首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The afferent projections to the peribrachial region in the rat were studied using retrograde and anterograde transport of horseradish peroxidase. Particular attention was paid to descending projections from the basal ganglia and related nuclei to the region of nucleus tegmenti pedunculopontinus. Following injection of peroxidase into nucleus tegmenti pedunculopontinus, few retrogradely-labelled neurons were found in the entopeduncular nucleus proper, but larger numbers were found with a wide distribution within the boundaries of the internal capsule and cerebral peduncle. Labelled cells were also consistently observed in the amygdala, the caudal globus pallidus, the subthalamus including zona incerta and subthalamic nucleus, the hypothalamus, the substantia nigra and the ventral tegmental area. Following iontophoretic injections of horseradish peroxidase into the entopeduncular nucleus, lateral hypothalamus, subthalamic nucleus or ventral tegmental area, terminal labelling was observed in and around the branchium conjunctivum in an area apparently corresponding to nucleus tegmenti pedunculopontinus in the rat.  相似文献   

2.
Deep brain stimulation (DBS) is used to alleviate motor dysfunction in Parkinson's disease (PD). The pedunculopontine nucleus (PPN) may be a potential target for severe freezing and postural instability with 25 Hz stimulation being considered more effective than 130 Hz stimulation. Here we evaluated the expression of c-Fos after 25 Hz and 130 Hz DBS of the pedunculopontine tegmental nucleus (PPTg, i.e., the rodent equivalent to the human PPN) in the rat 6-hydroxydopamine (6-OHDA) PD model.Anaesthetized male Sprague Dawley rats with unilateral 6-OHDA-induced nigrostriatal lesions were stimulated with 25 Hz, 130 Hz, or 0 Hz sham-stimulation for 4 h by electrodes implanted into the ipsilateral PPTg. Thereafter the distribution and number of neurons expressing the immediate early gene c-Fos, a marker for acute neuronal activity, was assessed.DBS of the PPTg induced strong ipsilateral c-Fos expression at the stimulation site, with 25 Hz having a more marked impact than 130 Hz. Additionally, c-Fos was strongly expressed in the central gray. In the dorsal part expression was stronger after 25 Hz stimulation, while in the medial and ventral part there was no difference between 25 Hz and 130 Hz stimulation. Expression in the basal ganglia was negligible.In the rat 6-OHDA PD model stimulation of the PPTg did not affect c-Fos expression in the basal ganglia, but had a strong impact on other functional circuitries. PPN stimulation in humans might therefore also have an impact on other systems than the motor system.  相似文献   

3.
The posterior thalamus (Po) consists of heterogeneous groups of cells, which have not been clearly defined. In the present study, we focused on a part of the Po in the mouse brain, which is located caudally to the ventral posterior nucleus and rostromedially to the medial geniculate nucleus and shows distinct calretinin immunoreactivity. While we found the region had a considerable unity on the cytoarchitectural and histochemical grounds, it did not correspond to any particular nucleus but partially involved three structures in a widely used brain atlas (Franklin and Paxinos, 2008). Therefore, we tentatively designated the region as the medioventral part of the posterior thalamus (PoMV) and examined its anatomical features with immunohistochemistry and retrograde tract-tracing. The PoMV was appreciated as a reticular structure with prominent calretinin immunoreactivity, especially in horizontal sections, and displayed apparent differences in the cytoarchitecture from its surrounding regions. The PoMV had two divisions: the dorsal division (PoMVd), which contained parvalbuminimmunoreactive fibers, and the ventral division (PoMVv), which lacked these fibers. The tract-tracing studies showed that the somata retrogradely labeled from the injections in the insular cortex and some of the extended amygdalar regions were fairly concentrated within the PoMV, especially in the PoMVd. On the other hand, the labeling from the medial hypothalamus injections was found predominantly within the PoMVv. These findings indicate that the PoMV can be regarded as a distinct structure within the Po, and it may play a role in the emotional aspect of somatosensory processing.  相似文献   

4.
5.
The present study describes the organization of the nuclei of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of two members of Euarchontoglires, Lepus capensis and Tupaia belangeri. The aim of the present study was to investigate the nuclear complement of these neural systems in comparison to previous studies on Euarchontoglires and generally with other mammalian species. Brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei revealed in the current study were similar between the species investigated and to mammals generally, but certain differences in the nuclear complement highlight potential phylogenetic interrelationships within the Euarchontoglires and across mammals. In the northern tree shrew the nucleus of the trapezoid body contained neurons immunoreactive to the choline acetyltransferase antibody with some of these neurons extending into the lamellae within the superior olivary nuclear complex (SON). The cholinergic nature of the neurons of this nucleus, and the extension of cholinergic neurons into the SON, has not been noted in any mammal studied to date. In addition, cholinergic neurons forming the medullary tegmental field were also present in the northern tree shrew. Regarding the catecholaminergic system, the cape hare presented with the rodent specific rostral dorsal midline medullary nucleus (C3), and the northern tree shrew lacked both the ventral and dorsal divisions of the anterior hypothalamic group (A15v and A15d). Both species were lacking the primate/megachiropteran specific compact portion of the locus coeruleus complex (A6c). The nuclei of the serotonergic and orexinergic systems of both species were similar to those seen across most Eutherian mammals. Our results lend support to the monophyly of the Glires, and more broadly suggest that the megachiropterans are more closely related to the primates than are any other members of Euarchontoglires studied to date.  相似文献   

6.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brains of three male Tasmanian devils (Sarcophilus harrisii), which had a mean brain mass of 11.6 g. We found that the nuclei generally observed for these systems in other mammalian brains were present in the brain of the Tasmanian devil. Despite this, specific differences in the nuclear organization of the cholinergic, catecholaminergic and serotonergic systems appear to carry a phylogenetic signal. In the cholinergic system, only the dorsal hypothalamic cholinergic nucleus could be observed, while an extra dorsal subdivision of the laterodorsal tegmental nucleus and cholinergic neurons within the gelatinous layer of the caudal spinal trigeminal nucleus were observed. Within the catecholaminergic system the A4 nucleus of the locus coeruleus complex was absent, as was the caudal ventrolateral serotonergic group of the serotonergic system. The organization of the orexinergic system was similar to that seen in many mammals previously studied. Overall, while showing strong similarities to the organization of these systems in other mammals, the specific differences observed in the Tasmanian devil reveal either order specific, or class specific, features of these systems. Further studies will reveal the extent of change in the nuclear organization of these systems in marsupials and how these potential changes may affect functionality.  相似文献   

7.
The oculomotor accessory nucleus, often referred to as the Edinger–Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW—EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW—EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW–LHA and EW–CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the hypothalamus and the posterior hypothalamus. Our findings provide anatomical bases for previously unrecognized roles of the EW in the modulation of several physiologic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号