiment. Key findings The results showed significantly elevated levels of serum aspartate and alanine transaminases, γ‐glutamyl transpeptidase, tissue thiobarbituric acid reactive substances, conjugated dienes, lipid hydroperoxides and protein carbonyl content, and significantly lowered activities/levels of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione‐S‐transferase, reduced glutathione and vitamins C and E in ethanol‐treated rats compared with control rats. Administration of naringenin to rats with ethanol‐induced liver injury significantly decreased the levels of serum aspartate and alanine transaminases, γ‐glutamyl transpeptidase, tissue thiobarbituric acid reactive substances, conjugated dienes, lipid hydroperoxides and protein carbonyl content and significantly elevated the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase, and the levels of reduced glutathione and vitamins C and E in the tissues compared with unsupplemented ethanol‐treated rats. Histological changes observed in the liver correlated with the biochemical findings. Conclusions Taken together these findings suggest that naringenin has a therapeutic potential in the abatement of ethanol‐induced hepatotoxicity.  相似文献   

2.
Objectives Cisplatin‐induced nephrotoxicity is the main cause for its dose‐limited use in the treatment of various cancers and results in acute renal cell injury through generation of reactive oxygen species. Chrysin possess antioxidant, anti‐inflammatory and anti‐cancer properties. The aim of this study was to investigate the protective efficacy of chrysin against cisplatin‐induced nephrotoxicity. Methods Thirty male Wistar rats were divided into five groups with six rats in each group. Group I served as control and received corn oil (vehicle of chrysin) for 14 days and 0.9% saline (vehicle of cisplatin) on day 14 only. Group II received a single intraperitoneal injection of cisplatin on day 14. Group III and IV were pretreated with two different doses of chrysin in addition to cisplatin and group V received chrysin only. Rats were examined for the effect of chrysin on cisplatin induced depletion of antioxidant enzymes, induction of lipid peroxidation and DNA damage in the kidney, utilizing a well‐established model of cisplatin‐induced nephropathy. Key findings Pretreatment with chrysin significantly attenuated cisplatin‐induced renal oxidative damage by diminishing the DNA damage and toxicity markers, such as creatinine and blood urea nitrogen, lipid peroxidation and xanthine oxidase activity, accompanied by increase in enzymatic (catalase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase) and non‐enzymatic (reduced glutathione) antioxidant status. Histological findings further substantiated the protective efficacy of chrysin, which reduced cisplatin‐induced renal damage. Conclusions The data of the present study suggest that chrysin effectively suppress cisplatin‐induced renal injury by ameliorating oxidative stress.  相似文献   

3.
We studied the effect of administering glycine on tissue lipid peroxidation and enzymic and non-enzymic antioxidants in experimental hepatotoxic Wistar rats. Hepatotoxicity was induced by administering ethanol for 30 days by intragastric intubation. Glycine administered at a dose of 0.6 g kg(-1) body weight for 30 days significantly inhibited the severe oxidative stress as evidenced by the decreased levels of liver and brain thiobarbituric acid reactive substances (TBARS) and hydroperoxides compared to control. The activities of enzymic and non-enzymic antioxidants such as reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) in the liver and brain were significantly elevated on glycine supplementation as compared to the untreated alcohol fed rats. The levels of serum vitamin E and vitamin C were also increased to near normal levels on glycine treatment. Microscopic examination of alcohol treated rat liver showed inflammatory cell infiltrates and fatty changes, which were alleviated on treatment with glycine. Alcohol treated rat brain demonstrated oedma, which was significantly lowered on treatment with glycine. Thus our study shows that administering glycine to alcohol supplemented rats, markedly reduced the oxidative stress and elevated the enzymic and non-enzymic antioxidants in the liver and brain, which a was associated with a reversal of hepatic steatosis and cerebral oedma.  相似文献   

4.
We investigated whether dietary restriction (DR) can protect the liver against the acute toxicity of carbon tetrachloride (CCl4). Adult female Wistar rats received a quantum of diet representing 75 and 50 percent of the food intake of control rats fed ad libitum (25% and 50% daily regimen, respectively) for 30 days. A single dose of CCl4 (3 mL kg(-1) b.w.) was administered subcutaneously at the end of the feeding period. Lipid peroxidation, as thiobarbituric acid reactive substance, conjugated dienes, lipid hydroperoxides and the hepatic markers alanine transaminase, aspartic transaminase, and alkaline phosphatase were significantly decreased in food-restricted rats. The enzymic antioxidants superoxide dismutase, catalase, glutathione peroxidase and the non-enzymic antioxidant glutathione were significantly increased in both groups. The magnitude of liver damage after CCl4 treatment was lower in food-restricted animals than in ad libitum-fed animals. The results suggest that dietary restriction increases the resistance of the liver and protects against oxidative insult produced by an acute dose of CCl4.  相似文献   

5.
Alcoholic liver disease (ALD) is one of the most common diseases in society. A large number of studies are in progress to identify natural substances that are effective in reducing the severity of ALD. 2-Hydroxy-4-methoxy benzoic acid (HMBA), the active principle of Hemidesmus indicus, an indigenous Ayurvedic medicinal plant in India, is expected to significantly inhibit the development of liver injury in ethanol administration. It is expected to reduce the severity of liver damage in terms of body weight, hepatic marker enzymes, oxidative stress, antioxidant status and histological changes in ethanol-induced hepatotoxic rats. Hepatotoxicity was induced by administering 20% ethanol (5 g kg(-1) daily) for 60 days to male Wistar rats, which resulted in significantly decreased body weight and an increase in liver-body weight ratio. The liver marker enzymes aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase were elevated. In addition, the levels of plasma, erythrocyte and hepatic thiobarbituric acid reactive substances, hydroperoxides and conjugated dienes were also elevated in ethanol-fed rats as compared with those of the experimental control rats. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C and alpha-tocopherol was also observed on alcohol administration as compared with experimental control rats. HMBA was co-administered at a dose of 200 mug kg(-1) daily for the last 30 days of the experiment to rats with alcohol-induced liver injury, which significantly increased body weight, significantly decreased the liver-body weight ratio, transaminases, alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase, significantly decreased the levels of lipid peroxidative markers, significantly elevated the activity of enzymic and non-enzymic antioxidants in plasma, erythrocytes and liver and also increased levels of plasma and liver vitamin C and alpha-tocopherol at the end of the experimental period as compared with untreated ethanol-administered rats. The histological changes were also in correlation with the biochemical findings. The results suggest that HMBA administration may afford protection against ethanol-induced liver injury in rats.  相似文献   

6.
We have evaluated the comparative effect of curcumin (diferuloyl methane) and its analogue [bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione] (BDMC-A) on carbon tetrachloride-induced hepatotoxicity in rats. Administration of carbon tetrachloride (3 ml/kg/week) for three months significantly (P<0.05) increased the levels of marker enzymes such as aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT). The levels of plasma thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides were also significantly (P<0.05) increased. We have observed a significant (P<0.05) decrease in the levels of plasma reduced glutathione (GSH), vitamin C and vitamin E. There was a significant (P<0.05) increase in the levels of TBARS and hydroperoxides in liver and kidney and a significant (P<0.05) decrease in the activities of enzymic antioxidants- superoxide dismutase (SOD), catalase and GSH peroxidase along with GSH in CCl(4)-treated rats. Oral administration of curcumin and BDMC-A to CCl(4)-induced rats for a period of three months significantly (P<0.05) decreased the levels of marker enzymes, plasma TBARS and hydroperoxides and increased the levels of plasma and tissue antioxidants. Histopathological studies of liver also showed protective effect of curcumin and BDMC-A. We have observed thickening of blood vessels and microvesicular fatty changes around the portal triad in CCl(4)-treated rat liver. Treatment with curcumin showed only mild sinusoidal dilatation while with BDMC-A there was only mild portal inflammation. The effect exerted by BDMC-A was found to be more promising than curcumin.  相似文献   

7.
Aim of the present study was planned to determine the protective role of naringin in attenuating the toxicity induced by nickel sulfate in rat liver. In this investigation nickel sulfate (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. Naringin was administered orally (20, 40 and 80 mg/kg body weight) for 20 days with intraperitoneal administration of nickel sulfate. Liver injury was measured by the increased activities of serum hepatic enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidation markers, thiobarbituric reactive acid substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of nickel was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase and non-enzymatic antioxidants like reduced glutathione, total sulfhydryl groups, vitamin C and vitamin E levels were significantly decreased. Naringin administered at a dose of 80 mg/kg body weight significantly reversed the activities of hepatic marker enzymes, decreasing lipid peroxidative markers, increasing the antioxidant cascade and decreasing the nickel concentration in the liver. The effect at a dose of 80 mg/kg body weight was more pronounced than that of other two doses (20 and 40 mg/kg body weight). All these changes were supported by histopathological observations. These results clearly demonstrate that naringin has the potential in alleviating the toxic effects of nickel in rat liver.  相似文献   

8.
Objectives Carotenoids are a class of natural fat‐soluble pigments that are found in many fruits and vegetables. Consumption of a diet rich in carotenoids has been epidemiologically correlated with a lower risk for several diseases. In the present study the carotenoid lutein (3,3′‐dihydroxy‐β,ε‐carotene) was evaluated for its hepatoprotective activity in rats. Methods Paracetamol, 20% ethanol and carbon tetrachloride were used to induce liver toxicity. Key findings Levels of serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase and alkaline phosphatases, which were increased in the serum, were found to be significantly reduced by the treatment of lutein in a dose‐dependent manner, indicating that lutein may reduce the hepatotoxicity induced by these agents. Serum bilirubin was also significantly lower in lutein‐treated groups compared with control. Increased lipid peroxidation, conjugated diene and hydroperoxides in the liver tissue produced by the administration of paracetamol were found to be reduced in the lutein‐treated groups. Levels of antioxidant enzymes, like superoxide dismutase, catalase, glutathione peroxidase and glutathione, were found to be increased in lutein‐treated groups compared with control group during alcohol‐ and CCl4‐induced liver toxicity. Hydroxyproline, which is an indicator of fibrosis in liver tissue, was high in the ethanol‐treated control group. Hydroxyproline levels were decreased by simultaneous lutein administration. Conclusions Histopathological evidence confirmed the protection offered by lutein from the tissue damage caused by hepatotoxins. The hepatoprotective action may be due to lutein's ability to scavenge reactive oxygen radicals.  相似文献   

9.
Oxidative stress resulting from an imbalance between radical-generating and radical scavenging systems plays an important role in the pathogenesis of pulmonary fibrosis. Epigallocatechin-3-gallate (EGCG), a polyphenol and a major component of green tea, possess a potent antioxidant property. This study was designed to evaluate the potential antioxidative activity of EGCG in the plasma and lungs during bleomycin induced experimental pulmonary fibrosis. Intratracheal administration of bleomycin (6.5 U/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) and non-enzymic antioxidants (reduced glutathione, vitamin C, vitamin E and vitamin A). Elevations in lung W/D (wet weight/dry weight) ratio, hydroxyproline content was observed with a synchronized increase in lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides). Intraperitoneal administration of EGCG at a dose of 20 mg/kg body weight significantly improved the body weight, enzymic and non enzymic antioxidants and considerably decreased the W/D ratio, hydroxyproline and lipid peroxidation marker levels. Histological observations also correlated with the biochemical parameters. Thus, this study confirms the beneficial use of EGCG in alleviating the oxidative stress induced during pulmonary fibrosis.  相似文献   

10.
Summary  Colon cancer is the third most malignant neoplasm in the world and it remains today an important cause of death, especially in western countries. In this study, we have evaluated the chemopreventive efficacy of morin on tissue lipid peroxidation and antioxidant status, which are used as biomarkers in 1,2-dimethylhydrazine-induced colon carcinogenesis in a rat model. Male Wistar rats were divided into four groups and received high fat diet. Group 1 served as control, groups 2 and 4 were given a daily treatment of morin (50 mg/kg body weight) orally, everyday for a total period of 30 weeks. Groups 3 and 4 were given weekly subcutaneous injections of DMH at a dose of 20 mg/kg body weight in the groin for 15 weeks. Animals were sacrificed at the end of 30 weeks. The liver, intestine, colon and caecum from different groups were subjected to histopathological studies, determination of lipid peroxidation and antioxidant status. Our results showed decreased levels of liver enzymic and non-enzymic antioxidants and increased levels of lipid peroxidation (LPO) products such as tissue thiobarbituricacid substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD) in DMH treated rats, which were significantly (P < 0.05) reversed on morin supplementation. Moreover, intestinal, colonic and caecal TBARS, LOOH, CD and also the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and reduced glutathione (GSH) were significantly diminished in DMH treated rats, which were significantly (P < 0.05) elevated on simultaneous morin supplementation. Moreover, enhanced activity of intestinal, colonic and caecal ascorbic acid and α-tocopherol levels were also observed in DMH alone treated rats, which were significantly (P < 0.05) reduced on morin supplementation. These results indicate that morin could exert a significant chemopreventive effect on colon carcinogenesis induced by DMH.  相似文献   

11.
The possible protective effects of naringenin, a naturally occurring citrus flavonone, on carbon tetrachloride (CCl4)‐induced liver injury in rats and the mechanism underlying its effects were investigated. Forty rats were divided into five groups. Rats in Groups I and II served as the normal and injured liver groups, respectively; Group III rats were treated with the standard drug silymarin as a positive control; and rats in Groups IV and V (naringenin‐treated groups) were administrated 50 mg/kg, p.o., naringenin for 7 days. Liver samples were collected to evaluate mRNA and protein expression, histological changes and oxidative stress. Naringenin inhibited lipid peroxidation and reduced serum levels of hepatic enzymes induced by CCl4. In addition, naringenin increased the liver content of reduced glutathione and the activity of anti‐oxidant enzymes in rats treated with CCl4. Naringenin attenuated liver inflammation by downregulating CCl4‐induced activation of tumour necrosis factor (TNF)‐α, inducible nitric oxide synthase (iNOS) and cyclo‐oxygenase (COX‐2) at both the protein and mRNA levels. Naringenin treatment significantly increased NF‐E2‐related factor 2 (Nrf2) and heme oxygenase (HO‐1) expression in injured livers. In rats treated with CCl4 alone, decreases were seen in nuclear Nrf2 expression and in the mRNA levels of its target genes (e.g. HO‐1, NQO1 and glutathione S‐transferase alpha 3 (GST‐a3)). Together, the results suggest that naringenin can protect the liver against oxidative stress, presumably by activating the nuclear translocation of Nrf2 as well as attenuating the TNF‐α pathway to elicit an anti‐inflammatory response in liver tissue.  相似文献   

12.
The dietary consumption of antioxidant-rich fruits and vegetables is inversely correlated with the incidence of various diseases like cardiovascular diseases and lung cancer. We have tried to find out how far the S-allyl cysteine sulfoxide (SACS) isolated from garlic (Allium Sativum L.) can combat the nicotine-induced peroxidative damage in rats. The effects have been compared with the standard antioxidant vitamin E. Administration of SACS or vitamin E (100 mg/kg) to nicotine (0.6 mg/kg) treated rats for 21 days showed decreased concentrations of thiobarbituric acid reactive substances, hydroperoxides, and conjugated dienes in liver, lungs, and heart as compared with the values found in rats treated with nicotine alone. The activities of catalase and superoxide dismutase increased. The levels of the antioxidants like vitamins A, C, and E in the liver and glutathione in all tissues increased significantly in SACS-treated or vitamin E fed rats. However, the antioxidant status was higher when vitamin E was administered as compared with SACS administered to nicotine-treated rats.  相似文献   

13.
Naringenin is a naturally occurring citrus flavanone, which has been reported to have a wide range of pharmacological properties. The present work was carried out to evaluate the effect of naringenin on antioxidant and lipid peroxidation status in liver of oxytetracycline-intoxicated rats. Intraperitonial administration of oxytetracycline 200 mg/kg for 15 days resulted a significant elevation in serum hepatospecific markers such as aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and bilirubin and the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) in liver. Oxytetracycline also caused a significant reduction in the activities of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione (GSH), vitamin C and vitamin E in liver. Oral administration of naringenin (50 mg/kg b.w.t.) with oxytetracycline significantly decreased the activities of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and the levels of bilirubin along with significant decrease in the levels of lipid peroxidation markers in the liver. In addition, naringenin significantly increased the activities of superoxide dismutase, catalase and GSH peroxidase as well as the level of GSH, vitamin C and vitamin E in liver of the oxytetracycline-treated rats. Our results demonstrate that naringenin exhibited antioxidant property and decrease the lipid peroxidation against oxytetracycline-induced oxidative stress in liver.  相似文献   

14.
Flavonoids are non-nutritive dietary components that are widely distributed in plants. The present study investigated the antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid in normal and streptozotocin-induced diabetic Wistar rats. Diabetes as induced in rats by an intraperitoneal injection of streptozotocin. Rutin was orally administered to normal and diabetic rats for a period of 45 days. Fasting plasma glucose, glycosylated haemoglobin, thiobarbituric acid reactive substances and lipid hydroperoxides were significantly (P<0.05) increased, whereas insulin, C-peptide, total haemoglobin, protein levels, non-enzymic antioxidants (glutathione, vitamin C, vitamin E and ceruloplasmin) were decreased significantly (P<0.05) in diabetic rats. Oral administration of rutin to diabetic rats significantly (P<0.05) decreased fasting plasma glucose, glycosylated haemoglobin and increased insulin, C-peptide, haemoglobin and protein levels. Administration of rutin also decreased thiobarbituric acid reactive substances and lipid hydroperoxides and increased the non-enzymic antioxidants significantly (P<0.05). Treatment of normal rats with rutin did not significantly (P<0.05) alter any of the parameters studied. These results show that rutin exhibits antihyperglycaemic and antioxidant activity in streptozotocin-induced diabetic rats.  相似文献   

15.
Wound healing is an inflammatory process. Chrysin, a natural flavonoid found in honey, has been recently investigated to have anti‐inflammatory and antioxidant effects. In this work, the effects of chrysin‐loaded nanofiber on the expressions of genes that are related to wound healing process such as P53, TIMPs, MMPs, iNOS, and IL‐6 in an animal model study were evaluated. The electrospinning method was used for preparation the different concentrations of chrysin‐loaded PCL‐PEG nanofiber (5%, 10%, and 20% [w/w]) and characterized by FTIR and SEM. The wound healing effects of chrysin‐loaded PCL‐PEG nanofiber were in vivo investigated in rats, and the expressions of genes related to wound healing process were evaluated by real‐time PCR. The study results showed chrysin‐loaded PLC‐PEG compared to chrysin ointment and control groups significantly increase IL‐6, MMP‐2, MMP‐8, MMP‐9, TIMP‐1, and TIMP‐2 (p < .05). On the other hand, nanofibers containing chrysin significantly decreased p53 and iNOS expression compared to chrysin ointment and control groups (p < .05). According to the results, chrysin‐loaded PCL‐PEG‐PCL nanofibers have positive effects on the expression of the genes that have pivotal role in wound healing.  相似文献   

16.
Our current study is an effort to identify a potent chemopreventive agent against colon cancer. Here we have investigated the efficacy of hesperetin on tissue lipid peroxidation, antioxidant defense system and colonic histoarchitecture in male Wistar rats in colon carcinogenesis. Rats in groups 3, 4, 5 and 6 were treated with DMH (20 mg kg body weight s.c.) once a week for 15 weeks. Group 1 rats received modified pellet diet and served as control; group 2 received modified pellet diet along with hesperetin (20 mg/kg body weight, p.o., every day); and hesperetin was given to the rats as in-group 2 during the initiation, post-initiation and entire period stages of colon carcinogenesis. Lipid peroxidation was studied by measuring the formation of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD), and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), reduced glutathione (GSH), in the liver and colonic tissues of DMH administered rats. (1) Decreased levels of lipid peroxidation in the colonic tissues; (2) decreased activities of antioxidant enzymes SOD, CAT, GPX, GR and GSH levels in the tissues on DMH treatment. Hesperetin supplementation during the initiation, post-initiation and entire period stages of carcinogenesis significantly reversed these activities. These results indicate that hesperetin may be a potential chemopreventive agent against DMH-induced colon cancer.  相似文献   

17.
Lotus (Nelumbo nucifera Gaertn) possesses antioxidant, hepatoprotective, and anticancer potential. This study determined the protective role of aqueous extract from Nelumbo nucifera leaves (NLE) against N‐diethylnitrosamine (DEN)‐induced oxidative stress and hepatocellular carcinogenesis in a sample of Sprague–Dawley rats. NLE was fed orally to rats in which hepatic carcinoma was induced with DEN for 12 weeks. Five groups of 12 rats each were used for the study: Group I (control group) rats received distilled water; Group II rats were induced with DEN; Group III rats were induced with DEN and cotreated with 0.5% NLE; Group IV rats were induced with DEN and cotreated with 1.0% NLE; and Group V rats were induced with DEN and cotreated with 2.0% NLE. Clinical chemistry, organ weight, inflammatory marker, protein expression, enzyme, and antioxidant analyses were conducted. NLE administration to rats resulted in significantly decreased levels of serum alanine aminotransferase, aspartate aminotransferase, and albumin, which is indicative of hepatocellular damage, compared with the control group. DEN‐induced oxidative stress was inhibited by NLE and this inhibition was paralleled by decreased lipid peroxides and increased glutathione transferase, superoxide dismutase, catalase, and glutathione peroxidase activity in liver tissues. The status of nonenzymatic antioxidants, such as reduced glutathione, was also found to be increased in NLE‐administered rats. Furthermore, NLE decreased tumor size, hepatic Rac1, PKCα, and GSTπ expressions compared with the DEN‐only group. Thus, supplementation of NLE reduced the adverse changes that occur because of liver cancer. These results prove that NLE protects against liver carcinogenesis induced because of treatment with DEN through blocking lipid peroxidation, hepatic cell damage, and enhancing the antioxidant defense system.  相似文献   

18.
The present study was aimed to evaluate the antihypertensive effect of diosmin in deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats by weekly twice subcutaneous injection of DOCA (25 mg/kg body weight) and 1% NaCl in the drinking water for six consecutive weeks. The important pathological events that occurred in DOCA-salt treated rats were significant increase in systolic, diastolic blood pressure, sodium and chloride in serum and lipid peroxidation products (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) in plasma and tissues (liver, kidney, heart and aorta) and significant decrease in serum potassium, total nitrite and nitrate levels in plasma. The activities of hepatic aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and the levels of renal urea, uric acid, creatinine in serum, water intake, and organ weight (kidney and heart) were significantly increased in DOCA-salt hypertensive rats. DOCA-salt treated rats also showed a significant decrease in body weight, activities of superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of reduced glutathione, vitamin C and vitamin E in plasma and tissues. Treatment with diosmin (25, 50 and 100 mg/kg body weight) brings back all the above parameters to near normal level, in which 50 mg/kg body weight showed the highest effect than that of other two doses. Histopathology of heart and kidney also confirmed the protective effect of diosmin. Thus the experiment clearly showed that diosmin acts as an antihypertensive agent against DOCA-salt induced hypertension.  相似文献   

19.
Alcoholic liver disease is a major medical complication of drinking alcohol. Oxidative stress plays an important role in the development of alcohol liver disease. The present study was carried to evaluate the effect of grape leaf extract (GLEt) on antioxidant and lipid peroxidation states in liver and kidney alcohol induced toxicity. In vitro studies with DPPH* and ABTS*(+) (cation radical) showed that GLEt possesses antioxidant activity. In vivo administration of ethanol (7.9 g/kg bw/day) for 45 days resulted an activity of liver marker enzymes (AST, ALT, ALP and GGT), lipid peroxidation markers (TBARS, lipid hydroperoxides) in liver and kidney with significantly lower activity of SOD, CAT, GPx, GST and non-enzymatic antioxidants (vitamin E, vitamin C and GSH) in liver and kidney as compared with control rats. Administration of ethanol along with GLEt significantly decreased the activities of liver markers enzyme in serum towards near normal level. GLEt at a dose of 100 mg/kg was highly effective than 25 and 50 mg/kg body weight. In addition GLEt also significantly reduced the levels of lipid peroxidation and addition, significantly restored the enzymic and non-enzymatic antioxidants level in liver and kidney of alcohol administration rats. This observation was supplemented by histopathological examination in liver and kidney. Our data suggest that GLEt exerts its protective effect by decreased the lipid peroxidation and improving antioxidants status, thus proving itself as an effective antioxidant in alcohol induced oxidative damage in rats.  相似文献   

20.
Acute ethanol administration (1.5 g/kg) to fasted rats resulted in a small but significant increase in the content of conjugated dienes in the microsomal fraction of liver. Treatment with 4-methylpyrazole prior to ethanol ingestion was able to reduce the ethanol-induced lipid peroxide formation (measured as conjugated dienes). No depletion of glutathione occurred within the first 2 hrs following ethanol administration by which time lipid peroxide formation is well established. The ethanol-induced inhibition of N-ethylmaleimide-stimulated microsomal glutathione S-transferase activity correlates positively to the concentration of conjugated dienes in the microsomal fraction of liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号