首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
No study has directly estimated tumor blood flow after antiangiogenic therapy. Using dye extraction colored microspheres, we estimated blood flow in a rat LY80 tumor model before and after antiangiogenic therapy with TNP-470. Dyed microspheres were infused into the tumor-bearing rats. The dye was extracted and its concentration was quantified by spectrophotometry. Tumor blood flow corrected for wet weight (ml. min(-1)g(-1)) was calculated as follows (AU = absorbency units): (blood flow to tumor) = (AU per gram of tumor) x (reference withdrawal rate)/(AU per gram of reference blood). Tumor tissues with or without TNP-470 were also examined histologically. Tumor blood flow 1 week after transplantation could be predicted by the simple regression equation. In the groups treated with TNP-470, this simple regression equation shifted to the left, despite virtually no difference in the results of pathological examination. In LY80 tumors 2 weeks after transplantation, blood flow in tumors treated with TNP-470 was higher than without TNP-470. This technique can be used to obtain information about the angiogenic status within tumor before and after antiangiogenic therapy. These angiogenic profiles may provide important clues to optimal antiangiogenic therapy, combinations of antiangiogenic treatment and cytotoxic therapy, and schedules for combination therapy.  相似文献   

2.
PURPOSE: In this study, we investigated the antitumor efficacy of thrombospondin-1 three type 1 repeats (3TSR), the antiangiogenic domain of thrombospondin-1, in comparison and in combination with gemcitabine, in an orthotopic pancreatic cancer model. EXPERIMENTAL DESIGN: Human pancreatic cancer cells were injected into the pancreas of severe combined immunodeficient mice. The animals were treated with 3TSR, gemcitabine, 3TSR plus gemcitabine, or vehicle for 3 weeks. Subsequently, the effects of 3TSR and/or gemcitabine on tumor growth, tumor necrosis, microvessel density, cancer cell proliferation, apoptosis, and endothelial cell apoptosis were analyzed. RESULTS: After 3 weeks of treatment, 3TSR reduced tumor volume by 65%, and gemcitabine by 84%. Tumor volume was not statistically different between gemcitabine group and combinatorial treatment group. Extensive necrotic areas were observed in tumors from 3TSR-treated mice, whereas tumors from gemcitabine and combinatorially treated mice were less necrotic than control tumors. 3TSR reduced tumor microvessel density and increased tumor blood vessel endothelial cell apoptosis. In contrast, gemcitabine induced apoptosis and inhibited proliferation of cancer cells. CONCLUSION: 3TSR, the antiangiogenic domain of thrombospondin-1, showed comparable antitumor efficacy to gemcitabine in a human pancreatic cancer orthotopic mouse model. No synergistic effect was found when the two drugs were combined and possible reasons are discussed in detail. A delicate balance between normalization and excessive regression of tumor vasculature is important when initiating alternative combinatorial regimens for treatment of patients with pancreatic cancer.  相似文献   

3.
Tumor growth requires a competent vascular supply and angiogenesis is now considered a potential target for cancer treatment. Chemotherapeutic drugs, and docetaxel in particular, chronically administered using a frequent schedule at low dose (metronomic dosing), can cause potent antiangiogenic effects by targeting the endothelial cells of newly growing blood vessels. Because the exposure to cytotoxic drugs could target both endothelial and tumor cells, we investigated the effects of “metronomic docetaxel” on hormone refractory prostate carcinoma cells. In vitro, metronomic therapy lowered tumor cell viability, inducing apoptosis and reducing the invasive potential at 10‐ to100‐fold lower concentrations as compared with the maximum tolerated dose. Metronomic regimens resulted in a significant reduction of vascular endothelial cell growth factor expression and up‐regulation of endogenous angiogenesis inhibitors. Our studies suggest that heterogeneous nuclear ribonucleoprotein K is a mediator of the effects we observed. Targeting heterogeneous nuclear ribonucleoprotein K may serve as a specific antimetastasis and antiangiogenic therapy and could be a potential predictive marker to determine the optimal dose and schedule for metronomic chemotherapy regimens. These findings highlight the multiple effects that may characterize antiangiogenic metronomic chemotherapy and suggest that docetaxel might act as antitumor compound by affecting both cancer and endothelial cells at the same drug concentration. Careful optimization of drug scheduling and dosages will be required to maximize antitumor responses with metronomic approaches. © 2009 UICC  相似文献   

4.
Current clinical protocols favor a combination of antiangiogenic/antivascular compounds with classical chemotherapy. However, it remains unclear to what extent an antiangiogenic/antivascular therapy influences the delivery of chemotherapy. Therefore, the aim of the present study was to characterize the effects of the antiangiogenic tyrosine kinase inhibitor sunitinib on tumor microhemodynamics and delivery of chemotherapy. SF126 tumor cells were implanted subcutaneously into nude mice and were analyzed repeatedly by intravital microscopy. Treatment with sunitinib was initiated 7 days after implantation. To assess the effects of sunitinib on tumor vasculature and hemodynamics, we analyzed total and functional vessel densities, microvascular diameter, and microvascular blood flow rate. To study the delivery of chemotherapy, autofluorescent doxorubicin was systemically administered and its vascular delivery to the tumor tissue was quantified. Histological analysis included endothelial cell proliferation, pericyte coverage of tumor vessels, and tumor cell proliferation. Sunitinib significantly suppressed tumor growth by both antivascular and antiangiogenic effects. However, a number of tumor vessels escaped antiangiogenic therapy. Interestingly, in these surviving blood vessels sunitinib treatment resulted in an increased microvascular blood flow rate resulting in an improved delivery of chemotherapy via these blood vessels. Besides its potent antiangiogenic and antivascular efficacy, sunitinib treatment results in improved microhemodynamics and blood flow in tumor blood vessels that escape therapy leading to an improved vascular delivery of chemotherapy. These results provide the basis for a potential chemosensitizing effect of sunitinib. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
BACKGROUND: Cilengitide, an antiangiogenic agent that inhibits the binding of integrins alpha(nu)beta(3) and alpha(nu)beta(5) to the extracellular matrix, was studied at two dose levels in cancer patients to determine the optimal biological dose. PATIENTS AND METHODS: The doses of cilengitide were 600 or 1200 mg/m(2) as a 1-h infusion twice weekly every 28 days. A novel dose escalation scheme was utilized that relied upon the biological activity rate. RESULTS: Twenty patients received 50 courses of cilengitide with no dose-limiting toxic effects. The pharmacokinetic (PK) profile revealed a short elimination half-life of 4 h, supporting twice weekly dosing. Of the six soluble angiogenic molecules assessed, only E-selectin increased significantly from baseline. Analysis of tumor microvessel density and gene expression was not informative due to intrapatient tumor heterogeneity. Although several patients with evaluable tumor biopsy pairs did reveal posttreatment increases in tumor and endothelial cell apoptosis, these results did not reach statistical significance due to the aforementioned heterogeneity. CONCLUSIONS: Cilengitide is a well-tolerated antiangiogenic agent. The biomarkers chosen in this study underscore the difficulty in assessing the biological activity of antiangiogenic agents in the absence of validated biological assays.  相似文献   

6.
PURPOSE: In the present study, we sought to determine the potential of sustained transgene expression by a single i.m. administration of recombinant adeno-associated virus 2 (rAAV) encoding angiostatin and endostatin in inhibiting i.p. ovarian cancer growth and dissemination in a preclinical mouse model. EXPERIMENTAL DESIGN: Cohorts of female athymic nude mice received either no virus or 1.2 x 10(11) particles of rAAV encoding green fluorescence protein or endostatin plus angiostatin, i.m. Three weeks later, the mice were i.p. injected with 10(6) human epithelial ovarian cancer cell line SKOV3.ip1. As a measure of effectiveness of the therapy, tumor weight, abdominal distension, ascites volume and vascular endothelial growth factor level, and tumor weight were determined. Immunohistochemistry was done to determine tumor cell apoptosis and endothelial cell proliferation following the therapy. Tumor-free survival was recorded as the end point. RESULTS: Results indicated a significant tumor-free survival (P < 0.003) following therapy with rAAV encoding endostatin and angiostatin compared with untreated or rAAV-green fluorescence protein-treated mice. Ascites volume in rAAV endostatin and angiostatin-treated mice was significantly lower than naive mice and contained less hemorrhage and tumor conglomerates. The level of vascular endothelial growth factor in the ascites of antiangiogenic vector treated mice was also significantly less compared with the untreated mice. Immunohistochemical analyses indicated increased tumor cell apoptosis and decreased blood vasculature following rAAV endostatin and angiostatin treatment. CONCLUSION: The results indicate that antiangiogenic genetic prevention from stable systemic levels of angiostatin and endostatin by i.m. administration of rAAV can be used for the treatment of i.p. ovarian cancer growth and dissemination.  相似文献   

7.
Fenton BM  Paoni SF  Ding I 《Cancer research》2004,64(16):5712-5719
Although clinical trials of antiangiogenic strategies have been disappointing when administered as single agents, such approaches can play an important role in cancer treatment when combined with conventional therapies. Previous studies have shown that DC101, an antiangiogenic monoclonal antibody against vascular endothelial growth factor receptor-2, can produce significant growth inhibition in spontaneous and transplanted tumors but can also induce substantial hypoxia. Because DC101 appears to potentiate radiotherapy in some tumors, the present studies were undertaken to characterize pathophysiological changes following combined therapy and to determine whether radioresponse is enhanced despite the induction of hypoxia. MCa-4 and MCa-35 mammary carcinomas were treated with: (a) DC101; (b) 5 x 6 Gy radiation fractions; or (c) the combination. Image analysis of frozen tumor sections was used to quantitate: (a) hypoxia; (b) spacing of total and perfused blood vessels; and (c) endothelial and tumor cell apoptosis. For MCa-4, combination treatment schedules produced significant and prolonged delays in tumor growth, whereas single-modality treatments had minor effects. For MCa-35, radiation or the combination led to equivalent growth inhibition. In all tumors, hypoxia increased markedly after either radiation or DC101 alone. Although combination therapy produced no immediate pathophysiological changes, hypoxia ultimately increased after cessation of therapy. Preferential increases in endothelial apoptosis following combination treatment suggest that in addition to blocking tumor angiogenesis, DC101 enhances radiotherapy by specifically sensitizing endothelial cells, leading to degeneration of newly formed blood vessels.  相似文献   

8.
The purpose of our study was the investigation of early changes in tumor vascularization during antiangiogenic therapy with the vascular endothelial growth factor (VEGF) receptor 2 antibody (DC101) using dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Subcutaneous heterotransplants of human skin squamous cell carcinomas in nude mice were treated with DC101. Animals were examined before and repeatedly during 2 weeks of antiangiogenic treatment using Gd-DTPA-enhanced dynamic T1-weighted MRI. With a two-compartment model, dynamic data were parameterized in "amplitude" (increase of signal intensity relative to precontrast value) and k(ep) (exchange rate constant). Data obtained by MRI were validated by parallel examinations of histological sections immunostained for blood vessels (CD31). Already 2 days after the first DC101 application, a decrease of tumor vascularization was observed, which preceded a reduction of tumor volume. The difference between treated tumors and controls became prominent after 4 days, when amplitudes of treated tumors were decreased by 61% (P =.02). In line with change of microvessel density, the decrease in amplitudes was most pronounced in tumor centers. On day 7, the mean tumor volumes of treated (153 +/- 843 mm(3)) and control animals (596 +/- 384 mm(3)) were significantly different (P =.03). After 14 days, treated tumors showed further growth reduction (83 +/- 93 mm(3)), whereas untreated tumors (1208 +/- 822 mm(3)) continued to increase (P =.02). Our data underline the efficacy of DC101 as antiangiogenic treatment in human squamous cell carcinoma xenografts in nude mice and indicate DCE MRI as a valuable tool for early detection of treatment effects before changes in tumor volume become apparent.  相似文献   

9.
PURPOSE: To determine the efficacy of combining radiation (XRT) with a dual epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor inhibitor, AEE788, in prostate cancer models with different levels of EGFR expression. METHODS AND MATERIALS: Immunoblotting was performed for EGFR, phosphorylated-EGFR, and phosphorylated-AKT in prostate cancer cells. Clonogenic assays were performed on DU145, PC-3, and human umbilical vein endothelial cells treated with XRT +/- AEE788. Tumor xenografts were established for DU145 and PC-3 on hind limbs of athymic nude mice assigned to four treatment groups: (1) control, (2) AEE788, (3) XRT, and (4) AEE788 + XRT. Tumor blood flow and growth measurements were performed using immunohistochemistry and imaging. RESULTS: AEE788 effectively decreased phosphorylated-EGFR and phosphorylated-AKT levels in DU145 and PC-3 cells. Clonogenic assays showed no radiosensitization for DU145 and PC-3 colonies treated with AEE788 + XRT. However, AEE788 caused decreased proliferation in DU145 cells. AEE788 showed a radiosensitization effect in human umbilical vein endothelial cells and increased apoptosis susceptibility. Concurrent AEE788 + XRT compared with either alone led to significant tumor growth delay in DU145 tumors. Conversely, PC-3 tumors derived no added benefit from combined-modality therapy. In DU145 tumors, a significant decrease in tumor blood flow with combination therapy was shown by using power Doppler sonography and tumor blood vessel destruction on immunohistochemistry. Maldi-spectrometry (MS) imaging showed that AEE788 is bioavailable and heterogeneously distributed in DU145 tumors undergoing therapy. CONCLUSIONS: AEE788 + XRT showed efficacy in vitro/in vivo with DU145-based cell models, whereas PC-3-based models were adequately treated with XRT alone without added benefit from combination therapy. These findings correlated with differences in EGFR expression and showed effects on both tumor cell proliferation and vascular destruction.  相似文献   

10.
The mechanism of tumor cell killing by OXI4503 was investigated by studying vascular functional and morphological changes post drug administration. SCID mice bearing MHEC5-T hemangioendothelioma were given a single dose of OXI4503 at 100 mg/kg. Tumor blood flow, measured by microsphere fluorescence, was reduced by 50% at 1 hr, and reached a maximum level 6-24 hr post drug treatment. Tumor vascular permeability, measured by Evan's blue and hemoglobin, increased significantly from 3 hr and peaked at 18 hr. The elevated tumor vessel permeability was accompanied by an increase in vascular endothelial growth factor (VEGF) from 1 hr post drug treatment. Immunohistochemical staining for CD31 and laminin showed that tumor blood vessels were affected as early as 3 hr but more prominent from 6 hr. From 12 hr, the vessel structure was completely destroyed. Histopathological and double immunohistochemical staining showed morphological change and induction of apoptosis in endothelial cells at 1-3 hr, followed by tumor cell necrosis from 6-72 hr. There were no statistically significant changes of Evan's blue and hemoglobin contents in liver tissue over the time course. These results suggest that OXI4503 selectively targets tumor blood vessels, and induces blood flow shutdown while it enhances tumor blood vessel permeability. The early induction of endothelial cell apoptosis leads to functional changes of tumor blood vessels and finally to the collapse of tumor vasculature, resulting in massive tumor cell necrosis. The time course of the tumor vascular response observed with OXI4503 treatment supports this drug for development as a stand alone therapy, and also lends support for the use of the drug in combination with other cancer therapies.  相似文献   

11.
PURPOSE OF REVIEW: Angiogenesis plays an important role in the pathophysiology of both solid tumors and hematologic malignancies. Angiogenesis-associated parameters are important prognosticators, and tumor blood vessels are an emerging target for therapy. This review addresses the evidence of the role of angiogenesis in malignant lymphoma and discusses some therapeutic implications. RECENT FINDINGS: In angiogenesis assays, lymphoma cells show angiogenic properties. Tumor vascularization is higher in lymphoma tissue than in reactive lymph nodes and increases in step with clinically more aggressive lymphoma subtypes and advanced-stage disease. High levels of vascular endothelial growth factor in blood and tissue are associated with adverse prognosis. Vascular endothelial growth factor and vascular endothelial growth factor receptors are also present in lymphoma cells. Therapy against vascular endothelial growth factor in animal models is effective and points to both the tumor cell and the host endothelium as targets. Structural microvessel abnormalities are present in some lymphoma subtypes. The role of angiogenesis might vary in lymphoma subtypes because the prognostic value of microvessel density and the expression of angiogenesis-related molecules differ between lymphoma subtypes. There are also differences in blood vessel phenotype between lymphoma subtypes. This heterogeneity may have implications for antiangiogenic therapies. Antiangiogenic therapy in human lymphoma is still in its infancy. SUMMARY: The role of angiogenesis in malignant lymphoma is evident. Tumor vasculature is an attractive target for lymphoma therapy. Differences between lymphoma subtypes must be taken into account in the selection of the most suitable patients for trials with antiangiogenic agents.  相似文献   

12.
Tumor blood vessels normalized by antiangiogenic therapy may provide improved delivery of chemotherapeutic agents during a window of time but it is unknown how protein expression in tumor vascular endothelial cells changes. We evaluated the distribution of RGD-4C phage, which binds alpha(v)beta(3), alpha(v)beta(5), and alpha(5)beta(1) integrins on tumor blood vessels before and after antiangiogenic therapy. Unlike the control phage, fd-tet, RGD-4C phage homed to vascular endothelial cells in spontaneous tumors in RIP-Tag2 transgenic mice in a dose-dependent fashion. The distribution of phage was similar to alpha(v)beta(3) and alpha(5)beta(1) integrin expression. Blood vessels that survived treatment with AG-013736, a small molecule inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptors, had only 4% as much binding of RGD-4C phage compared with vessels in untreated tumors. Cellular distribution of RGD-4C phage in surviving tumor vessels matched the alpha(5)beta(1) integrin expression. The reduction in integrin expression on tumor vessels after antiangiogenic therapy raises the possibility that integrin-targeted delivery of diagnostics or therapeutics may be compromised. Efficacious delivery of drugs may benefit from identification by in vivo phage display of targeting peptides that bind to tumor blood vessels normalized by antiangiogenic agents.  相似文献   

13.
Intermittent bolus-contrast power Doppler ultrasound was used for noninvasive, quantitative monitoring of tumor perfusion during antiangiogenic therapy. Subcutaneous heterotransplants of human squamous cell carcinoma cells in nude mice were treated with a blocking antibody to vascular endothelial growth factor receptor 2 (DC101) and repeatedly examined at weekly intervals. Using replenishment kinetics of microbubbles (Levovist) tumor vascularization, including capillary blood flow, was clearly visualized by this dynamic ultrasound method allowing the determination of a comprehensive functional status of tumor vascularization (blood volume, blood flow, perfusion, and mean blood velocity) in all examined tumors. DC101 treatment decreased tumor blood flow (-64%) and volume (-73%) compared with untreated controls (+409% and +185%, respectively). Regression of functional vessel parameters was observed early well before reduction of tumor size. The treatment-related amount of reduction in tumor volume was directly correlated for the initial tumor blood flow before start of therapy and the perfusion calculated at the preceding examination. The vessel density (immunofluorescence staining with CD31 antibody at different time points) showed an excellent correlation with the calculated relative blood volume (k = 0.84, P < 0.01), thereby validating intermittent sonography as a useful monitoring method. We conclude that intermittent sonography is a promising tool for comprehensive monitoring of antiangiogenic or proangiogenic therapies, especially during early stages of treatment, thus yielding information regarding a prospective evaluation of therapy effects beyond the follow up of tumor size.  相似文献   

14.
PURPOSE: The purpose of this study was to investigate whether positron emission tomography (PET) with the glucose analog [(18)F]fluorodeoxyglucose (FDG) and the estrogen analog 16 alpha-[(18)F]fluoroestradiol-17 beta (FES), performed before and after treatment with tamoxifen, could be used to detect hormone-induced changes in tumor metabolism (metabolic flare) and changes in available levels of estrogen receptor (ER). In addition, we investigated whether these PET findings would predict hormonally responsive breast cancer. PATIENTS AND METHODS: Forty women with biopsy-proved advanced ER-positive (ER(+)) breast cancer underwent PET with FDG and FES before and 7 to 10 days after initiation of tamoxifen therapy; 70 lesions were evaluated. Tumor FDG and FES uptake were assessed semiquantitatively by the standardized uptake value (SUV) method. The PET results were correlated with response to hormonal therapy. RESULTS: In the responders, the tumor FDG uptake increased after tamoxifen by 28.4% +/- 23.3% (mean +/- SD); only five of these patients had evidence of a clinical flare reaction. In nonresponders, there was no significant change in tumor FDG uptake from baseline (mean change, 10.1% +/- 16.2%; P =.0002 v responders). Lesions of responders had higher baseline FES uptake (SUV, 4.3 +/- 2.4) than those of nonresponders (SUV, 1.8 +/- 1.3; P =.0007). All patients had evidence of blockade of the tumor ERs 7 to 10 days after initiation of tamoxifen therapy; however, the degree of ER blockade was greater in the responders (mean percentage decrease, 54.8% +/- 14.2%) than in the nonresponders (mean percentage decrease, 19.4% +/- 17.3%; P =.0003). CONCLUSION: The functional status of tumor ERs can be characterized in vivo by PET with FDG and FES. The results of PET are predictive of responsiveness to tamoxifen therapy in patients with advanced ER(+) breast cancer.  相似文献   

15.
We have demonstrated that the designed peptide anginex displays potent antiangiogenic activity. The aim of our study was to investigate the effect of anginex on established tumor vasculature as an adjuvant to radiation therapy of solid tumors. In the MA148 human ovarian carcinoma athymic mouse model, anginex (10 mg/kg) in combination with a suboptimal dose of radiation (5 Gy once weekly for 4 weeks) caused tumors to regress to an impalpable state. In the more aggressive SCK murine mammary carcinoma model, combination of anginex and a single radiation dose of 25 Gy synergistically increased the delay in tumor growth compared to the tumor growth delay caused by either treatment alone. Immunohistochemical analysis also demonstrated significantly enhanced effects of combined treatment on tumor microvessel density and tumor or endothelial cell proliferation and viability. In assessing physiologic effects of anginex, we observed a reduction in tumor perfusion and tumor oxygenation in SCK tumors after 5-7 daily treatments with anginex with no reduction in blood pressure. To test anginex as a radiosensitizer, additional studies using SCK tumors were performed. Three daily i.p. injections of anginex were able to enhance the effect of 2 radiation doses of 10 Gy, resulting in 50% complete responses, whereas the known antiangiogenic agent angiostatin did not enhance the radiation response of SCK tumors. Mechanistically, it appears that anginex functions as an endothelial cell-specific radiosensitizer because anginex showed no effect on in vitro radiosensitivity of SCK or MA148 tumor cells, whereas anginex significantly enhanced the in vitro radiosensitivity of 2 endothelial cell types. This work supports the idea that the combination of the antiangiogenic agent anginex and radiation may lead to improved clinical outcome in treating cancer patients.  相似文献   

16.
PURPOSE: To measure changes in tumor blood flow following treatment with PTK787/ZK 222584, a pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, and their association with clinical response in patients with metastatic renal cell carcinoma. EXPERIMENTAL DESIGN: In 10 patients with metastatic renal cell carcinoma treated with PTK787/ZK 222584, tumor blood flow was evaluated by arterial spin labeling (ASL) magnetic resonance imaging before and 1 month on treatment. Changes in blood flow after 1 month of treatment were compared with bidimensional tumor response at 4 months of treatment using the Mann-Whitney test. RESULTS: Changes in blood flow at 1 month and changes in tumor size measured at 4 months or at time of disease progression were significantly correlated (P=0.01). Patients with progressive disease within 4 months on treatment (n=4) had a nonsignificant increase in tumor blood flow at 1 month (+25+/-33%; P=0.43), whereas patients with stable disease or partial response at 4 months (n=6) had a significant decrease in tumor blood flow at 1 month (-42+/-22%; P=0.02). CONCLUSION: These results suggest that decreasing tumor blood flow with PTK787/ZK 222584 therapy, as shown as soon as 1 month on therapy by ASL, may predict for a favorable clinical outcome. These data are consistent with a hypothetical functional role for tumor ischemia in the mechanism of response to anti-vascular endothelial growth factor therapy. ASL blood flow magnetic resonance imaging shows promise as an early predictor of clinical response to antiangiogenic therapies.  相似文献   

17.
PURPOSE: The purpose of this study was to determine the effect of the angiogenesis inhibitor endostatin on blood vessels in tumors and wound sites. EXPERIMENTAL DESIGN: In a Phase I dose escalation study, cancer patients were treated with daily infusions of human recombinant endostatin. Tumor biopsies were obtained prior to and 8 weeks after initiation of treatment. Blood vessel formation in nonneoplastic tissue was evaluated by creating a skin wound site on the arm with a punch biopsy device. The wound site was sampled with a second biopsy after a 7-day interval. This sequential biopsy procedure was performed prior to and 3 weeks after initiation of endostatin treatment. Vascular density, endothelial cell kinetics, and blood vessel maturity were determined in tumor and skin wound samples. The ultrastructure of tumor blood vessels was examined by electron microscopy. RESULTS: As expected, the tumors were of variable vascular density. Skin wounding induced a vascular granulation tissue containing a high percentage of proliferating endothelial cells. The proportion of immature blood vessels was high in tumors and in wound sites and low in normal skin. No statistically significant difference was detected between pretreatment and treatment samples of tumors and of skin wounds for any of the parameters tested. CONCLUSIONS: Endostatin treatment was not associated with any recognizable vascular changes in tumor samples and did not perturb wound healing at the doses and the treatment schedule used.  相似文献   

18.
ABSTRACT: BACKGROUND: Vascular endothelial growth factor (VEGF) plays a critical role in tumor angiogenesis. Bevacizumab is a humanized monoclonal antibody that neutralizes VEGF. We examined the impact on radiation response by blocking VEGF signaling with bevacizumab. METHODS: Human umbilical vein endothelial cell (HUVEC) growth inhibition and apoptosis were examined by crystal violet assay and flow cytometry, respectively. In vitro HUVEC tube formation and in vivo Matrigel assays were performed to assess the anti-angiogenic effect. Finally, a series of experiments of growth inhibition on head and neck (H&N) SCC1 and lung H226 tumor xenograft models were conducted to evaluate the impact of bevacizumab on radiation response in concurrent as well as sequential therapy. RESULTS: The anti-angiogenic effect of bevacizumab appeared to derive not only from inhibition of endothelial cell growth (40%) but also by interfering with endothelial cell function including mobility, cell-to-cell interaction and the ability to form capillaries as reflected by tube formation. In cell culture, bevacizumab induced a 2 ~ 3 fold increase in endothelial cell apoptosis following radiation. In both SCC1 and H226 xenograft models, the concurrent administration of bevacizumab and radiation reduced tumor blood vessel formation and inhibited tumor growth compared to either modality alone. We observed a siginificant tumor reduction in mice receiving the combination of bevacizumab and radiation in comparison to mice treated with bevacizumab or radiation alone. We investigated the impact of bevacizumab and radiation treatment sequence on tumor response. In the SCC1 model, tumor response was strongest with radiation followed by bevacizumab with less sequence impact observed in the H226 model. CONCLUSIONS: Overall, these data demonstrate enhanced tumor response when bevacizumab is combined with radiation, supporting the emerging clinical investigations that are combining antiangiogenic therapies with radiation.  相似文献   

19.
To reveal the antiangiogenic capability of cancer chemotherapy, we developed an alternative antiangiogenic schedule for administration of cyclophosphamide. We show here that this antiangiogenic schedule avoided drug resistance and eradicated Lewis lung carcinoma and L1210 leukemia, an outcome not possible with the conventional schedule. When Lewis lung carcinoma and EMT-6 breast cancer were made drug resistant before therapy, the antiangiogenic schedule suppressed tumor growth 3-fold more effectively than the conventional schedule. When another angiogenesis inhibitor, TNP-470, was added to the antiangiogenic schedule of cyclophosphamide, drug-resistant Lewis lung carcinomas were eradicated. Each dose of the antiangiogenic schedule of cyclophosphamide induced the apoptosis of endothelial cells within tumors, and endothelial cell apoptosis preceded the apoptosis of drug-resistant tumor cells. This antiangiogenic effect was more pronounced in p53-null mice in which the apoptosis of p53-null endothelial cells induced by cyclophosphamide was so vigorous that drug-resistant tumors comprising 4.5% of body weight were eradicated. Thus, by using a dosing schedule of cyclophosphamide that provided more sustained apoptosis of endothelial cells within the vascular bed of a tumor, we show that a chemotherapeutic agent can more effectively control tumor growth in mice, regardless of whether the tumor cells are drug resistant.  相似文献   

20.
Recently, we observed that suppression of tumor xenograft growth by silibinin was associated with reduction in tumor vasculature and an increased apoptosis. Here, we provide evidence for molecular events associated with antiangiogenic efficacy of pharmacologically achievable doses of silibinin in endothelial cell culture system. Our data show that silibinin almost completely (P<0.001) inhibits growth of human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMVEC-dermal origin) together with induction of cell death in a dose- and time-dependent manner. Growth inhibition was associated with a strong induction of G1 arrest accompanied by an increase in Kip1/p27, Cip1/p21 and p53. Apoptosis induction (up to 14- to 17-fold in both cell lines, P<0.001) was an underlying mechanism in silibinin-induced death of endothelial cells. In the studies elucidating the molecular events involved in apoptosis, silibinin caused loss of mitochondrial membrane potential and an increase in cytochrome c release from mitochondria. An increase in Bax and a decrease in Mcl-1 proteins were also observed. Silibinin-induced apoptosis involved both caspase-dependent and -independent mechanisms. Silibinin also decreased survivin level and inhibited Akt and NF-kappaB signaling. Two different PI-3K inhibitors, wortmannin and LY294002, showed Akt-independent activation of NF-kappaB. Further, silibinin showed a concentration-dependent strong inhibition of capillary tube formation on matrigel, retraction and disintegration of preformed capillary network, inhibition of matrigel invasion and migration, and a decrease in matrix metalloproteinase-2 secretion by HUVEC. Together, these findings identify pleiotropic mechanisms for antiangiogenic efficacy of silibinin, and suggest its usefulness in angioprevention and antiangiogenic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号