首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to restore articular cartilage, allogeneic articular chondrocytes embedded in collagen gels were transplanted onto full-thickness defects in rabbit articular cartilage. Within 24 weeks after the transplantation, the defects were filled with hyaline cartilage, specifically synthesizing type II collagen. These chondrocytes were autoradiographically proven to be originated from the originally transplanted chondrocytes. As histologically assessed, success rate was about 80%, a marked improvement over the results (40% success rate) in previous studies reporting chondrocyte transplantation without collagen gels. On the other hand, the defects without chondrocyte transplantation healed with fibrocartilaginous tissue more than 24 weeks after treatment. Immunological enhancement induced by transplanted allogeneic chondrocytes or collagen was not significant for eight weeks after treatment, so far as shown by both direct and indirect blastformation reactions. Thus, allogeneic transplantation of isolated chondrocytes embedded in collagen gels appears to be one of the most promising methods for the restoration of articular cartilage.  相似文献   

2.
BACKGROUND: Recently, tissue-engineered chondrocyte transplantation has been tried to treat full-thickness cartilage defects. We developed an injectable type II collagen gel scaffold by chemically reacting type II collagen with polyethylene glycol crosslinker. This type II collagen was prepared from the nasal septa of cattle. In the present study, chondrocytes embedded in type II collagen gel were injected into rabbit full-thickness cartilage defects without a periosteal graft, and the feasibility for clinical application of the gel was evaluated. METHODS: Chondrocytes were isolated from 1-kg New Zealand white rabbits. A full-thickness articular cartilage defect (5 mm diameter, 4 mm depth) was created on the patellar groove of the femur of 16 male 3-kg New Zealand white rabbits. A type II collagen solution of mixed chondrocytes at a density of 1 x 10(7) cells/ml was injected and transplanted into the defect in the right knee. The controls were the defect only in the left knee. At 4, 8, 12, and 24 weeks after operation, four cases from each group were evaluated macroscopically and histologically. RESULTS: After injection into the cartilage defect, the gel bonded to the adjacent cartilage and bone within several minutes. Macroscopic examination revealed that the surface of the transplanted area was smooth and exhibited similar coloration and good integration with the surrounding cartilage at 12 and 24 weeks after transplantation. Histological examination at 8 weeks revealed favorable hyaline cartilage regeneration with good chondrocyte morphology. At 12 and 24 weeks, reparative cartilage remained rich in type II collagen. According to O'Driscoll histological scores, significant differences between the transplanted and control groups were apparent at 12 and 24 weeks. Immunohistochemical staining indicated sufficient type II collagen synthesis in regenerated cartilage 8 weeks after transplantation, and it was maintained until 24 weeks. CONCLUSIONS: These results indicate that type II collagen gel is suitable for injection into cartilage defects without any covering of a graft and offers a useful scaffold during chondrocyte transplantation.  相似文献   

3.
Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilage of both knees in other rabbits. The cultured allogenic chondrocytes were transplanted into the defect in the right knees and closed with a periosteal flap, while the defects in the left knees served as controls and were closed with a periosteal flap alone, without chondrocytes. Healing of the defects was assessed at 12 weeks by histological studies. Allogenic chondrocyte transplantation significantly increased the amount of newly formed repair tissue (P=0.04) compared with that found in the control knees. The histological quality score of the repair tissue was significantly better (P=0.05), with more hyaline characteristics in the knees treated with allogenic chondrocytes than in the control knees. Articular cartilage defects treated with allogenic chondrocyte transplantation result in better repair tissue formation with hyaline characteristics than those in control knees.  相似文献   

4.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis in situ using TUNEL staining, and was confirmed using caspase-3 staining along with quantification of the total cellularity. The mean articular defect filling index decreased with time. After 24 weeks it was 0.7 (SD 0.10), which was significantly lower than the measurements obtained earlier (p < 0.01). The highest mean percentage of apoptotic cells were observed at 12 weeks, although the total cellularity decreased with time. Because apoptotic cell death may play a role in delamination after chondrocyte transplantation, anti-apoptotic gene therapy may protect transplanted chondrocytes from apoptosis.  相似文献   

5.
We attempted to repair full-thickness articular cartilage defects in rabbit knee joints with allogeneic cultured chondrocytes embedded in Atelocollagen gel. An articular cartilage defect was created on the patellar groove of the femur. The defect was filled with chondrocytes cultured in the collagen gel and covered with periosteal flap (G group). In three other experimental groups, the same defects were transplanted with chondrocytes in monolayer culture with periosteal flap (M group), periosteal graft only (P group), or left empty (E group). At 4, 12, and 24 weeks after operation, the reparative tissue was analyzed macroscopically and histologically. At 4 weeks after operation, the surfaces of the reparative tissue were smooth, and the defects were filled with reparative tissues that resembled hyaline cartilage in all four groups. However, the reparative tissues degenerated gradually with time in the M, P, and E groups. In contrast, in the G group, the reparative tissue retained its thickness, and there was a steady integration of the grafted tissue into the adjacent normal cartilage at 24 weeks after operation. The results suggest that transplantation of allogeneic chondrocytes cultured in Atelocollagen gel is effective in repairing an articular cartilage defect.  相似文献   

6.
Hunter's observation in 1743 that cartilage "once destroyed, is not repaired," has not essentially changed for 250 years. At present, there is no well-established procedure for the repair of cartilage defect with articular cartilage, which has the same biochemical and biomechanical properties as the surrounding normal intact cartilage. In 1994, transplantation of human autologous chondrocytes in suspension, as reported by Brittberg et al., provided a potential procedure for articular cartilage repair. We have improved their procedure and developed a new technique which creates new cartilage-like tissue by cultivating autologous chondrocytes embedded in Atelocollagen gel for 3 weeks before transplantation. These improvements maintained the chondrocyte phenotype, evenly distributed chondrocytes throughout the osteochondral defects, and decreased the risk of leakage of grafted chondrocytes into the defects. Good clinical results suggest that this technique should be a promising procedure for repairing articular cartilage defect.  相似文献   

7.
The transplantation of chondrogenic cells in a supportive carrier structure proved to be a promising alternative for the treatment of cartilage defects. In the study presented we focused on the transplantation of allogeneic chondrocytes in a biodegradable polymer scaffold (PGLA/Polydioxanon) in articular cartilage defects in a rabbit defect model. Isolated allogeneic chondrocytes embedded in a PGLA polymer scaffold were transplanted into osteochondrogenic defects of the patellar groove and compared with empty defects and transplants of polymer scaffolds without cells. The histological and histochemical analysis was performed after 4 and 12 weeks. The transplant integration and the architecture of the newly formed cartilage were evaluated with a semiquantitative score. After 4 weeks the development of a hyaline-like cartilage tissue of the cell-polymer-transplants was observed, after 12 weeks the defects were nearly completely filled with hyaline-like cartilage. The biodegradation of the polymer construct did not affect the histological structure of the transplant area. Defects of the groups with empty defect and polymer transplants without cells revealed no or insufficient healing indices. The study demonstrated that biodegradable polymers served as suitable carriers for the chondrocyte transplantation, which is due to the in-vitro establishment of a semi-solid cartilage transplant and the resulting effective transplant fixation into the defect. In-vivo the polymer cell transplants seem to provide a supportive microenvironment for the development of hyaline cartilage. The controlled release of morphogenic factors or bioactive molecules and the use of pluripotent mesenchymal progenitor cells opens new perspectives for the optimization of cartilage repair procedures.  相似文献   

8.
The transplantation of devitalized allogenic matrices vehiculating autologous chondrocytes, previously isoled and seeded on them could be a solution to the problem of repairing lesions of the joint cartilage. For the matrix/cell "composite" to be "graftable" the cells must continue to duplicate and produce cartilaginous matrix even after transport in vivo. The present study analyzes the mitotic activity of chondrocytes planted on devitalized allogenic cartilage and grafted in living animals. Chondrocytes of joint cartilage of lambs were isolated enzymatically and then seeded in vitro on devitalized allogenic cartilaginous matrices for 3 weeks. At the end of the co-culture period, these matrix/chondrocyte composites were transplanted in subcutaneous pockets of athymic mice. The experimental and control samples were evaluated subsequent to explantation by histological study and incorporation of tritiated thymidine. The results obtained revealed an important decrease in the values for the incorporation of thymidine beginning from experimental time 0 (pre-implant evaluation) up to day 28 after implantation, followed by a mild increase at the experimental time of 42 days. This study demonstrated the tendency of articular chondrocytes cultivated in vitro and subsequently transplanted in vivo on a support of devitalized allogenic cartilaginous matrix to modify mitotic activity from very high values for the first experimental times, typical of the in vitro phases of cellular expansion, to very low values, more similar to the behavior of articular chondrocytes in vivo.  相似文献   

9.
OBJECTIVE: To evaluate the utility and limitations of optical coherence tomography (OCT) for immediate, high-resolution structural analysis of rabbit articular repair tissue following chondrocyte implantation without excising or sectioning the specimen. METHODS: Full thickness articular cartilage defects were created in the patellar grooves of 30 adult rabbit knee joints. Allogenic cultured chondrocytes embedded in collagen gels were implanted into the surgical defects. A periosteal patch was then sutured over the chondrocyte-collagen composites. Six animals per time point were sacrificed at 2, 4, 8, 12 and 24 weeks after surgery. The repair tissues were sequentially analysed by arthroscopic surface imaging, OCT, and histology. The resulting images were compared to determine qualitative and quantitative features of surface roughness, repair tissue integration, and micro-architecture. Statistical analysis was performed using Student's t -testing and linear regression. RESULTS: OCT was able to identify the bone and cartilage interface in normal rabbit articular cartilage and regenerated cartilage at 24 weeks post chondrocyte implantation. OCT was able to identify hypertrophy at 4 and 8 weeks, and subtle surface fibrillations at 24 weeks, comparable with histological analysis at low magnification (20x). More importantly, OCT was able to detect embedded gaps between the repair tissue and surrounding host cartilage. CONCLUSION: Close correlation was observed between OCT and histological analysis of morphological features important to the assessment of articular cartilage repair. These results demonstrate that OCT is capable of providing immediate 'optical biopsy' of the rabbit articular cartilage repair tissue without damaging the specimen, and suggest that this new technique, if integrated with an arthroscope, can potentially be used in longitudinal studies of articular cartilage repair in vivo.  相似文献   

10.
同种异体软骨细胞移植术后关节软骨蛋白多糖的测定   总被引:2,自引:1,他引:1  
目的 应用Pluronic F-127负载同种异体软骨细胞移植修复兔全厚关节软骨损伤,对于新生的修复组织进行基质蛋白多糖含量测定,以探讨此方法修复全厚关节软骨损伤的可行性.方法 取3个月龄新西兰大白兔关节软骨细胞体外培养扩增,与20%Plurortic F-127凝胶混合.选27只健康同种成年大白兔,人为造成双侧膝关节软骨缺损.实验组软骨缺损处植入培养的软骨细胞/Pluronic F-127混合物,对照组缺损处单纯注入Pluronic F-127凝胶和空白对照.然后,对修复组织进行大体观察及蛋白多糖含量测定.结果 移植的软骨细胞-载体复合物中的软骨细胞能良好地生长,12周时再生组织与周围正常软骨组织外观相似,界限模糊.实验组与对照组各时期蛋白多糖含量均有非常显著性差异,实验组不同时期的蛋白多糖含量之间均有显著性差异,实验组12周时蛋白多糖含量与正常软骨组织无显著性差异.结论 Pluronic F-127负载同种异体软骨细胞移植是治疗关节软骨缺损的有效方法.  相似文献   

11.
Embryonic stem (ES) cells are considered to be a potential tool for repairing articular cartilage defects, but so far it has been impossible to cause these cells to differentiate into chondrocytes exclusively, either in vivo or in vitro. To explore a potential new cell source of cell transplantation for articular cartilage defects, we transplanted ES cells into articular cartilage defects in immunosuppressed rats. ES cells (AB2.2 or CCE cells) were transplanted into articular cartilage defects in the patellar groove of immunosuppressed rats treated with cyclosporine. The cells were histologically observed until 8 weeks after transplantation. To determine whether the repair tissue in the defect in the AB2.2-transplanted group was derived from the transplanted cells, the neomycin-resistant gene, which had been transfected into AB2.2 cells but does not exist in rat cells, was used for detection. The cells produced cartilage, resulting in repair of the defects from 4 weeks until 8 weeks after the transplantation without forming any teratomas. The neomycin-resistant gene was detected in every sample, demonstrating that the repair tissue in the AB2.2-transplanted group was derived from the transplanted AB2.2 cells. The environment of osteochondral defects is chondrogenic for ES cells. ES cells may thus be a potential tool for repairing articular cartilage defects.  相似文献   

12.
The transplantation of chondrocytes has shown promise for augmenting the repair of defects in articular cartilage. This in vitro study examined the efficiency of the transplantation of bovine chondrocytes onto articular cartilage disks and the ability of the transplanted chondrocytes to subsequently synthesize and deposit proteoglycan. The radiolabeling of chondrocyte cultures with [3H]thymidine, followed by 4 days of chase incubation, resulted in the incorporation of 98% of the radiolabel into DNA (as assessed by susceptibility to DNase). At the end of the culture period, the [3H]DNA was stable, with a half-life of radioactivity loss into the medium of 73 days. With use of radiolabeled chondrocytes for quantitation, the efficiency of transplantation onto a cartilage substrate was 93 ± 4% for seeding densities of as much as 650,000 cells per cm2 and a seeding duration of 1 hour. These findings were confirmed both by tracking cells stained with 5-chlormethylfluorescein diacetate and by quantitating DNA. During the 16 hours after seeding onto a cartilage substrate (in which the endogenous cells had been lysed by lyophilization), the transplanted cells synthesized sulfated proteoglycan in direct proportion to the number of cells seeded. Most (83%) of the newly synthesized proteoglycan was released into the medium rather than retained within the layer of transplanted cells and the recipient cartilage substrate. Comparative studies with lyophilized-rehydrated or live cartilage as the recipient substrate indicated a similar efficiency of chondrocyte seeding and proteoglycan synthesis by the seeded chondrocytes. The transplanted cells retained the chondrocyte phenotype, as judged by a high proportion of the [35S]macromolecules being in the form of aggrecan that was capable of aggregating with hyaluronan and link protein, as well as by immunostaining within and around the transplanted cells for type-II, but not type-1, collagen. These results indicate that the number of chondrocytes transplanted onto a cut cartilage surface greatly affects the level of matrix synthesis; this in turn may affect repair.  相似文献   

13.
Full-thickness articular cartilage defects lack the capacity of healing because of lack of blood supply and lack of chondrocyte proliferation around the injury site. These factors contribute to the difficulty of getting good healing of cartilage defects. Autologous chondrocyte transplantation has been proposed as a method for treating cartilage defects using chondrocytes grown in vitro, which are then transplanted into the defects using a periosteal flap to retain the cells at the defect site. Studies that followed have attempted to refine this technique by using a cell matrix to support the chondrocytes. The reason for adding a resorbable cell matrix support that acts as a temporary scaffold until the chondrocytes are capable of producing extracellular matrix. Moreover, such a matrix may help in maintaining chondrocyte differentiation and phenotype. In this study, we have investigated the biocompatibility between human chondrocytes and biomaterials that could be used as matrix implants. It is a comparative study in vitro that involves assessing the proliferation and differentiation of human articular chondrocytes cultured on different resorbable biomaterials. Human chondrocytes were isolated from collagenase digest of articular cartilage provided by patients undergoing total knee replacements for osteoarthritis from the non-involved areas of the knee. The chondrocytes were then allowed to proliferate in vitro to increase the number of cells available for study. After adequate multiplication, the cells were seeded onto different biomaterials and allowed to from a cell biomaterial construct. The biomaterials used in this study were collagen I, calcium alginate, agarose, polyglycolic acid and Bioglass 45S5. The cell–biomaterial constructs were then collected at specific time points 3, 7, 14 and 21 days for histological and biochemical studies. The assessment includes studying proliferation, differentiation and extracellular matrix production. This was performed by immunostaining for collagen I and II production and histochemistry staining for glycosaminoglycans. Chondrocyte proliferation was more effective on 3D gels compared to ceramics and mesh. Cells on Bioglass expressed the same collagen type and at the same proportion as that expressed by freshly isolated cells. Moreover, Bioglass has induced cells to re-differentiate after they lost their differentiation in monolayer culture. Overall, however, there was no clear relationship between the cell morphology and type of collagen produced. Bioactive glass seems to behave as a suitable material for chondrocyte tissue engineering because it can maintain a chondrocyte phenotype.  相似文献   

14.
OBJECTIVE: There is no widely accepted method to repair articular cartilage defects. Bone marrow mesenchymal cells have the potential to differentiate into bone, cartilage, fat and muscle. Bone marrow mesenchymal cell transplantation is easy to use clinically because cells can be easily obtained and can be multiplied without losing their capacity of differentiation. The objective of this study was to apply these cell transplantations to repair human articular cartilage defects in osteoarthritic knee joints. DESIGN: Twenty-four knees of 24 patients with knee osteoarthritis (OA) who underwent a high tibial osteotomy comprised the study group. Adherent cells in bone marrow aspirates were culture expanded, embedded in collagen gel, transplanted into the articular cartilage defect in the medial femoral condyle and covered with autologous periosteum at the time of 12 high tibial osteotomies. The other 12 subjects served as cell-free controls. RESULTS: In the cell-transplanted group, as early as 6.3 weeks after transplantation the defects were covered with white to pink soft tissue, in which metachromasia was partially observed. Forty-two weeks after transplantation, the defects were covered with white soft tissue, in which metachromasia was observed in almost all areas of the sampled tissue and hyaline cartilage-like tissue was partially observed. Although the clinical improvement was not significantly different, the arthroscopic and histological grading score was better in the cell-transplanted group than in the cell-free control group. CONCLUSIONS: This procedure highlights the availability of autologous culture expanded bone marrow mesenchymal cell transplantation for the repair of articular cartilage defects in humans.  相似文献   

15.
Chondrocytes that were isolated from adult human articular cartilage changed phenotype during monolayer tissue culture, as characterized by a fibroblastic morphology and cellular proliferation. Increased proliferation was accompanied by downregulation of the cartilage-specific extracellular matrix proteoglycan, aggrecan, by cessation of type-II collagen expression, and by upregulation of type-I collagen and versican. This phenomenon observed in monolayer was reversible after the transfer of cells to a suspension culture system. The transfer of chondrocytes to suspension culture in alginate beads resulted in the rapid upregulation of aggrecan and type-II collagen and the downregulation of expression of versican and type-I collagen. Type-X collagen and osteopontin, markers of chondrocyte hypertrophy and commitment to endochondral ossification, were not expressed by adult articular chondrocytes cultured in alginate, even after 5 months. In contrast, type-X collagen was expressed within 2 weeks in a population of cells derived from a fetal growth plate. The inability of adult articular chondrocytes to express markers of chondrocyte hypertrophy has underscored the fundamental distinction between the differentiation pathways that lead to articular cartilage or to bone. Adult articular chondrocytes expressed only hyaline articular cartilage markers without evidence of hypertrophy.  相似文献   

16.
Autologous chondrocyte implantation (ACI) is the most promising surgical treatment for large full thickness knee joint articular cartilage (AC) defects where cells from healthy non-weight bearing area AC are multiplied in vitro and implanted into such defects. In the routine surgical procedure for symptomatic knee full thickness AC defects, damaged AC surrounding the edge and the base of such defects is usually debrided and discarded. The purpose of this study was to examine if chondrocytes from this 'debrided' AC can proliferate, synthesize a cartilage specific matrix and thus can be used for ACI. METHODS: Biopsies were retrieved from 12 patients (debrided articular cartilage: DAC, aged 35-61) and from two autopsies (normal articular cartilage: NAC, aged 21 and 25). Chondrocytes were isolated, seeded at low density in type I collagen gels and as monolayer cultures for 4 weeks without passage. RESULTS: After 4 weeks cultures in type I collagen gels, cell proliferation from DAC (18.34 +/- 1.95 fold) was similar to cells from NAC (11.24 +/- 1.02 fold). Syntheses of proteoglycan and collagen in DAC were also similar to NAC. Newly synthesized matrices in gel cultures consisted predominantly of type II collagen as shown by immuno-labelling and SDS-PAGE followed by fluorography. Chondrocytes from 'debrided human AC' cultured at low density in type I collagen gels may be used for the ACI procedure as they provide sufficient viable cell numbers for ACI and maintain their chondrocyte phenotype as they synthesize a cartilage-like matrix.  相似文献   

17.
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.  相似文献   

18.
Abstract:  The purpose of this study was to evaluate the macroscopic and histological results of transplanting a tissue-engineered composite plug made of tissue-engineered cartilage and interconnected porous calcium hydroxyapatite ceramics (IP-CHA) with a very high porosity of 94.9% to treat osteochondral defects. Twelve 12-week-old male Japanese white rabbits were used. Fresh articular cartilage slices were taken, and isolated chondrocytes (2 × 106 cells) were embedded in atelocollagen gel. They were seeded on the top of IP-CHA plugs and cultured for 2 weeks. These tissue-engineered composite plugs were transplanted into the osteochondral defects in the patellar grooves (the experimental group). In the control group, the defects were treated with composite plugs without chondroytes. Twelve weeks after transplantation in the experimental group, the defects were repaired with cartilage-like tissue with good subchondral bone formation histologically. Histological scores in the experimental group were significantly better than those in the control group. This study clearly showed the defects that had been treated with tissue-engineered composite plugs.  相似文献   

19.
《Cell transplantation》1997,6(2):119-124
Rat chondrocytes isolated from the articular-epiphyseal cartilage complex were transplanted into defects prepared in articular cartilage and subchondral bone. Transplants were taken for examination after 3 and 8 wk. Cartilage formed by syngeneic chondrocytes did not evoke formation of infiltrations. Contrary to that, in the vicinity of cartilage produced by allogeneic chondrocytes numerous infiltrating cells were present and cartilage resorption could be observed. Cyclosporine-A (CsA) treatment of recipients of allogeneic chondrocytes only partially suppressed accumulation of infiltrating cells and matrix resorption. Antichondrocyte immune response of chondrocyte graft recipients was studied by evaluation of spleen mononuclear cells (SMC) stimulation in mixed splenocytechondrocyte cultures and by evaluation of antichondrocyte cytotoxic antibodies. No difference in stimulation of SMC from intact rats by syngeneic and allogeneic chondrocytes was observed. Stimulation by allogeneic chondrocytes was slightly but significantly higher in recipients of syngeneic grafts. SMC of allogenic chondrocyte recipients were strongly stimulated by allogeneic chondrocytes. This response was absent in recipients treated with CsA. Spontaneous antichondrocyte cytotoxic antibody activity was detected in intact rats and in recipients of syngeneic grafts. In recipients of allogeneic chondrocytes the antibody response against allogeneic chondrocytes was raised but was statistically not significant owing to the considerable variation in the level of spontaneously occurring antichondrocyte antibodies.  相似文献   

20.
目的 探讨胶原复合梯度羟基磷灰石(Col/HA)双相支架负载软骨细胞修复兔膝关节骨软骨缺损的可行性及疗效.方法 构建Col/HA双相支架,将软骨细胞种植于支架培养1周,再将软骨细胞-支架复合体移植修复兔膝关节股骨髁的骨软骨缺损,并对骨软骨缺损的修复进行检测.结果 光镜及扫描电镜观察显示软骨细胞在Col/HA支架中贴附良好,表型维持稳定,分泌胞外基质.大体观察和组织学检测显示,植入体内16周后实验组软骨层呈透明软骨样修复,软骨下骨缺损有新骨构建;对照组骨软骨缺损修复不良,组织学检测以纤维性组织或纤维软骨组织形成.Wakitani评分显示实验组修复组织优于对照组,差异有统计学意义(P<0.05).结论 双相Col/HA复合支架可作为骨软骨组织工程支架,负载软骨细胞可修复兔膝关节骨软骨缺损,重建关节软骨的结构和功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号