首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In patients who had undergone cardiac surgery (coronary artery bypass graft) and whose hearts showed abnormal movement during the cardiac cycle, we studied the accuracy of functional assessment using ECG-gated single-photon emission tomography (SPET) and the automated software developed by Germano et al. by comparing the findings with magnetic resonance (MR) images acquired three-dimensionally. Sixteen patients who had undergone cardiac surgery underwent 99mTc-sestamibi gated SPET (MIBI-g-SPET) and MRI on the same day. Left ventricular end-diastolic and end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) were measured using MIBI-g-SPET and the aforementioned algorithm. Regional wall thickening was assessed using a four-point scale on MIBI-g-SPET and cine MRI. There was a good correlation between MIBI-g-SPET and MRI in respect of EDV (r=0.89), ESV (r=0.93) and LVEF (r=0.89). A high degree of agreement was found between the wall thickening scores obtained by MIBI-g-SPET and MRI in total segments (kappa=0.62) and in septal segments (kappa=0.67). It is concluded that ECG-gated perfusion SPET can provide regional and global functional information, including absolute volumes, in patients following cardiac surgery.  相似文献   

2.
Short acquisition protocols for gated single-photon emission tomography (SPET) myocardial perfusion imaging are desirable for sequential imaging to evaluate the myocardial response during pharmacological intervention. In this study a less than 5 min gated SPET acquisition protocol is proposed. Perfusion characteristics (defect severity) and left ventricular ejection fraction (LVEF), end-diastolic and end-systolic volumes (EDV, ESV), wall motion (WM) and wall thickening (WT) were calculated, checked for reproducibility and compared with data obtained using a standard gated SPET acquisition protocol. Gated SPET images were recorded in 20 patients starting 60 min after the administration of 925 MBq technetium-99m tetrofosmin at rest. The 5 min gated SPET studies were acquired with a three-head camera equipped with Cardiofocal collimators. This protocol was repeated twice. In addition gated SPET studies were acquired according to a standard protocol using parallel-hole collimators. The severity of perfusion defects was quantified on polar maps using the non-gated image data and a normal database. LVEF, EDV, ESV, WM and WT were calculated from the gated images. The agreement between 5-min and standard gated SPET acquisitions was excellent for all investigated parameters. The reproducibility of repeated 5-min acquisitions for the quantification of perfusion defect severity was excellent (r=0.97). The agreement for segmental WT scores between repeated 5-min gated SPET acquisitions was good: κ=0.71; major differences in segmental classification were observed in 2.5%. For WM a good agreement was found for segments with a tracer uptake ≥30% of the maximum: κ=0.65, major differences =7.7%. Excellent reproducibility was found for LVEF, EDV and ESV measurements: r=0.97, 0.99 and 0.99, respectively. It is concluded that fast gated SPET perfusion studies acquired in less than 5 min yield accurate and reproducible measurements of myocardial perfusion and function (global and regional). In addition the results obtained with the 5-min gated SPET protocol correlate well with those obtained using a standard acquisition protocol. Received 1 February and in revised form 11 March 1998  相似文献   

3.
The main aim of this study was to validate the accuracy of 4D-MSPECT in the assessment of left ventricular (LV) end-diastolic/end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) from gated technetium-99m methoxyisobutylisonitrile single-photon emission tomography (99mTc-MIBI SPET), using cardiac magnetic resonance imaging (cMRI) as the reference method. By further comparing 4D-MSPECT and QGS with cMRI, the software-specific characteristics were analysed to elucidate clinical applicability. Fifty-four patients with suspected or proven coronary artery disease (CAD) were examined with gated 99mTc-MIBI SPET (8 gates/cardiac cycle) about 60 min after tracer injection at rest. LV EDV, ESV and LVEF were calculated from gated 99mTc-MIBI SPET using 4D-MSPECT and QGS. On the same day, cMRI (20 gates/cardiac cycle) was performed, with LV EDV, ESV and LVEF calculated using Simpsons rule. Both algorithms worked with all data sets. Correlation between the results of gated 99mTc-MIBI SPET and cMRI was high for EDV [R=0.89 (4D-MSPECT), R=0.92 (QGS)], ESV [R=0.96 (4D-MSPECT), R=0.96 (QGS)] and LVEF [R=0.89 (4D-MSPECT), R=0.90 (QGS)]. In contrast to ESV, EDV was significantly underestimated by 4D-MSPECT and QGS compared to cMRI [130±45 ml (4D-MSPECT), 122±41 ml (QGS), 139±36 ml (cMRI)]. For LVEF, 4D-MSPECT and cMRI revealed no significant differences, whereas QGS yielded significantly lower values than cMRI [57.5%±13.7% (4D-MSPECT), 52.2%±12.4% (QGS), 60.0%±15.8% (cMRI)]. In conclusion, agreement between gated 99mTc-MIBI SPET and cMRI is good across a wide range of clinically relevant LV volume and LVEF values assessed by 4D-MSPECT and QGS. However, algorithm-varying underestimation of LVEF should be accounted for in the clinical context and limits interchangeable use of software.  相似文献   

4.
Purpose The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. Methods SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. Results ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coeffients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. Conclusion The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects.  相似文献   

5.

Background

To compare the accuracy of end-diastolic and end-systolic volumes (EDV, ESV) and LV ejection fraction (LVEF) measured by both GSPECT and GPET, using cardiac magnetic resonance imaging (CMR) as a reference. Furthermore, the impacts of severe perfusion defects, akinetic/dyskinetic segments, and residual viable myocardium on the accuracy of LV functional parameters were investigated.

Methods

Ninety-six consecutive patients with LV aneurysm and LV dysfunction (LVEF 32 ± 9%) diagnosed by CMR were studied with GSPECT and GPET. EDV, ESV, and LVEF were calculated using QGS software.

Results

Correlations of volumes were excellent (r 0.81-0.86) and correlation of LVEF was moderate (r 0.65-0.76) between GSPECT vs CMR and between GPET vs CMR. Compared with CMR, ESV was overestimated by GSPECT (P < .01) and underestimated by GPET (P < .0001); EDV was underestimated by GPET (P < .001); LVEF was underestimated by GSPECT but overestimated by GPET (both P < .001). Multivariate regression analysis revealed that the number of segments with severe perfusion defects (P < .001) was the only independent factor which was correlated to the EDV difference between GSPECT and CMR, the number of akinetic/dyskinetic segments with absent wall thickening (WT) was the only independent factor which was significantly correlated to the differences of ESV and LVEF measurements between GSPECT vs CMR and between GPET vs CMR (P < .0001), respectively. Neither the mismatch score nor the segments with viable myocardium were correlated to the differences of LV volumes and LVEF measurements between different imaging modalities.

Conclusions

In LV aneurysm patients, LV volumes and LVEF measured by both GSPECT and GPET imaging correlated well with those determined by CMR, but should not be interchangeable in individual patients. The accuracy of LVEF measured by GSPECT and GPET was affected by the akinetic/dyskinetic segments with absent WT.  相似文献   

6.
The purpose of our study was to evaluate the accuracy of a multislice cine magnetic resonance imaging (MRI) technique with parallel imaging in regard to global and regional left ventricular function. Forty-two individuals underwent cine MRI on a 1.5-tesla scanner. Cine MRI used a steady-state free precession technique and was performed as a single-slice technique (nonTSENSE cine) and an accelerated multislice technique (TSENSE cine) with five slices per breath-hold. End diastolic volume (EDV), end systolic volume (ESV), and ejection fraction (EF) were evaluated for all data sets and in regard to regional wall motion and regional wall motion analysis, and quantitative regional wall thickness and systolic thickening were also assessed. EDV, ESV, and EF based on TSENSE cine showed excellent correlation to the nonTSENSE cine approach (all r2=0.99, P<0.001). While EDV evaluations showed a small underestimation for TSENSE cine, ESV and EF showed accurate results compared with nonTSENSE cine. Both readers showed good agreement (κ=0.72) in regional wall motion assessment comparing both techniques. Data acquisition for the multislice approach was significantly shorter (∼75%) that in single-slice cine. We conclude that accurate evaluation of regional wall motion and left ventricular EF is possible using accelerated multislice cine MR with high spatial and temporal resolution.  相似文献   

7.
Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET.Disclosure: Frans J.T. Wackers and Yi-Hwa Liu, through an arrangement with Yale University School of Medicine (New Haven, Conn.), receive royalties from the sale of Wackers-Liu CQ software.  相似文献   

8.
We have validated ECG-gated emission tomography using technetium-99m methoxyisobutylisonitrile for the assessment of regional ventricular function by comparing it with cine magnetic resonance imaging (MRI). Gated tomography was performed at rest in 24 patients referred for myocardial perfusion imaging [17 males and seven females with a mean age of 58 years, nine of whom had had a previous myocardial infarction (MI)]. Scores were assigned to each of nine myocardial segments for wall motion and for thickening. Cine MRI was analysed in an identical fashion. Four out of 216 (2%) segments were uninterpretable by gated tomography because of inadequate tracer uptake. In eight patients without coronary artery disease (CAD), wall motion and thickening were normal by both methods. Gated tomography showed abnormal wall motion or thickening in all patients with previous MI and in five of seven patients with CAD but no prior MI. Association between wall motion and thickening was good (r s=0.86). Overall, there was good agreement between gated tomography and MRI for both wall motion (178/212 segments, =0.66) and wall thickening (184/212 segments, =0.69). In segments with severely reduced perfusion, however, there was poorer agreement (=0.31). Interobserver and intraobserver agreement was high ( from 0.61 to 0.78). Thus, in patients investigated for CAD, there is good overall agreement between gated tomography and MRI but the agreement is lower in segments with severe perfusion defects.  相似文献   

9.
A dual gated tomography (DGT) program for end systolic and end diastolic acquisition and subsequent processing for calculation of LVEF, end diastolic and end systolic volumes (EDV, ESV) has been evaluated in 20 healthy volunteers (25 years–40 years) and 45 patients (25 years–60 years): 20 with ischaemic heart disease and 25 with valvular heart disease (VHD). All had biplane multigated blood pool (MUGA) studies in the 40° LAO projection using in vivo 99mTc- RBCs, immediately followed by DGT. The results in the patients group were correlated with contrast ventriculography (CV). In the volunteer group, the normal values for LVEF, EDV and ESV measured with DGT were found to be 63%±10%, 91 ml±6 ml and 30 ml±6 ml and r value for the LVEF=0.91 compared with MUGA. In the IHD group, r values compared with CV were 0.915 and 0.97 for the EDV and ESV and 0.934 for the LVEF. Compared with the MUGA, the r value for LVEF was 0.883. In the VHD group, r values were 0.98 for both the EDV and ESV and 0.948 for the LVEF (P<0.002) compared with CV and 0.789 for the LVEF compared with the MUGA. We feel that DGT is an accurate and reproducible technique for LV function measurements.  相似文献   

10.
The aim of this study was to validate the estimation of left ventricular end-diastolic and end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) as well as wall motion analysis from gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with severe coronary artery disease (CAD) using software originally designed for gated single-photon emission tomography (SPET). Thirty patients with severe CAD referred for myocardial viability diagnostics were investigated using a standard FDG PET protocol enhanced with gated acquisition (8 gates per cardiac cycle). EDV, ESV and LVEF were calculated using standard software designed for gated SPET (QGS). Wall motion was analysed using a visual four-point wall motion score on a 17-segment model. As a reference, all patients were also examined within a median of 3 days with cardiovascular cine magnetic resonance imaging (cMRI) (20 gates per cardiac cycle). Furthermore, all gated FDG PET data sets were reoriented in a second run with deliberately misaligned axes to test the quantification procedure for robustness. Correlation between the results of gated FDG PET and cMRI was very high for EDV and ESV ( R=0.96 and R=0.97) and for LVEF ( R=0.95). With gated FDG PET, there was a non-significant tendency to underestimate EDV (174+/-61 ml vs 179+/-59 ml, P=0.21) and to overestimate ESV (124+/-58 ml vs 122+/-60 ml, P=0.65), resulting in underestimated LVEF values (31.5%+/-9.4% vs 34.2%+/-12.4%, P<0.003). The results of reorientations 1 and 2 showed very high correlations (for all R>/=0.99). Segmental wall motion analysis revealed good agreement between gated FDG PET data and cMRI (kappa =0.62+/-0.03). In conclusion, despite small systematic differences which contributed mainly to the lower temporal resolution of gated FDG PET, agreement between gated FDG PET and cMRI was good across a wide range of volumes and LVEF values as well as for wall motion analysis. Therefore, gated FDG PET provides clinically relevant information on function and volumes, using the commercially available software package QGS.  相似文献   

11.
The aim of this study was to determine normative volumetric data and ejection fraction values derived from gated myocardial single-photon emission tomography (SPET) using the commercially available software algorithm QGS (quantitative gated SPET). From a prospective database of 876 consecutive patients who were referred for a 2-day stress-rest technetium-99m tetrofosmin (925 MBq) gated SPET study, 102 patients (43 men, 59 women) with a low (<10%) pre-test likelihood of coronary disease were included (mean age 57.6 years). For stress imaging, a bicycle protocol was used in 79 of the patients and a dipyridamole protocol in 23. Left ventricular ejection fraction (LVEF) and end-diastolic and -systolic volumes (EDV and ESV) were calculated by QGS. EDV and ESV were corrected for body surface area, indicated by EDVi and ESVi. To allow comparison with previous reports using other imaging modalities, men and women were divided into three age groups (<45 years, ₙ years but <65 years and ₭ years). Men showed significantly higher EDVi and ESVi values throughout and lower LVEF values when compared with women in the subgroup ₭ years (P<0.05, ANOVA). Significant negative and positive correlations were found between age and EDVi and ESVi values for both women and men and between LVEF and age in women (Pearson PА.01). LVEF values at bicycle stress were significantly higher than at rest (P=0.000, paired t test), which was the result of a significant decrease in ESV (P=0.003), a phenomenon which did not occur following dipyridamole stress (P=0.409). The data presented suggest that LVEF and EDVi and ESVi as assessed by QGS are strongly gender-specific. Although the physiological significance of these results is uncertain and needs further study, these findings demonstrate that the evaluation of cardiac function and volumes of patients by means of QGS should consider age- and gender-matched normative values.  相似文献   

12.
The aims of this study were to evaluate the simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated 99Tcm-tetrofosmin single photon emission tomography (SPET), and to compare the technique with 201Tl SPET in combination with cine magnetic resonance imaging (MRI). Fifteen patients aged 41-70 years with impaired left ventricular function (mean LVEF 23.4 +/- 8.1%) and three-vessel coronary artery disease were studied before and after coronary artery bypass grafting (CABG). The following investigations were performed within the 3 months before surgery: stress/redistribution and separate-day rest 201Tl SPET with early and late imaging, stress and ECG-gated rest 99Tcm-tetrofosmin SPET, and resting cine MRI. Between 3 and 6 months post-surgery, stress/redistribution 201Tl SPET and cine MRI were repeated. Tracer uptake in nine segments of the left ventricle was graded visually and by quantitative analysis. Myocardial motion and thickening were graded visually from cine MRI and from gated 99Tcm-tetrofosmin SPET images. Segments were defined as hibernating pre-operatively if tracer uptake was moderately reduced or better but myocardial motion was severely hypokinetic or worse. The accuracy of pre-operative assessment was assessed by comparison with post-operative function assessed by MRI. The sensitivity and specificity for the prediction of functional improvement were 69% and 60% for late rest 201Tl uptake combined with MRI; 58% and 62% for rest 99Tcm-tetrofosmin uptake combined with MRI; and 62% and 45% when gated 99Tcm-tetrofosmin SPET was used to assess both tracer uptake and wall motion. In 21 of 135 segments, contractile function could not be assessed by gated 99Tcm-tetrofosmin SPET because of inadequate tracer uptake; function was improved in 5 (25%) of these segments after CABG. In conclusion, the combined assessment of viability and function using ECG-gated 99Tcm-tetrofosmin SPET is feasible and it allows the assessment of hibernating myocardium with similar accuracy to the combination of ungated 99Tcm-tetrofosmin SPET with MRI. Where tracer uptake is too poor for assessment of function, there is a low incidence of myocardial hibernation. However, ECG-gated 99Tcm-tetrofosmin SPET is not superior to 201Tl SPET combined with cine MRI in the identification of hibernation.  相似文献   

13.
We investigated the use of visual and quantitative technetium 99m tetrofosmin ECG-gated single-photon emission tomography (SPET) for the assessment of regional myocardial wall thickening (WT) and left ventricular (LV) ejection fraction (EF) in comparison with gated magnetic resonance imaging (MRI) in patients with a low angiographic LVEF. Gated SPET using 99mTc-labelled flow tracers offers potential for simultaneous assessment of myocardial perfusion and LV function. Few data are available on the use of visual and quantitative gated SPET in patients with low LVEF. In this study 21 patients with low angiographic LVEF (mean 37%±5%) were studied. Resting gated 99mTc-tetrofosmin SPET and gated MRI were performed within 48 h. WT was assessed by visual interpretation (five point score) and quantitative analysis based on count increase. There was good agreement for EF measurements by MRI and gated SPET (mean EF: 33%±12% vs 35%±11%, r = 0.86, P<0.001). Areas under receiver operator characteristic curves (AUC) for differentiation between MRI WT score points ranged from 0.60 to 0.66 for visual SPET WT analysis, from 0.59 to 0.71 for delta count increase values and from 0.46 to 0.60 for % WT, indicating substantial overlap between WT categories. Absolute agreement for visual WT between MRI and gated SPET ranged from 25% to 57% (kappa 0.03–0.25) depending on tracer uptake, and was limited in areas with moderate to severe perfusion defects (kappa 0.03–0.13). It is concluded that gated SPET provided reliable estimates of regional WT and global function in patients with low angiographic LVEF. Received 15 October 1997 and in revised form 31 January 1998  相似文献   

14.
The purpose of this study was to evaluate myocardial electrocardiography (ECG)-gated 13N-ammonia (13N-NH3) PET for the assessment of cardiac end-diastolic volume (EDV), cardiac end-systolic volume (ESV), left ventricular (LV) myocardial mass (LVMM), and LV ejection fraction (LVEF) with gated 18F-FDG PET as a reference method. METHODS: ECG-gated 13N-NH3 and 18F-FDG scans were performed for 27 patients (23 men and 4 women; mean+/-SD age, 55+/-15 y) for the evaluation of myocardial perfusion and viability. For both 13N-NH3 and 18F-FDG studies, a model-based image analysis tool was used to estimate endocardial and epicardial borders of the left ventricle on a set of short-axis images and to calculate values for EDV, ESV, LVEF, and LVMM. RESULTS: The LV volumes determined by 13N-NH3 and 18F-FDG were 108+/-60 mL and 106+/-63 mL for ESV and 175+/-71 mL and 169+/-73 mL for EDV, respectively. The LVEFs determined by 13N-NH3 and 18F-FDG were 42%+/-13% and 41%+/-13%, respectively. The LVMMs determined by 13N-NH3 and 18F-FDG were 179+/-40 g and 183+/-43 g, respectively. All P values were not significant, as determined by paired t tests. A significant correlation was observed between 13N-NH3 imaging and 18F-FDG imaging for the calculation of ESV (r=0.97, SEE=14.1, P<0.0001), EDV (r=0.98, SEE=15.4, P<0.0001), LVEF (r=0.9, SEE=5.6, P<0.0001), and LVMM (r=0.93, SEE=15.5, P<0.0001). CONCLUSION: Model-based analysis of ECG-gated 13N-NH3 PET images is accurate in determining LV volumes, LVMM, and LVEF. Therefore, ECG-gated 13N-NH3 can be used for the simultaneous assessment of myocardial perfusion, LV geometry, and contractile function.  相似文献   

15.
To elucidate the after-effect of exercise on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated at 1 h after exercise and at rest by technetium-99m tetrofosmin gated myocardial single-photon emission tomography (SPET) using an automated program in 53 subjects. The subjects were grouped as follows: normal scan (n = 16), ischaemia (n = 19) and infarction (n = 18), based on the interpretation of perfusion images. Postexercise LVEF did not differ from resting LVEF in the groups with normal scan and infarction. In patients with ischaemia, postexercise EDV (90±17 ml, mean ±SD) and ESV (44±15 ml) were significantly higher than EDV (84±15 ml, P = 0.001) and ESV (36±14 ml, P<0.0005) at rest. LVEF was significantly depressed 1 h after exercise (53%±9% vs 58%±9%, P<0.0001). In ischaemic patients with depressed postexercise LVEF, LVEF difference between rest and postexercise showed a significant correlation with the sum of defect scores, which were reversible from exercise to rest perfusion images (r = 0.92, P<0.0001). These results indicate that exercise-induced LV dysfunction (myocardial stunning) continues for at least 1 h in ischaemic patients and that the extent of LVEF depression is determined by the severity of ischaemia. Received 1 October and in revised form 29 December 1998  相似文献   

16.
This study compared a three-dimensional volumetric threshold-based method to a two-dimensional Simpson’s rule based short-axis multiplanar method for measuring right (RV) and left ventricular (LV) volumes, stroke volumes, and ejection fraction using electrocardiography-gated multidetector computed tomography (MDCT) data sets. End-diastolic volume (EDV) and end-systolic volume (ESV) of RV and LV were measured independently and blindly by two observers from contrast-enhanced MDCT images using commercial software in 18 patients. For RV and LV the three-dimensionally calculated EDV and ESV values were smaller than those provided by two-dimensional short axis (10%, 5%, 15% and 26% differences respectively). Agreement between the two methods was found for LV (EDV/ESV: r=0.974/0.910, ICC=0.905/0.890) but not for RV (r=0.882/0.930, ICC=0.663/0.544). Measurement errors were significant only for EDV of LV using the two-dimensional method. Similar reproducibility was found for LV measurements, but the three-dimensional method provided greater reproducibility for RV measurements than the two-dimensional. The threshold value supported three-dimensional method provides reproducible cardiac ventricular volume measurements, comparable to those obtained using the short-axis Simpson based method.  相似文献   

17.
The aim of this study was to determine normative volumetric data and ejection fraction values derived from gated myocardial single-photon emission tomography (SPET) using the commercially available software algorithm QGS (quantitative gated SPET). From a prospective database of 876 consecutive patients who were referred for a 2-day stress-rest technetium-99m tetrofosmin (925 MBq) gated SPET study, 102 patients (43 men, 59 women) with a low (<10%) pre-test likelihood of coronary disease were included (mean age 57.6 years). For stress imaging, a bicycle protocol was used in 79 of the patients and a dipyridamole protocol in 23. Left ventricular ejection fraction (LVEF) and end-diastolic and -systolic volumes (EDV and ESV) were calculated by QGS. EDV and ESV were corrected for body surface area, indicated by EDVi and ESVi. To allow comparison with previous reports using other imaging modalities, men and women were divided into three age groups (<45 years, > or =45 years but <65 years and > or =65 years). Men showed significantly higher EDVi and ESVi values throughout and lower LVEF values when compared with women in the subgroup > or =65 years (P<0.05, ANOVA). Significant negative and positive correlations were found between age and EDVi and ESVi values for both women and men and between LVEF and age in women (Pearson P< or =0.01). LVEF values at bicycle stress were significantly higher than at rest (P=0.000, paired t test), which was the result of a significant decrease in ESV (P=0.003), a phenomenon which did not occur following dipyridamole stress (P=0.409). The data presented suggest that LVEF and EDVi and ESVi as assessed by QGS are strongly gender-specific. Although the physiological significance of these results is uncertain and needs further study, these findings demonstrate that the evaluation of cardiac function and volumes of patients by means of QGS should consider age- and gender-matched normative values.  相似文献   

18.
The influence of left ventricular volume variations and regurgitant fraction variations upon left ventricular ejection fraction, during exercise was examined using equilibrium radionuclide angiography in patients suffering from aortic regurgitation. Ejection fraction (EF), regurgitant fraction (RF), end diastolic volume (EDV) and end systolic volume (ESV) variations from rest to peak exercise were determined in 44 patients suffering from chronic aortic regurgitation (AR) and in 8 healthy volunteers (C). In C, EF increased (+0.10±0.03, P<0.01) and ESV decreased significantly (-23%±12%, P<0.01) RF and EDV did not vary significantly. In AR patients, EF, EDV and ESV did not vary significantly because of important scattering of individual values. Changes in EF and ESV were inversely correlated (r=-0.79, P<0.01) and RF decreased significantly (-0.12±0.10, P<0.01). Volumes and EF changes during exercise occurred in three different ways. In a 1st subgroup of 7 patients, EF increased (+0.09±0.03, P<0.05) in conjunction with a reduction of ESV (-24%±12%, P<0.05) without a significant change in EDV. In a 2nd group of 22 patients. EF decreased (-0.04±0.07, P<0.01) in association with an increase in ESV (+17%±16%, P<0.01) and no change in EDV. In a 3rd subgroup of 15 patients, EF decreased (-0.02±0.06, P<0.01) despite a reduction in ESV (-7%±6%, P<0.01) because of a dramatic EDV decrease (-10%±6%, P<0.05). In this subgroup, changes in EF were inversely correlated with changes in ESV (r=-0.55, P<0.01) and positively related to EDV variations (r=0.42, P=0.02). EDV related to EDV variations (r=0.42, P=0.02). EDV changes were weakly, but significantly, correlated to RF decrease (r=0.39, P<0.05). We conclude that changes in left ventricular ejection fraction during exercise in patients with chronic aortic regurgitation are significantly related in some patients to changes in ventricular loading conditions as well as contractile state. Therefore, a correct interpretation of EF changes during exercise requires the simultaneous determination of changes in LV volumes.Abbreviations EDV end diastolic volume - EF ejection fraction - ESV end systolic volume - LV left ventricle - RV right ventricle  相似文献   

19.
This case describes a 65-year-old male with drug-resistant heart failure. Cardiac resynchronization therapy was performed. We evaluated cardiac function with volume curve differentiation software (VCDiff) from QGS data with Tc-99m sestamibi. Left ventricular parameters during atrial-right ventricular pacing were left ventricular ejection fraction (LVEF) 30%, end-diastolic volume (EDV) 156 ml, end-systolic volume (ESV) 108 ml and peak filling rate 1.12 (EDV/sec). And during dual chamber pacing, those were LVEF 35%, EDV 145 ml and ESV 95 ml and PFR 1.58 (EDV/sec). And during atrial-left ventricular pacing, those were LVEF 36%, EDV 152 ml, ESV 97 ml and peak filling rate (PFR) 1.35 (EDV/sec). Cardiac resynchronization therapy may improve cardiac function as well as dyssynchrony, which could be evaluated non-invasively and accurately by ECG-gated SPECT.  相似文献   

20.
We investigated the reproducibility between thallium-201 and technetium-99m methoxyisobutylisonitrile (MIBI) gated single-photon emission tomography (SPET) for the assessment of indices of myocardial function such as end-diastolic and end-systolic volume (EDV, ESV), ejection fraction (EF) and wall motion. Rest 201Tl (111 MBq) gated SPET was sequentially performed twice in 20 patients. Rest 201Tl gated SPET and rest 99mTc-MIBI (370 MBq) gated SPET were performed 24 h apart in 40 patients. Wall motion was graded using the surface display of the Cedars quantitative gated SPET (QGS) software. EDV, ESV and EF were also measured using the QGS software. The reproducibility of functional assessment on rest 201Tl gated SPET was compared with that on 99mTc-MIBI gated SPET, and also with that between 201Tl gated SPET and 99mTc-MIBI gated SPET performed on the next day. The two standard deviation (2 SD) values for EDV, ESV and EF on the Bland-Altman plot were 29 ml, 19 ml and 12%, respectively, on repeated 201Tl gated SPET, compared with 14 ml, 11 ml and 5.3% on repeated 99mTc-MIBI gated SPET. The correlations were good (r=0.96, 0.97 and 0.87) between the two measurements of EDV, ESV and EF on repeated rest studies with 201Tl and 99mTc-MIBI gated SPET. However, Bland-Altman analysis revealed that the 2 SD values between the two measurements were 31 ml, 23 ml and 12%. We were able to score the wall motion in all cases using the 3D surface display of the QGS on 201Tl gated SPET. The kappa value of the wall motion grade on the repeated 201Tl study was 0.35, while that of the wall motion grade on the repeated 99mTc-MIBI study was 0.76. The kappa value was 0.49 for grading of wall motion on repeated rest studies with 201Tl and 99mTc-MIBI. In conclusion, QGS helped determine EDV, ESV, EF and wall motion on 201Tl gated SPET. Because the EDV, ESV and EF were less reproducible on repeated 201Tl gated SPET or on 201Tl gated SPET and 99mTc-MIBI gated SPET on the next day than on repeated 99mTc-MIBI gated SPET, functional measurement on 201Tl gated SPET did not seem to be interchangeable with that on 99mTc-MIBI gated SPET. Received 18 May 1999 and in revised form 4 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号