共查询到20条相似文献,搜索用时 15 毫秒
1.
Lesions in the caudal fastigial nucleus (cFN) severely impair the accuracy of visually guided saccades in the head-restrained monkey. Is the saccade dysmetria a central perturbation in issuing commands for orienting gaze (eye in space) or is it a more peripheral impairment in generating oculomotor commands? This question was investigated in two head-unrestrained monkeys by analyzing the effect of inactivating one cFN on horizontal gaze shifts generated from a straight ahead fixation light-emitting diode (LED) toward a 40 degrees eccentric target LED. After muscimol injections, when viewing the fixation LED, the starting position of the head was changed (ipsilesional and upward deviations). Ipsilesional gaze shifts were associated with a 24% increase in the eye saccade amplitude and a 58% reduction in the amplitude of the head contribution. Contralesional gaze shifts were associated with a decrease in the amplitude of both eye and head components (40 and 37% reduction, respectively). No correlation between the changes in the eye amplitude and in head contribution was observed. The amplitude of the complete head movement was decreased for ipsilesional movements (57% reduction) and unaffected for contralesional movements. For both ipsilesional and contralesional gaze shifts, the changes in eye saccade amplitude were strongly correlated with the changes in gaze amplitude and largely accounted for the gaze dysmetria. These results indicate a major role of cFN in the generation of appropriate saccadic oculomotor commands during head-unrestrained gaze shifts. 相似文献
2.
3.
This study compares the performance of a newly developed gaze (eye-in-space) measurement technique based on double magnetic induction (DMI) by a custom-made gold-plated copper ring on the eye with the classical scleral search coil (SSC) technique to record two-dimensional (2D) head-unrestrained gaze shifts. We tested both systems simultaneously during head-free saccades toward light-emitting diodes (LEDs) within the entire oculomotor range (+/-35 deg). The absence of irritating lead wires in the case of the DMI method leads to a higher guarantee of success (no coil breakage) and to less irritation on the subject's eye, which results in a longer and more comfortable measurement time. Correlations between DMI and SSC signals for horizontal and vertical eye position, velocity, and acceleration were close to 1.0. The difference between the SSC signal and the DMI signal remains within a few degrees. In our current setup the resolution was about 0.3 deg for the DMI method versus 0.2 deg for the SSC technique. The DMI method is an especially good alternative in the case of patient and laboratory animal gaze control studies where breakage of the SSC lead wires is particularly cumbersome. 相似文献
4.
Most of what we know about the neural control of gaze comes from experiments in head-fixed animals, but several "head-free" studies have suggested that fixing the head dramatically alters the apparent gaze command. We directly investigated this issue by quantitatively comparing head-fixed and head-free gaze trajectories evoked by electrically stimulating 52 sites in the superior colliculus (SC) of two monkeys and 23 sites in the supplementary eye fields (SEF) of two other monkeys. We found that head movements made a significant contribution to gaze shifts evoked from both neural structures. In the majority of the stimulated sites, average gaze amplitude was significantly larger and individual gaze trajectories were significantly less convergent in space with the head free to move. Our results are consistent with the hypothesis that head-fixed stimulation only reveals the oculomotor component of the gaze shift, not the true, planned goal of the movement. One implication of this finding is that when comparing stimulation data against popular gaze control models, freeing the head shifts the apparent coding of gaze away from a "spatial code" toward a simpler visual model in the SC and toward an eye-centered or fixed-vector model representation in the SEF. 相似文献
5.
G R Leichnetz 《Neuroscience letters》1985,54(2-3):185-188
Following horseradish peroxidase gel implants in prearcuate cortex involving the frontal eye field (area 8) in Old and New World monkeys, bilateral anterograde labelling was observed in the nucleus prepositus hypoglossi, an important preoculomotor nucleus. 相似文献
6.
7.
8.
Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. 总被引:3,自引:0,他引:3
Muscimol-induced inactivation of the monkey frontal eye field: effects on visually and memory-guided saccades. Although neurophysiological, anatomic, and imaging evidence suggest that the frontal eye field (FEF) participates in the generation of eye movements, chronic lesions of the FEF in both humans and monkeys appear to cause only minor deficits in visually guided saccade generation. Stronger effects are observed when subjects are tested in tasks with more cognitive requirements. We tested oculomotor function after acutely inactivating regions of the FEF to minimize the effects of plasticity and reallocation of function after the loss of the FEF and gain more insight into the FEF contribution to the guidance of eye movements in the intact brain. Inactivation was induced by microinjecting muscimol directly into physiologically defined sites in the FEF of three monkeys. FEF inactivation severely impaired the monkeys' performance of both visually guided and memory-guided saccades. The monkeys initiated fewer saccades to the retinotopic representation of the inactivated FEF site than to any other location in the visual field. The saccades that were initiated had longer latencies, slower velocities, and larger targeting errors than controls. These effects were present both for visually guided and for memory-guided saccades, although the memory-guided saccades were more disrupted. Initially, the effects were restricted spatially, concentrating around the retinotopic representation at the center of the inactivated site, but, during the course of several hours, these effects spread to flanking representations. Predictability of target location and motivation of the monkey also affected saccadic performance. For memory-guided saccades, increases in the time during which the monkey had to remember the spatial location of a target resulted in further decreases in the accuracy of the saccades and in smaller peak velocities, suggesting a progressive loss of the capacity to maintain a representation of target location in relation to the fovea after FEF inactivation. In addition, the monkeys frequently made premature saccades to targets in the hemifield ipsilateral to the injection site when performing the memory task, indicating a deficit in the control of fixation that could be a consequence of an imbalance between ipsilateral and contralateral FEF activity after the injection. There was also a progressive loss of fixation accuracy, and the monkeys tended to restrict spontaneous visual scanning to the ipsilateral hemifield. These results emphasize the strong role of the FEF in the intact monkey in the generation of all voluntary saccadic eye movements, as well as in the control of fixation. 相似文献
9.
White RL Snyder LH 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》2007,181(3):477-492
The brain’s sensitivity to self-generated movements is critical for behavior, and relies on accurate internal representations
of movements that have been made. In the present study, we stimulated neurons below saccade threshold in the frontal eye fields
of monkeys performing an oculomotor delayed response task. Stimulation during, but not before, the memory period caused small
but consistent displacements of memory-guided saccade endpoints. This displacement was in the opposite direction of the saccade
that was evoked by stronger stimulation at the same site, suggesting that weak stimulation induced an internal saccade signal
without evoking an actual movement. Consistent with this idea, the stimulation effect was nearly absent on a task where an
animal was trained to ignore self-generated eye movements. These findings support a role for the frontal eye fields in accounting
for self-generated movements, and indicate that corollary discharge signals can be manipulated independent of motor output.
This work was supported by the EJLB Foundation, the Washington University Silvio Conte Center, and the National Eye Institute.
R.W. was supported by grants from the National Institute of Health’s Medical Scientist Training Program (GM07200) and the
National Eye Institute (EY13360). 相似文献
10.
Monteon JA Constantin AG Wang H Martinez-Trujillo J Crawford JD 《Journal of neurophysiology》2010,104(6):3462-3475
The frontal eye field (FEF) is a region of the primate prefrontal cortex that is central to eye-movement generation and target selection. It has been shown that neurons in this area encode commands for saccadic eye movements. Furthermore, it has been suggested that the FEF may be involved in the generation of gaze commands for the eye and the head. To test this suggestion, we systematically stimulated (with pulses of 300 Hz frequency, 200 ms duration, 30-100 μA intensity) the FEF of two macaques, with the head unrestrained, while recording three-dimensional (3D) eye and head rotations. In a total of 95 sites, the stimulation consistently elicited gaze-orienting movements ranging in amplitude from 2 to 172°, directed contralateral to the stimulation site, and with variable vertical components. These movements were typically a combination of eye-in-head saccades and head-in-space movements. We then performed a comparison between the stimulation-evoked movements and gaze shifts voluntarily made by the animal. The kinematics of the stimulation-evoked movements (i.e., their spatiotemporal properties, their velocity-amplitude relationships, and the relative contributions of the eye and the head as a function of movement amplitude) were very similar to those of natural gaze shifts. Moreover, they obeyed the same 3D constraints as the natural gaze shifts (i.e., modified Listing's law for eye-in-head movements). As in natural gaze shifts, saccade and vestibuloocular reflex torsion during stimulation-evoked movements were coordinated so that at the end of the head movement the eye-in-head ended up in Listing's plane. In summary, movements evoked by stimulation of the FEF closely resembled those of naturally occurring eye-head gaze shifts. Thus we conclude that the FEF explicitly encodes gaze commands and that the kinematic aspects of eye-head coordination are likely specified by downstream mechanisms. 相似文献
11.
Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements
The frontal eye field (FEF), an area in the primate frontal lobe, has long been considered important for the production of eye movements. Past studies have evoked saccade-like movements from the FEF using electrical stimulation in animals that were not allowed to move their heads. Using electrical stimulation in two monkeys that were free to move their heads, we have found that the FEF produces gaze shifts that are composed of both eye and head movements. Repeated stimulation at a site evoked gaze shifts of roughly constant amplitude. However, that gaze shift could be accomplished with varied amounts of head and eye movements, depending on their (head and eye) respective starting positions. This evidence suggests that the FEF controls visually orienting movements using both eye and head rotations rather than just shifting the eyes as previously thought. 相似文献
12.
Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. 总被引:2,自引:0,他引:2
M A Segraves 《Journal of neurophysiology》1992,68(6):1967-1985
1. This study identified neurons in the rhesus monkey's frontal eye field that projected to oculomotor regions of the pons and characterized the signals sent by these neurons from frontal eye field to pons. 2. In two behaving rhesus monkeys, frontal eye field neurons projecting to the pons were identified via antidromic excitation by a stimulating microelectrode whose tip was centered in or near the omnipause region of the pontine raphe. This stimulation site corresponded to the nucleus raphe interpositus (RIP). In addition, electrical stimulation of the frontal eye field was used to demonstrate the effects of frontal eye field input on neurons in the omnipause region and surrounding paramedian pontine reticular formation (PPRF). 3. Twenty-five corticopontine neurons were identified and characterized. Most frontal eye field neurons projecting to the pons were either movement neurons, firing in association with saccadic eye movements (48%), or foveal neurons responsive to visual stimulation of the fovea combined with activity related to fixation (28%). Corticopontine movement neurons fired before, during, and after saccades made within a restricted movement field. 4. The activity of identified corticopontine neurons was very similar to the activity of neurons antidromically excited from the superior colliculus where 59% had movement related activity, and 22% had foveal and fixation related activity. 5. High-intensity, short-duration electrical stimulation of the frontal eye field caused omnipause neurons to stop firing. The cessation in firing appeared to be immediate, within < or = 5 ms. The time that the omnipause neuron remained quiet depended on the intensity of the cortical stimulus and lasted up to 30 ms after a train of three stimulus pulses lasting a total of 6 ms at an intensity of 1,000 microA. Low-intensity, longer duration electrical stimuli (24 pulses, 75 microA, 70 ms) traditionally used to evoke saccades from the frontal eye field were also followed by a cessation in omnipause neuron firing, but only after a delay of approximately 30 ms. For these stimuli, the omnipause neuron resumed firing when the stimulus was turned off. 6. The same stimuli that caused omnipause neurons to stop firing excited burst neurons in the PPRF. The latency to excitation ranged from 4.2 to 9.8 ms, suggesting that there is at least one additional neuron between frontal eye field neurons and burst neurons in the PPRF. 7. The present study confirms and extends the results of previous work, with the use of retrograde and anterograde tracers, demonstrating direct projections from the frontal eye field to the pons.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
Working memory involves transient storage of information and the ability to manipulate that information for short-range planning and prediction. The computational aspect of working memory can be probed using dynamic sensorimotor behavior requiring complex stimulus-response mappings. Such a transformation occurs when extrapolating the future location of a moving target that is rendered temporarily invisible. Estimating the trajectory of an invisible moving target requires encoding and storing several target features, including the direction and speed of motion. We trained monkeys to make saccades to the estimated position of invisible targets moving at various speeds. The activity of neurons in the frontal eye field (FEF) was consistently modulated according to the speed of target motion. A reconstruction algorithm showed that estimates of target speed based on FEF activity were similar to behavioral speed estimates. FEF may therefore be involved in updating an internal representation of target trajectory for predictive saccades. 相似文献
14.
This study was performed to characterize the properties of the suppression of smooth pursuit eye movement induced by electrical stimulation of the frontal eye field (FEF) in trained monkeys. At the stimulation sites tested, we first determined the threshold for generating electrically evoked saccades (Esacs). We then examined the suppressive effects of stimulation on smooth pursuit at intensities that were below the threshold for eliciting Esacs. We observed that FEF stimulation induced a clear deceleration of pursuit at pursuit initiation and also during the maintenance of pursuit at subthreshold intensities. The suppression of pursuit occurred even in the absence of catch-up saccades during pursuit, indicating that suppression influenced pursuit per se. We mapped the FEF area that was associated with the suppressive effect of stimulation on pursuit. In a wide area in the FEF, suppressive effects were observed for ipsiversive, but not contraversive, pursuit. In contrast, we observed the bilateral suppression of both ipsiversive and contraversive pursuit in a localized area in the FEF. This area coincided with the area in which we have previously shown that stimulation suppressed the generation of saccades in bilateral directions and also where fixation neurons that discharged during fixation were concentrated. On the basis of these results, we compared the FEF suppression of pursuit with that of saccades with regard to several physiological properties and then discussed the role of the FEF in the suppression of both pursuit and saccades, and particularly in the maintenance of visual fixation. 相似文献
15.
Monkeys and humans can easily make accurate saccades to stimuli that appear and disappear before an intervening saccade to a different location. We used the flashed-stimulus task to study the memory processes that enable this behavior, and we found two different kinds of memory responses under these conditions. In the short-term spatial memory response, the monkey fixated, a stimulus appeared for 50 ms outside the neuron's receptive field, and from 200 to 1,000 ms later the monkey made a saccade that brought the receptive field onto the spatial location of the vanished stimulus. Twenty-eight of 48 visuomovement cells and 21/32 visual cells responded significantly under these circumstances even though they did not discharge when the monkey made the same saccade without the stimulus present or when the stimulus appeared and the monkey did not make a saccade that brought its spatial location into the receptive field. Response latencies ranged from 48 ms before the beginning of the saccade (predictive responses) to 272 ms after the beginning of the saccade. After the monkey made a series of 16 saccades that brought a stimulus into the receptive field, 21 neurons demonstrated a longer term, intertrial memory response: they discharged even on trials in which no stimulus appeared at all. This intertrial memory response was usually much weaker than the within-trial memory response, and it often lasted for over 20 trials. We suggest that the frontal eye field maintains a spatially accurate representation of the visual world that is not dependent on constant or continuous visual stimulation, and can last for several minutes. 相似文献
16.
Signals related to eye position are essential for visual perception and eye movements, and are powerful modulators of sensory responses in many regions of the visual and oculomotor systems. We show that visual and pre-saccadic responses of frontal eye field (FEF) neurons are modulated by initial eye position in a way suggestive of a multiplicative mechanism (gain field). Furthermore the slope of the eye position sensitivity tends to be negatively correlated with preferred retinal position across the population. A model with Gaussian visual receptive fields and linear-rectified eye position gain fields accounts for a large portion of the variance in the recorded data. Using physiologically derived parameters, this model is able to subtract the gaze shift from the vector representing the retinal location of the target. This computation might be used to maintain a memory of target location in space during ongoing eye movements. This updated spatial memory can be read directly from the locus of the peak of activity across the retinotopic map of FEF and it is the result of a vector subtraction between retinal target location when flashed and subsequent eye displacement in the dark. 相似文献
17.
Due to delays in visuomotor processing, eye movements directed toward moving targets must integrate both target position and velocity to be accurate. It is unknown where and how target velocity information is incorporated into the planning of rapid (saccadic) eye movements. We recorded the activity of neurons in frontal eye fields (FEFs) while monkeys made saccades to stationary and moving targets. A substantial fraction of FEF neurons was found to encode not only the initial position of a moving target, but the metrics (amplitude and direction) of the saccade needed to intercept the target. Many neurons also encoded target velocity in a nearly linear manner. The quasi-linear dependence of firing rate on target velocity means that the neuronal response can be directly read out to compute the future position of a target moving with constant velocity. This is demonstrated using a quantitative model in which saccade amplitude is encoded in the population response of neurons tuned to retinal target position and modulated by target velocity. 相似文献
18.
In the frontal lobe of primates, two areas play a role in visually guided eye movements: the frontal eye fields (FEF) and the medial eye fields (MEF) in dorsomedial frontal cortex. Previously, FEF lesions have revealed only mild deficits in saccadic eye movements that recovered rapidly. Deficits in eye movements after MEF ablation have not been shown. We report the effects of ablating these areas singly or in combination, using tests in which animals were trained to make saccadic eye movements to paired or multiple targets presented at various temporal asynchronies. FEF lesions produced large and long-lasting deficits on both tasks. Sequences of eye movements made to successively presented targets were also impaired. Much smaller deficits were observed after MEF lesions. Our findings indicate a major, long-lasting loss in temporal ordering and processing speed for visually guided saccadic eye movement generation after FEF lesions and a significant but smaller and shorter-lasting loss after MEF lesions. 相似文献
19.
Newlands SD Hesse SV Haque A Angelaki DE 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》2001,140(1):25-33
Following the orienting saccade of a combined eye-head gaze shift, normal monkeys exhibit a compensatory eye counterrotation
that stabilizes gaze as the head movement continues. This counterrotation, which has a gain (eye velocity/head velocity) of
near unity, is a manifestation of the vestibulo-ocular reflex (VOR). Acute unilateral labyrinthectomy (UL) causes severe asymmetry
in the VOR during passive head rotations that recovers incompletely over time. The purpose of this investigation was to compare
the recovery of the counterrotation gain during horizontal gaze shifts with that of the passive VOR after UL. During the 1st week
after UL, counterrotation gains were asymmetric, being lower for head movements towards the lesion but nearly normal for head
movements towards the intact side. Whereas this asymmetry in the counterrotation gain resolved within a week after UL, asymmetries
in the passive VOR persisted. During the 1st week after UL, behavioral performance was generally poor, with a high incidence
of inaccurate gaze shifts and larger latencies. In addition, animals used slower head movements such that peak head amplitude
during the eye saccade was significantly lower during the 1st week after UL as compared to control values. Bilateral labyrinthectomy
(BL) resulted in larger but symmetric deficits in counterrotation, which, contrary to the passive VOR, exhibited significant
recovery over time. It is hypothesized that recovery of counterrotation gain after UL has contributions from multiple sources,
including the contralateral intact labyrinth and an efference copy of the head movement.
Electronic Publication 相似文献
20.
Chen LL 《Journal of neurophysiology》2006,95(6):3528-3542
When the head is free to move, electrical stimulation in the frontal eye field (FEF) evokes eye and head movements. However, it is unclear whether FEF stimulation-evoked head movements contribute to shifting the line of sight, like visually guided coordinated eye-head gaze shifts. Here we investigated this issue by systematically varying initial eye (IEP) and head (IHP) positions at stimulation onset. Despite the large variability of IEP and IHP and the extent of stimulation-evoked gaze amplitudes, gaze displacement was entirely accounted for by eye (re head) displacement. Overall, the majority (3/4) of stimulation-evoked gaze shifts consisted of eye-alone movements, in which head movements were below the detection threshold. When head movements did occur, they often started late (re gaze shift onset) and coincided with rapid eye deceleration, resulting in little change in the ensuing gaze amplitudes. These head movements often reached their peak velocities over 100 ms after the end of gaze shifts, indicating that the head velocity profile was temporally dissociated from the gaze drive. Interestingly, head movements were sometimes evoked by FEF stimulation in the absence of gaze shifts, particularly when IEP was deviated contralaterally (re the stimulated side) at stimulation onset. Furthermore, head movements evoked by FEF stimulation resembled a subset of head movements occurring during visually guided gaze shifts. These unique head movements minimized the eye deviation from the center of the orbit and contributed little to gaze shifts. The results suggest that head motor control may be independent from eye control in the FEF. 相似文献