首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 生物芯片是一类快速、高效、高通量的生物分析器件或集成化分析系统,包括微阵列芯片、微流控芯片、芯片实验室以及相关的仪器和设备。它集合计算机、微电子、微机械、生物化学、分子生物学和生物信息学等技术,在一个微小的芯片表面或芯片内部的微流体系统研究生物大分子之间或者生物大分子与其他化学小分子之间的反应。生物芯片能整合样品制备、分子识别和反应、信号检测和信号放大等独立的分析过程,使之连续化、平行化、集成化和微型化。生物芯片被认为是当今十分重要且具有战略意义的前沿高新技术。它们不仅在功能基因组学、蛋白质组学、代谢组学和毒理组学等领域研究中发挥了重要的作用,而且在疾病诊断和治疗、新药研究和开发、农业、环境、食品安全、国防等领域中已经显示出了非常广阔的应用前景和巨大的商业市场。截至目前,共有13 000多篇生物芯片相关论文发表,其中1000多篇发表在Cell、Nature、Science等国际顶级学术刊物上。经过了十多年的发展,生物芯片技术日趋成熟。其中技术较为成熟的微阵列芯片已经大量进入实用[1-4]。微流体芯片等技术正在逐渐成熟并开始被各领域应用[5]。同时,新世纪是大生命科学的世纪,功能基因组、蛋白质组、代谢组等大科学研究计划强力地推动了基于生物芯片的高通量生物分析技术和研究平台的市场需求。  相似文献   

2.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

3.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

4.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

5.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

6.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

7.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

8.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

9.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

10.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

11.
微流控芯片或称微全分析系统(miniaturized total analysis system,μ-TAS)、芯片实验室一般是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成在一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程(包括细胞培养),并对其产物进行分析的一种技术[1].  相似文献   

12.
微流体技术是指通过操控亚毫米尺度的流体,从而实现流体精确控制的技术。近年来,利用微流体技术,实现了器官芯片的构建。器官芯片是指具有生理功能的微模型,在连续灌注的微米级腔室中培养活细胞,以模拟组织和器官的生理功能。由于具有生理功能的器官芯片具有功能明确、微环境可控、测量信息丰富、实验试剂消耗量小、成本低、有望实现自动化和高通量等众多优点,在药物开发领域具有巨大的应用前景,有望解决药物开发中细胞培养和动物实验中的瓶颈问题,近年来引起学术界的极大关注。目前为止,虽然器官芯片还是很年轻的行业,但是研究人员已开发了部分微流体器官芯片,并探索其潜在的应用可能,包括药物靶点优化、药物筛选和毒性试验、生物标志物鉴定等。分析近年来利用微流控技术制造的器官芯片所取得的进展,以及这些结果对临床研究的意义。  相似文献   

13.
微流控芯片技术是利用微通道精确控制和处理微尺度流体,从而在微芯片上实现进样、稀释、混合、反应、检测等多种功能,其最突出的优点是只需少量标本或生物样品,便可高效快速地完成各种微分析检测,并具有高灵敏度、高通量、低成本和设备微型化的优势[1]。近年来微流控芯片技术发展迅速,在分析领域有着广泛的应用。鉴于微流控芯片具有在微小尺度下同时完成大样本量并行操作等优势,将微流控芯片技术与免疫分析结合,是近些年新发展起来的一项技术,大大改善了传统免疫分析性能。本文将从微流控免疫分析的芯片制作、类型和多元免疫分析等多个方面介绍微流控芯片免疫分析方法的研究进展。  相似文献   

14.
表面增强拉曼光谱(surface enhanced Raman spectroscopy,SERS)作为一种新兴的、具有超高灵敏度无标记指纹的高级痕量分析技术,与微流控芯片相结合用于光流体检测可以实现快速、无损伤检测分析。稳定、重现、高强度、高灵敏度的SERS信号是获取有效生物传感信息的首要条件。大量研究表明,可控性金属纳米粒子聚集体或纳米颗粒阵列对产生上述SERS信号至关重要。本文综述了利用电场、磁场形成可控性金属纳米粒子聚集体、固体SERS活性基底对高灵敏度SERS信号的增强和重现作用,固态SERS活性基底对其体表面积的增加作用,以及SERS生物传感器在临床免疫测定中的应用等方面的研究进展,为进一步深入研究贵金属纳米结构对SERS信号的增强、重现机制,特别是SERS生物传感器的应用提供参考,同时也为通过优化设计固态SERS活性基底进而实现便携、智能的SERS生物传感器系统提供一定的科学依据。  相似文献   

15.
得益于快速、简便、可在线分析的优点,石英晶体微天平生物传感器在生物、医学、食品安全分析、环境和军事等领域都有着重要的应用价值,但灵敏度和再生能力等性能的不足仍限制其走出实验室获得实际应用,纳米颗粒的引人有望解决这一难题.纳米颗粒表面活性位点多,生物兼容性好,非常适宜于生物化学分析检测.在石英晶体微天平生物传感器中,纳米颗粒可作为载体固定敏感分子;作为标记物放大检测信号;还可在磁场的辅助下提高传感器的再生能力和缩短检测时间.文中结合近年来国内外最新研究进展,对这三个方面进行了详细的评述,并探讨了未来的发展趋势.  相似文献   

16.
在医学和生物学的多项研究中,能够对不同种类的细胞进行有效的分离,一直是学术界所面临和一直在研究的重要问题.如果人们能够有效地分离不同类型的细胞,那么将会给许多疾病的诊断和治疗带来巨大的便利,从而为医学和生物学带来突破.目前,传统的、主要的细胞分离和筛查方法可以分为两大类,分别是标记法和非标记法.随着微流体技术的发展,微流体芯片正在越来越广泛地应用在细胞分离的领域.本文从微流体的研究历程出发,结合现有的传统细胞分离技术,以及其与微流体技术的对比,对微流体在细胞分离领域的应用和发展作综述性介绍.  相似文献   

17.
纳米金刚石是一种具有生物相容性、低毒性、荧光效应等特性的纳米惰性材料,近年来逐步在药物载体材料、生物成像工具、荧光探针材料以及量子探针等生物医药领域突显出其愈来愈重要的作用。本文从蛋白质的分离与纯化、细胞标记与生物成像、基因传输与治疗、对免疫系统的作用、癌症诊断与治疗、药物传输与治疗、生物传感等角度综述了纳米金刚石材料在生物医药领域中的应用现状及主要发展态势,对于将纳米金刚石应用于生物医药领域的学者有重要的参考价值。  相似文献   

18.
纳米传感技术及其在生物医学中的应用   总被引:1,自引:0,他引:1  
目前人们已研制出了尺寸在微米、纳米量级的生物传感器和生物图像传感器 ,这些传感器的共同特点是 :体积小 ,分辨率高 ,响应时间短 ,所需样品量少以及对活细胞的损伤小 ,可进行微创甚至无创测量。此外 ,由于响应时间可以缩短到毫秒级 ,所以可用于测量细胞的瞬态、突发性变化 (如细胞分裂、死亡等 )。目前 ,纳米生物传感器主要采用纳米光纤探头及相应的光学检测方法 ,相对于此前的超微玻璃电极而言 ,具有可靠性高、一致性好、互换性好以及制备容易等特点。此外 ,由于采用了光纤及相应的微机械加工制备技术 ,使纳米生物传感器比前期的超微电极具有更小的尖端尺寸。本文叙述了近年来国际上在纳米生物传感技术方面的研究成果和进展 ,介绍了它们的制备方法、性能指标和应用领域 ,以及我们进行的有关细胞传感器的研究成果。最后 ,对该领域的发展进行了展望  相似文献   

19.
细菌纤维素作为一种新兴的材料,因其具有独特的纳米纤维网格结构以及良好的纯度、机械强度、持水能力等物理、化学特性、生物相容性及适应性,已被广泛地应用于医学、食品、造纸、纺织和声学材料等各个行业,尤其在医学领域近年得到了突飞猛进的发展.就目前细菌纤维素及其性能优化产物在医学领域中的应用作一综述.  相似文献   

20.
微流控芯片已广泛用于生物医学、高通量药物合成筛选、环境监测和生物战剂侦检等领域,本文就微流控芯片在免疫分析中的应用做一综述。1微流控芯片技术分析概述微流控芯片技术是通过微细加工技术在芯片上构建由储液池、微反应室、微管道等微功能元件构成的微流路系统,加载生物样品和反应液后,在压力泵或者电场作用下形成微流路,于芯片上进行一种或连续多种的反应,达到对样品高通量快速分析的目的。微流控芯片技术由于具有高度集成性,可在一张芯片上完成采样、稀释、加试剂、反应、分离和检测等多种功能,又被称为微型全分析系统(micro total a…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号