首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our objective was to estimate the relationship between longitudinal change in BMD and fragility fractures. We studied 3635 women and 1417 men 50–85 yr of age in the Canadian Multicentre Osteoporosis Study who had at least two BMD measurements (lumbar spine, femoral neck, total hip, and trochanter) within the first 5 yr of the study and fragility fractures (any, main, forearm/wrist, ribs, hip) within the first 7 yr. Multiple logistic regression was used to model the relationship between baseline BMD, BMD change, and fragility fractures. We found that, among nonusers of antiresorptives, independent of baseline BMD, a decrease of 0.01 g/cm2/yr in total hip BMD was associated with an increased risk of fragility fracture with ORs of 1.15 (95% CI: 1.01; 1.32) in women and 1.34 (95% CI: 1.02; 1.78) in men. The risk of fragility fractures in subgroups such as fast losers and those with osteopenia was better estimated by models that included BMD change than by models that included baseline BMD but excluded BMD change. Although the association between baseline BMD and fragility fractures was similar in users and nonusers of antiresorptives, the association was stronger in nonusers compared with users. These results show that BMD change in both men and women is an independent risk factor for fragility fractures and also predicts fracture risk in those with osteopenia. The results suggest that BMD change should be included with other variables in a comprehensive fracture prediction model to capture its contribution to osteoporotic fracture risk.  相似文献   

2.
Osteoporosis is a complex disease with both genetic and environmental risk factors. A major determinant of osteoporotic fractures is peak BMD obtained during young adulthood. We previously reported linkage of chromosome 1q (LOD = 4.3) with variation in spinal areal BMD in healthy premenopausal white women. In this study, we used a two‐stage genotyping approach to identify genes in the linked region that contributed to the variation of femoral neck and lumbar spine areal BMD. In the first stage, 654 SNPs across the linked region were genotyped in a sample of 1309 premenopausal white women. The most significant evidence of association for lumbar spine (p = 1.3 × 10?6) was found with rs1127091 in the GATAD2B gene. In the second stage, 52 SNPs around this candidate gene were genotyped in an expanded sample of 1692 white women. Significant evidence of association with spinal BMD (p < 10?5), and to a lesser extent with femoral neck BMD, was observed with eight SNPs within a single 230‐kb linkage disequilibrium (LD) block. The most significant SNP (p = 3.4 × 10?7) accounted for >2.5% of the variation in spinal BMD in these women. The 230‐kb LD block contains 11 genes, but because of the extensive LD, the specific gene(s) contributing to the variation in BMD could not be determined. In conclusion, the significant association between spinal BMD and SNPs in the 230‐kb LD block in chromosome 1q indicates that genetic factor(s) in this block plays an important role in peak spinal BMD in healthy premenopausal white women.  相似文献   

3.
With few exceptions, an inverse relationship exists between social disadvantage and disease. However, there are conflicting data for the relationship between socioeconomic status (SES) and BMD. The aim of this study was to assess the association between SES and lifestyle exposures in relation to BMD. In a cross‐sectional study conducted using 1494 randomly selected population‐based adult women, we assessed the association between SES and lifestyle exposures in relation to BMD. BMD was measured at multiple anatomical sites by DXA. SES was determined by cross‐referencing residential addresses with Australian Bureau of Statistics 1996 census data for the study region and categorized in quintiles. Lifestyle variables were collected by self‐report. Regression models used to assess the relationship between SES and BMD were adjusted for age, height, weight, dietary calcium, smoking, alcohol consumption, physical activity, hormone therapy, and calcium/vitamin D supplements. Unadjusted BMD differed across SES quintiles (p < 0.05). At each skeletal site and SES index, a consistent peak in adjusted BMD was observed in the mid‐quintiles. Differences in adjusted BMD were observed between SES quintiles 1 and 4 (3–7%) and between quintiles 5 and 4 (2–7%). At the spine, the maximum difference was observed (7.5%). In a subset of women, serum 25(OH)D explained a proportion of the association between SES and BMD (difference remained up to 4.2%). Observed differences in BMD across SES quintiles, consistent across both SES indices, suggest that low BMD may be evident for both the most disadvantaged and most advantaged.  相似文献   

4.
Using a moderate‐sized cohort selected with extreme BMD (n = 344; absolute value BMD, 1.5–4.0), significant association of several members of the Wnt signaling pathway with bone densitometry measures was shown. This confirms that extreme truncate selection is a powerful design for quantitative trait association studies of bone phenotypes. Introduction : Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate‐sized extreme truncate selected cohort (absolute value BMD Z‐scores = 1.5–4.0; n = 344). Materials and Methods : Ninety‐six tag‐single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r2 > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty‐four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane‐Armitage test for dichotomous variables or by linear regression for quantitative traits. Results : Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. Conclusions : This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome‐wide studies of quantitative bone phenotypes relevant to osteoporosis.  相似文献   

5.
Runs of homozygosity (ROHs), in which both parental alleles are identical, have been proposed to have recessive effects on multiple human complex diseases. Osteoporosis is a common complex disease characterized by low bone mineral density (BMD), which is highly heritable. And recessive loci that contribute to BMD variations have been identified. In this study, we performed a genome‐wide ROHs association study using our SNP array data from three GWAS samples including 4,900 subjects from Caucasian and Chinese populations. Significant results were further subjected to replication in 3,747 additional subjects. ROHs associated with BMD were also tested for associations with osteoporotic fractures in a GWAS fracture sample. Combining results from all the samples, we identified 697 autosomal regions with ROHs. Among these, we detected genome‐wide significant associations between BMD and 6 ROHs, including ROH1q31.3, 1p31.1, 3q26.1, 11q12.1, 21q22.1 and 15q22.3 (combined P = 6.29 × 10‐5 ‐ 3.17 × 10‐8). Especially, ROH1p31.1 was found to be associated with increased risk of osteoporotic hip fractures (odds ratio [OR] = 3.71, P = 0.032). To investigate the functional relevance of the identified ROHs, we performed cis‐expression quantitative trait locus (eQTL) analysis in lymphoblast cell lines. Three ROHs, including ROH1p31.1, 11q12.1, and 15q22.3, were found to be significantly associated with mRNA expression levels of their nearby genes (PeQTL < 0.05). In summary, our findings reveal that ROHs could play as recessive‐acting determinants contributing to the pathogenesis of osteoporosis. Further molecular and functional studies are needed to explore and clarify the potential mechanism. © 2015 American Society for Bone and Mineral Research.  相似文献   

6.
Fracture risk assessment based solely on BMD has limitations. Additional risk factors include the presence of a previous low‐trauma fracture. We sought to quantify the fracture burden attributable to first versus repeat fracture. We studied 2179 men and 5269 women, 50–90 yr of age, participating in the Canadian Multicentre Osteoporosis Study (CaMos). We included all low‐trauma fractures that occurred over 8 yr of follow‐up and classified these as either first or repeat clinical low‐trauma fracture based on lifetime fracture history. Analyses were further stratified by sex, age, BMD risk categories (normal, osteopenia, osteoporosis), and vertebral deformity status. There were 128 fractures in men and 577 fractures in women. About 25% of fractures in men and 40% in women were repeat fractures. Just over one half of first fractures occurred in those with osteopenic BMD (58% in men, 54% in women). Just under one half of repeat fractures also occurred in those with osteopenic BMD (42% in men, 47% in women). The incidence of repeat fracture was, in most cases, nearly double, but sometimes nearly quadruple, the incidence of first fracture within a given BMD risk category in both men and women. Repeat fractures contribute substantially to overall fracture burden, and the contribution is independent of BMD. Furthermore, those with a combination of prior low‐trauma fracture and another risk factor were at especially high risk of future fracture.  相似文献   

7.
Three polymorphisms have been identified in the 5′ regulatory region of the COL1A1 gene at positions −1997 (rs1107946), −1663 (rs2412298), and +1245G/T (rs1800012), which combine to form haplotypes that have been associated with BMD in several populations. These polymorphisms and haplotypes have not thus far been studied in relation to biomechanical properties of bone or fracture risk. Genotypes and haplotypes of the COL1A1 gene were related to the biomechanical properties of bone ex vivo in samples of bone tissue obtained from the femoral head of 98 consecutive patients undergoing surgery for low-trauma hip fractures. Genotype and haplotype frequencies in the hip fracture cases were compared with 3418 population-based controls recruited from the same region. All three polymorphisms were associated with material density of the bone core, yield strength, and toughness. The association between −1663InsdelT and +1245G/T alleles, yield strength, and toughness remained significant after adjusting for material density of the core and other confounding factors. A haplotype comprising the unfavorable allele at all three polymorphic sites (−1997T/−1663delT/+1245T) was also associated with yield strength, modulus, and toughness after adjusting for confounding factors. This haplotype was carried by 19/94 (20.2%) patients with hip fracture compared with only 2/3399 (0.06%) female controls drawn from the general population (p < 0.0001). In contrast, there was no significant difference between cases and controls in genotype distribution for the individual polymorphisms. This study shows that common genetic variants in the 5′ regulatory region of COL1A1 are associated with biomechanical properties of bone and reduced bone quality by mechanisms independent of their effects on BMD. The biomechanically unfavorable allele at each polymorphic site defines a haplotype that is extremely rare in the general population but that is ∼400-fold enriched in hip fracture patients. This haplotype may have clinical value as a genetic marker for susceptibility to hip fracture, and further studies to investigate this possibility would be of interest.  相似文献   

8.
Short leukocyte telomere length (TL), low BMD, and osteoporosis have been associated with increased inflammation. Previous reports suggest an association between TL, BMD, and osteoporosis in women. We sought to verify these associations and to determine whether TL is related to fracture in a cohort of older men and women. Participants included 2750 community‐dwelling older persons from the longitudinal Health, Aging, and Body Composition Study (Health ABC) in who average leukocyte TL was measured at baseline using qPCR. We used unconditional logistic regression to determine the association of TL with prevalent fracture, Cox proportional hazards regression for the association with 7‐yr incident fracture, and mixed linear models for the association with BMD, change in BMD, and the number of incident fractures. TL was negatively correlated with age, weight, fasting insulin, and fasting glucose in men and women, and additionally, with C‐reactive protein and IL‐6 in men. TL was not associated with BMD; change in BMD over 1, 3, or 5 yr; osteoporosis; baseline fracture; or 7‐yr incident fracture, before or after adjustment for age, race, smoking, and health characteristics. TL is not associated with BMD, osteoporosis, or fracture in older men or women in this sample.  相似文献   

9.
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX‐2), the inducible regulator of prostaglandin E2 (PGE2) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7–9 or 52–56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX‐2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX‐2 is expressed primarily in early cartilage precursors that co‐express col‐2. COX‐2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX‐2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX‐2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.  相似文献   

10.
Kidney stone patients often have a decrease in BMD. It is unclear if reduced BMD is caused by a primary disorder of bone or dietary factors. To study the independent effects of hypercalciuria on bone, we used genetic hypercalciuric stone‐forming (GHS) rats. GHS and control (Ctl) rats were fed a low Ca (0.02% Ca, LCD) or a high Ca (1.2% Ca, HCD) diet for 6 wk in metabolic cages. All comparisons are to Ctl rats. Urine Ca was greater in the GHS rats on both diets. GHS fed HCD had reduced cortical (humerus) and trabecular (L1–L5 vertebrae) BMD, whereas GHS rats fed LCD had a reduction in BMD similar to Ctl. GHS rats fed HCD had a decrease in trabecular volume and thickness, whereas LCD led to a ~20‐fold increase in both osteoid surface and volume. GHS rats fed HCD had no change in vertebral strength (failure stress), ductibility (failure strain), stiffness (modulus), or toughness, whereas in the humerus, there was reduced ductibility and toughness and an increase in modulus, indicating that the defect in mechanical properties is mainly manifested in cortical, rather than trabecular, bone. GHS rat cortical bone is more mineralized than trabecular bone and LCD led to a decrease in the mineralization profile. Thus, the GHS rats, fed an ample Ca diet, have reduced BMD with reduced trabecular volume, mineralized volume, and thickness, and their bones are more brittle and fracture prone, indicating that GHS rats have an intrinsic disorder of bone that is not secondary to diet.  相似文献   

11.
Introduction : Osteoporosis is characterized by low BMD. Studies have shown that B cells may participate in osteoclastogenesis through expression of osteoclast‐related factors, such as RANKL, transforming growth factor β (TGFB), and osteoprotegerin (OPG). However, the in vivo significance of B cells in human bone metabolism and osteoporosis is still largely unknown, particularly at the systematic gene expression level. Materials and Methods : In this study, Affymetrix HG‐U133A GeneChip arrays were used to identify genes differentially expressed in B cells between 10 low and 10 high BMD postmenopausal women. Significance of differential expression was tested by t‐test and adjusted for multiple testing with the Benjamini and Hochberg (BH) procedure (adjusted p ≤ 0.05). Results : Twenty‐nine genes were downregulated in the low versus high BMD group. These genes were further analyzed using Ingenuity Pathways Analysis (Ingenuity Systems). A network involving estrogen receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) was identified. Real‐time RT‐PCR confirmed differential expression of eight genes, including ESR1, MAPK3, methyl CpG binding protein 2 (MECP2), proline‐serine‐threonine phosphatase interacting protein 1 (PSTPIP1), Scrlikeadaptor (SLA), serine/threonine kinase 11 (STK11), WNK lysine‐deficient protein kinase 1 (WNK1), and zinc finger protein 446 (ZNF446). Conclusions : This is the first in vivo genome‐wide expression study on human B cells in relation to osteoporosis. Our results highlight the significance of B cells in the etiology of osteoporosis and suggest a novel mechanism for postmenopausal osteoporosis (i.e., that downregulation of ESR1 and MAPK3 in B cells regulates secretion of factors, leading to increased osteoclastogenesis or decreased osteoblastogenesis).  相似文献   

12.
13.
Osteonecrosis of the jaw (ONJ) is a rare, but serious drug side effect, mainly associated with the use of intravenous (iv) bisphosphonates (BPs). The purpose of this study was to identify genetic variants associated with ONJ in patients of European ancestry treated with iv BPs using whole‐exome sequencing (WES). The WES phase 1 included 44 multiple myeloma patients (22 ONJ cases and 22 controls) and WES phase 2 included 17 ONJ patients with solid tumors. Multivariable logistic regression analysis was performed to estimate the odds ratios (ORs) and 95% confidence intervals (CI), adjusting for age, sex, and principal components for ancestry. Meta‐analysis of WES phase 1 and 2 was performed to estimate the combined ORs. In silico analyses were then performed to identify expression quantitative loci (eQTL) single‐nucleotide polymorphisms (SNPs) that are in high linkage disequilibrium (LD) with the top SNPs. The associations of the potentially functional SNPs were replicated and validated in an independent case‐control study of 48 patients of European ancestry treated with iv BPs (19 ONJ cases and 29 controls). The top SNPs in the exome‐wide association meta‐analysis were two SNPs on chromosome 10: SIRT1 SNP rs7896005 and HERC4 SNP rs3758392 with identical OR of 0.07 (0.01–0.46; p = 3.83 × 10?5). In the in silico functional analyses, two promoter region SNPs (rs7894483 and rs3758391) were identified to be in high LD with the index SNPs and are eQTLs for SIRT1 gene in whole blood in the GTEx database. The ORs were 0.30 (0.10–0.88), 0.26 (0.12–0.55), and 0.26 (0.12–0.55) for the WES top SNP rs7896005 and two promoter SNPs rs7894483 and rs3758391, respectively, in the replication sample. In summary, we identified the SIRT1/HERC4 locus on chromosome 10 to be associated with iv BP‐induced ONJ and two promoter SNPs that might be the potential genetic markers for this association. © 2017 The Authors.Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.  相似文献   

14.

Objective

Elderly patients suffer fractures through low‐energy mechanisms. The distal radius is the most frequent fracture localization. Insulin‐like growth factor‐1 (IGF1) plays an important role in the maintenance of bone mass and its levels decline with advancing age and in states of malnutrition. Our aim was to investigate the association of IGF1 levels, bone mass, nutritional status, and inflammation to low‐energy distal radius fractures and also study if fracture healing is influenced by IGF1, nutritional status, and inflammation.

Methods

Postmenopausal women, 55 years or older, with low‐energy distal radius fractures occurring due to falling on slippery ground, indoors or outdoors, were recruited in the emergency department (ED) and followed 1 and 5 weeks after the initial trauma with biomarkers for nutritional status and inflammation. Fractures were diagnosed according to standard procedure by physical examination and X‐ray. All patients were conservatively treated with plaster casts in the ED. Patients who needed interventions were excluded from our study. Fracture healing was evaluated from radiographs. Fracture healing assessment was made with a five‐point scale where the radiological assessment included callus formation, fracture line, and stage of union. Blood samples were taken within 24 h after fracture and analyzed in the routine laboratory. Bone mineral density (BMD) was measured by dual‐energy X‐ray absorptiometry (DXA).

Results

Thirty‐eight Caucasian women, aged 70.5 ± 8.9 years (mean ± SD) old, were recruited. Nutritional status, as evaluated by albumin (40.3 ± 3.1 g/L), IGF1 (125.3 ± 39.9 μg/L), body mass index (26.9 ± 3.6 kg/m2), arm diameter (28.9 ± 8.9 cm), and arm skinfold (2.5 ± 0.7 cm), was normal. A positive correlation was found between IGF1 at visit 1 and the lowest BMD for hip, spine, or radius (r = 0.39, P = 0.04). High sensitive C‐reactive protein (hsCRP) and leukocytes were higher at the fracture event compared to 5 weeks later (P = 0.07 and P < 0.001, respectively). Fracture healing parameters (i.e. callus formation, fracture line, and stage of union) were positively correlated with the initial leukocyte count and to difference in thrombocyte count between visit 1 and 3.

Conclusions

In elderly women with low‐energy distal radius fractures, an association between IGF1 and lowest measures of BMD was found, indicating that low IGF1 could be an indirect risk factor for fractures. Fracture healing was associated with initial leukocytosis and a lower thrombocyte count, suggesting that inflammation and thrombocytes are important components in fracture healing.
  相似文献   

15.
Fibroblast growth factor 21 (FGF21) is a member of the endocrine FGF subfamily and an important metabolic regulator that has multiple beneficial effects on glucose homeostasis and lipid metabolism. However, it was unclear whether FGF21 would induce bone defects in humans. This study evaluated the associations of FGF21 levels, bone mineral density (BMD), osteoporotic fracture, and bone turnover marks (BTMs) in postmenopausal women. A total of 1342 postmenopausal Chinese Han women (511 cases of fragility fracture in the case group and 831 cases in nonfragility fracture group) were enrolled. Serum FGF21 concentration was measured by ELISA (Quantikine), serum calcium (Ca), phosphate (P), alkaline phosphatase, 25-hydroxyvitamin D, parathyroid hormone, β-crosslinked C-telopeptide of type l collagen, were measured using an automated Roche electro-chemiluminescence system. BMD was measured using dual-energy X-ray absorptiometry. The association with age, BMD, 25-hydroxyvitamin D, parathyroid hormone, β-crosslinked C-telopeptide of type l collagen, and FGF21 levels were also evaluated in postmenopausal women. In nonfracture group and fragility fracture group, postmenopausal women's FGF21 level was 226.57pg/mL (149.11–354.43 pg/mL) and 219.43pg/mL (147.21–323.74 pg/mL), respectively. There is no significant difference in serum FGF21 levels between the fragility fracture group and the nonfracture group (p = 0.160). There was a significant statistical difference in BMD between the fragility fracture group and the nonfracture group (p?=?0.000). In multiple linear regression analysis, FGF21 levels were significantly positive associated with lumbar BMD in postmenopausal women (L1-4, p?=?0.007), independent of other factors, especially in fragility fracture group (L1-4, p?=?0.001). In addition, a significant positive association was also observed between serum FGF21 levels and age in postmenopausal women (p < 0.05). We reveal a positive correlation between serum FGF21 concentrations with lumbar BMD in Chinese Han postmenopausal women. No significant correlations are present between serum FGF21 and bone turnover marks or serum FGF21 and fragility fracture in our study.  相似文献   

16.
Periostin is a matricellular protein involved in bone formation and bone matrix organization, but it is also produced by other tissues. Its circulating levels have been weakly associated with bone microstructure and prevalent fractures, possibly because periostin measured by the current commercial assays does not specifically reflect bone metabolism. In this context, we developed a new ELISA for a periostin fragment resulting from cathepsin K digestion (K‐Postn). We hypothesized that circulating K‐Postn levels could be associated with bone fragility. A total of 695 women (age 65.0 ± 1.5 years), enrolled in the Geneva Retirees Cohort (GERICO), were prospectively evaluated over 4.7 ± 1.9 years for the occurrence of low‐trauma fractures. At baseline, we measured serum periostin, K‐Postn, and bone turnover markers (BTMs), distal radius and tibia microstructure by HR‐pQCT, hip and lumbar spine aBMD by DXA, and estimated fracture probability using the Fracture Risk Assessment Tool (FRAX). Sixty‐six women sustained a low‐trauma clinical fracture during the follow‐up. Total periostin was not associated with fractures (HR [95% CI] per SD: 1.19 [0.89 to 1.59], p = 0.24). In contrast, K‐Postn was significantly higher in the fracture versus nonfracture group (57.5 ± 36.6 ng/mL versus 42.5 ± 23.4 ng/mL, p < 0.001) and associated with fracture risk (HR [95%CI] per SD: 2.14 [1.54 to 2.97], p < 0.001). After adjustment for aBMD, FRAX, bone microstructure, or BTMs, K‐Postn remained significantly associated with fracture risk. The performance of the fracture prediction models was improved by adding K‐Postn to aBMD or FRAX (Harrell C index for fracture: 0.70 for aBMD + K‐Post versus 0.58 for aBMD alone, p = 0.001; 0.73 for FRAX + K‐Postn versus 0.65 for FRAX alone, p = 0.005). Circulating K‐Postn predicts incident fractures independently of BMD, BTMs, and FRAX in postmenopausal women. Hence measurement of a periostin fragment resulting from in vivo cathepsin K digestion may help to identify subjects at high risk of fracture. © 2017 American Society for Bone and Mineral Research  相似文献   

17.
There are few data on the relative effects of calcium supplementation with or without extra vitamin D on BMD in patients selected for low vitamin D status. The aim of this study is to evaluate the relative importance of vitamin D and calcium treatment on BMD and bone‐related chemistry in elderly women with vitamin D insufficiency. Three hundred two elderly women (age, 77.2 ± 4.6 yr) with serum 25(OH)D concentrations <60 nM participated in a 1‐yr randomized, double‐blind, placebo‐controlled trial. All subjects received 1000 mg calcium citrate per day with either 1000 IU ergocalciferol (vitamin D2) or identical placebo (control). The effects of time and time treatment interactions were evaluated by repeated‐measures ANOVA. At baseline, calcium intake was 1100 mg/d, and 25(OH)D was 44.3 ± 12.9 nM; this increased in the vitamin D group by 34% but not the control group after 1 year (59.8 ± 13.8 versus 45.0 ± 13.3 nM, p < 0.001). Total hip and total body BMD increased significantly, and procollagen type I intact N‐terminal propeptide (PINP) decreased during the study with no difference between the treatment groups (hip BMD change: vitamin D, +0.5%; control, +0.2%; total body BMD change: vitamin D, +0.4%; control, +0.4%; PINP change: vitamin D, ?3.9%; placebo, ?2.8%). Although the fasting plasma and urine calcium increased in both groups equally, there was no detectable change in serum PTH. The increase in 25(OH)D achieved with vitamin D supplementation had no extra effect on active fractional intestinal calcium absorption, which fell equally in both groups (vitamin D, ?17.4%; control, ?14.8%). In patients with a baseline calcium intake of 1100 mg/d and vitamin D insufficiency, vitamin D2 1000 IU for 1 year has no extra beneficial effect on bone structure, bone formation markers, or intestinal calcium absorption over an additional 1000 mg of calcium. Vitamin D supplementation adds no extra short‐term skeletal benefit to calcium citrate supplementation even in women with vitamin D insufficiency.  相似文献   

18.
19.
Asian women have lower rates of hip and forearm fractures despite lower areal BMD (aBMD) by DXA compared with white women and other racial groups. We hypothesized that the lower fracture rates may be explained by more favorable measurements of volumetric BMD (vBMD) and microarchitectural properties, despite lower areal BMD. To address this hypothesis, we used high‐resolution pQCT (HRpQCT), a new method that can provide this information noninvasively. We studied 63 premenopausal Chinese‐American (n = 31) and white (n = 32) women with DXA and HRpQCT. aBMD by DXA did not differ between groups for the lumbar spine (1.017 ± 0.108 versus 1.028 ± 0.152 g/cm2; p = 0.7), total hip (0.910 ± 0.093 versus 0.932 ± 0.134 g/cm2; p = 0.5), femoral neck (0.788 ± 0.083 versus 0.809 ± 0.129 g/cm2; p = 0.4), or one‐third radius (0.691 ± 0.052 versus 0.708 ± 0.047 g/cm2; p = 0.2). HRpQCT at the radius indicated greater trabecular (168 ± 41 versus 137 ± 33 mg HA/cm3; p = <0.01) and cortical (963 ± 46 versus 915 ± 42 mg HA/cm3; p < 0.0001) density; trabecular bone to tissue volume (0.140 ± 0.034 versus 0.114 ± 0.028; p = <0.01); trabecular (0.075 ± 0.013 versus 0.062 ± 0.009 mm; p < 0.0001) and cortical thickness (0.98 ± 0.16 versus 0.80 ± 0.14 mm; p < 0.0001); and lower total bone area (197 ± 34 versus 232 ± 33 mm2; p = <0.001) in the Chinese versus white women and no difference in trabecular number, spacing, or inhomogeneity before adjustment for covariates. Similar results were observed at the weight‐bearing tibia. At the radius, adjustment for covariates did not change the direction or significance of differences except for bone, which became similar between the groups. However, at the tibia, adjustment for covariates attenuated differences in cortical BMD and bone area and accentuated differences in trabecular microarchitecture such that Chinese women additionally had higher trabecular number and lower trabecular spacing, as well as inhomogeneity after adjustment. Using the high‐resolution technology, the results provide a mechanistic explanation for why Chinese women have fewer hip and forearm fractures than white women.  相似文献   

20.
In Caucasian populations, the polymorphic restriction endonuclease HindIII marker of the osteocalcin (also known as BGP, for bone Gla protein) gene has recently been reported to be associated with bone mass, a major risk determinant of osteoporosis. In this study, we investigated the relationship between the BGP HindIII polymorphism and bone mineral density (BMD) in 388 premenopausal (31.18 ± 5.92 years) and 169 postmenopausal (58.90 ± 6.27 years) Chinese women. The BMD of spine and hip was measured by dual-energy X-ray absorptiometry (DEXA). All the study subjects were genotyped at the HindIII site of the BGP gene by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) detecting methods. The BGP alleles were designated according to the absence (H) or presence (h) of the HindIII restriction site. We did not find any significant difference in spine and hip BMD across BGP genotypes in either pre- or postmenopausal women or the combined group. Our result is not consistent with recent reports that the HindIII marker of the BGP gene is associated with osteoporosis. The different findings may reflect inter-population differences in the association (i.e., linkage disequilibrium) of molecular markers with BMD, and indicate the limit of using the HindIII marker of the BGP gene as a genetic marker to discern women susceptible to low BMD and thus osteoporosis in Chinese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号