首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuronal adaptor protein X11α/mint-1/APBA-1 binds to the cytoplasmic domain of the amyloid precursor protein (APP) to modulate its trafficking and metabolism. We investigated the consequences of reducing X11α in a mouse model of Alzheimer's disease (AD). We crossed hAPPswe/PS-1ΔE9 transgenic (AD tg) mice with X11α heterozygous knockout mice in which X11α expression is reduced by approximately 50%. The APP C-terminal fragments C99 and C83, as well as soluble Aβ40 and Aβ42, were increased significantly in brain of X11α haploinsufficient mice. Aβ/amyloid plaque burden also increased significantly in the hippocampus and cortex of one year old AD tg/X11α (+/−) mice compared to AD tg mice. In contrast, the levels of sAPPα and sAPPβ were not altered significantly in AD tg/X11α (+/−) mice. The increased neuropathological indices of AD in mice expressing reduced X11α suggest a normal suppressor role for X11α on CNS Aβ/amyloid deposition.  相似文献   

2.
Calcium-uptake into PC12 cells was measured by incubation with45Ca after the cells were exposed for 24 h to β-amyloid peptide(1–40) at concentrations between 0 and 46 μM. The rate of influx of45Ca into PC12 cells was constant for the first 10 min. For 46 μM β-amyloid peptide(1–40), the rate of influx was about 1,300 ions/s/μm2 and the number of cells decreased significantly. There was no significant decrease in cell number when cells were exposed to β-amyloid in calcium-free medium. These results indicate that β-amyloid increases calcium uptake into PC12 cells, and suggest that the increased uptake is responsible for the toxicity of β-amyloid in PC12 cells.  相似文献   

3.
4.
Human genetics link Alzheimer's disease pathogenesis to excessive accumulation of amyloid-β (Aβ) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Aβ aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Aβ protofibrils, as a new immunotherapeutic strategy. The highly protofibril-selective monoclonal antibody mAb158 inhibited in vitro fibril formation and protected cells from Aβ protofibril-induced toxicity. When the mAb158 antibody was administered for 4 months to plaque-bearing transgenic mice with both the Arctic and Swedish mutations (tg-ArcSwe), Aβ protofibril levels were lowered while measures of insoluble Aβ were unaffected. In contrast, when treatment began before the appearance of senile plaques, amyloid deposition was prevented and Aβ protofibril levels diminished. Therapeutic intervention with mAb158 was however not proven functionally beneficial, since place learning depended neither on treatment nor transgenicity. Our findings suggest that Aβ protofibrils can be selectively cleared with immunotherapy in an animal model that display highly insoluble Aβ deposits, similar to those of Alzheimer's disease brain.  相似文献   

5.
One of the major pathological characteristics of Alzheimer's disease is the increased number of amyloid-containing senile plaques within the brain. The dense cores of these plaques are composed primarily of highly insoluble aggregates of a 39–43-residue peptide referred to as the β-amyloid peptide (βA). The mechanisms by which these insoluble extracellular deposits of βA are formed remain unknown. In this study, the cross-linking of βA by the calcium-dependent enzyme, transglutaminase was examined. Transglutaminases are a family of enzymes which are found in brain, and catalyse the cross-linking of specific proteins into insoluble polymers. Synthetic βA (1–40) was readily cross-linked by transglutaminase, forming multimers in a time-dependent fashion. Furthermore, a second peptide with a substitution similar to that in the Dutch-type hereditary amyloidosis mutation (Glu22 to Gln) was also found to be a substrate fro transglutaminase. Since transglutaminase covalently cross-links proteins through glutamine residues, it is suggested that transglutaminase contributes to amyloid deposition in Dutch-type hereditary amyloidosis, and possibl Alzheimer's disease.  相似文献   

6.
To determine the presence and distribution of cerebrovascular Aβ production we investigated amyloid β precursor protein (AβPP)-mRNA expression by RNA in situ hybridization in patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type, Alzheimer disease and controls. In all subjects, AβPP-mRNA was expressed in endothelial cells, smooth muscle cells, adventitial cells and brain pericytes and/or perivascular cells. Meningeal cells also expressed AβPP-mRNA. AβPP was detected in endothelial cells, smooth muscle cells and adventitial cells. The demonstration of AβPP-mRNA at all vascular sites where amyloid formation can occur supports an important contribution of locally derived Aβ to cerebrovascular amyloidosis.  相似文献   

7.
Baicalein, a flavonoid isolated from the roots of Scutellaria baicalensis, is known to modulate γ‐aminobutyric acid (GABA) type A receptors. Given prior reports demonstrating benefits of GABAA modulation for Alzheimer's disease (AD) treatment, we wished to determine whether this agent might be beneficial for AD. CHO cells engineered to overexpress wild‐type amyloid precursor protein (APP), primary culture neuronal cells from AD mice (Tg2576) and AD mice were treated with baicalein. In the cell cultures, baicalein significantly reduced the production of β‐amyloid (Aβ) by increasing APP α‐processing. These effects were blocked by the GABAA antagonist bicuculline. Likewise, AD mice treated daily with i.p. baicalein for 8 weeks showed enhanced APP α‐secretase processing, reduced Aβ production, and reduced AD‐like pathology together with improved cognitive performance. Our findings suggest that baicalein promotes nonamyloidogenic processing of APP, thereby reducing Aβ production and improving cognitive performance, by activating GABAA receptors. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
The amyloid precursor protein (APP) in brain is processed either by an amyloidogenic pathway by beta-secretase and gamma-secretase to yield Abeta (beta-amyloid 4 kDa) peptide or by alpha-secretase within the beta-amyloid domain to yield non-amyloidogenic products. We have studied blood platelet levels of a 22-kDa fragment containing the Abeta (beta-amyloid 4 kDa) peptide, beta-secretase (BACE1), alpha-secretase (ADAM10), and APP isoform ratios of the 120-130 kDa to 110 kDa peptides from 31 Alzheimer's disease (AD) patients and 10 age-matched healthy control subjects. We found increased levels of Abeta4, increased activation of beta-secretase (BACE1), decreased activation of alpha-secretase (ADAM10) and decreased APP ratios in AD patients compared to normal control subjects. These observations indicate that the blood platelet APP is processed by the same amyloidogenic and non-amyloidogenic pathways as utilized in brain and that APP processing in AD patients is altered compared to control subjects and may be a useful bio-marker for the diagnosis of AD, the progression of disease and for monitoring drug responses in clinical trials.  相似文献   

10.
Amyloid β (Aβ) is a metabolic product of Aβ precursor protein (APP). Deposition of Aβ in the brain and neuronal degeneration are characteristic hallmarks of Alzheimer's disease (AD). Aβ induces neuronal degeneration, but the mechanism of neurotoxicity remains elusive. Increasing evidence implicates APP as a receptor‐like protein for Aβ fibrils (fAβ). In this study, we present further experimental support for the direct interaction of APP with fAβ and for its involvement in Aβ neurotoxicity. Using recombinant purified holo‐APP (h‐APP), we have shown that it directly binds fAβ. Employing deletion mutant forms of APP, we show that two different sequences are involved in the binding of APP to fAβ. One sequence in the n‐terminus of APP is required for binding of fAβ to secreted APP (s‐APP) but not to h‐APP. In addition, the extracellular juxtamembrane Aβ‐sequence mediates binding of fAβ to h‐APP but not to s‐APP. Deletion of the extracellular juxtamembrane Aβ sequence abolishes abnormal h‐APP accumulation and toxicity induced by fAβ deposition, whereas deletions in the n‐terminus of APP do not affect Aβ toxicity. These experiments show that interaction of toxic Aβ species with its membrane‐anchored parental protein promotes toxicity in hippocampal neurons, adding further support to an Aβ‐receptor‐like function of APP directly implicated in neuronal degeneration in AD. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The aggregation of β‐amyloid protein (Aβ) and α‐synuclein (αS) are hypothesized to be the key pathogenic event in Alzheimer's disease (AD) and Lewy body diseases (LBD), with oligomeric assemblies thought to be the most neurotoxic. Inhibitors of oligomer formation, therefore, could be valuable therapeutics for patients with AD and LBD. Here, we examined the effects of antiparkinsonian agents (dopamine, levodopa, trihexyphenidyl, selegiline, zonisamide, bromocriptine, peroxide, ropinirole, pramipexole, and entacapone) on the in vitro oligomer formation of Aβ40, Aβ42, and αS using a method of photo‐induced cross‐linking of unmodified proteins (PICUP), electron microscopy, and atomic force microscopy. The antiparkinsonian agents except for trihexyphenidyl inhibited both Aβ and αS oligomer formations, and, among them, dopamine, levodopa, pramipexole, and entacapone had the stronger in vitro activity. Circular dichroism and thioflavin T(S) assays showed that secondary structures of Aβ and αS assemblies inhibited by antiparkinsonian agents were statistical coil state and that their seeding activities had disappeared. The antiparkinsonian agents could be potential therapeutic agents to prevent or delay AD and LBD progression. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Cultured smooth muscle cells isolated from β-amyloid-affected blood vessels from old dogs accumulate β-protein at early passages [5,24]. Now, we show that smooth muscle cells derived from amyloid-free brain blood vessels and peripheral arteries from old and young animals are induced by culture conditions to deposit intracellularly fibrillar and non-fibrillar β-protein. Accumulation of β-protein is associated with a higher secretion of β-protein, but not with a higher secretion of β-amyloid precursor protein (βAPP) or higher cellular content of βAPP. Gradual cessation of proliferative activity was observed in cultures that accumulate β-protein.  相似文献   

13.
The composition of paired helical filaments (PHFs), the intracellular amyloid fibrils that accumulate in the brains of Alzheimer patients, is not completely known. We investigated whether synthetic peptides from β-amyloid precursor protein (APP) can form PHF-like fibrils. Two peptides formed fibrils morphologically similar to PHFs. The presence of tau protein, a known PHF component, greatly enhanced the numbers of fibrils formed from one peptide, from the C-terminus of APP, and became associated with the fibrils. A τ fragment corresponding to the tubulin-binding region was sufficient to induce fibril formation. Tau did not alter fibril formation by the other peptide, which was from the β/A4 region of APP. These results raise the possibility that a C-terminal fragment of APP, along with tau, may be involved in PHF formation. Thus the proteolytic processing of APP may generate fragments that contribute to both amyloids and both histopathologic lesions of Alzheimer's disease.  相似文献   

14.
Deposits of amyloid β-protein (Aβ) form the cores of the pathological plaques which characterize Alzheimer's disease. The mechanism of formation of the deposits is unknown; one possibility is failure of a clearance mechanism that would normally remove the protein from brain parenchyma. This study has investigated the capacity of the central nervous system (CNS) phagocytes, microglia cells, to clear exogenous Aβ1–42 from their environment. Cultured microglia from adult rat CNS have a high capacity to remove Aβ from serum-free medium, shown by immunoblotting experiments. Aβ from incubation medium was attached to the cell surface and could be identified by immunocytochemistry at the light or electron microscopic (EM) level; by EM, Aβ also appeared in phagosome-like intracellular vesicles. Light microscopic immunocytochemistry combined with computer-assisted image analysis showed that cells accumulated Aβ within 24 hr. from culture medium containing from 1 to 20 μg/ml Aβ. Microglial accumulation of Aβ was substantially reduced in the presence of fetal bovine serum. Addition of the protease inhibitor leupeptin to incubation medium with serum resulted in accumulation of Aβ in a membrane-bound intracellular compartment, but not at the cell surface. The increase in intracellular accumulation in the presence of the protease inhibitor indicates a microglial capacity for intracellular degradation of Aβ in the absence of inhibition. The change from predominantly cell-surface accumulation in serum-free medium to predominantly intracellular accumulation with serum may be explained by the presence in serum of carrier proteins that complex with Aβ and target it to cell surface receptors capable of stimulating endocytosis. Microglia were also cultured on unfixed cryostat sections of human brain tissue containing Alzheimer's plaques. Very little Aβ from the tissue was accumulated by the cells, although cultured microglia were found in direct contact with anti-Aβ immunopositive plaques. Possibly Aβ in tissue sections was complexed with other proteins which either inhibited its uptake by microglia or enhanced its proteolysis, preventing cellular accumulation of immunostainable Aβ. The results indicate that cultured microglia effectively remove Aβ from tissue culture medium and from the surface of the dish and concentrate monomer and aggregates of Aβ either on the cell surface or intracellularly. This process may be modified by proteins present in Alzheimer's brain sections. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Aims: Drugs currently used for the treatment of Alzheimer's disease (AD) partially stabilize patients’ symptoms without modifying disease progression. Brain accumulation of oligomeric species of β‐amyloid (Aβ) peptides, the principal components of senile plaques, is believed to play a crucial role in the development of AD. Based on this hypothesis, huge efforts are being spent to identify drugs able to interfere with proteases regulating Aβ formation from amyloid precursor protein (APP). This article briefly reviews the profile of γ‐secretase inhibitors, compounds that inhibit γ‐secretase, the pivotal enzyme that generates Aβ, and that have reached the clinic. Discussion: Several classes of potent γ‐secretase inhibitors have been designed and synthesized. Preclinical studies have indicated that these compounds are able to lower brain Aβ concentrations and, in some cases, reduce Aβ plaque deposition in transgenic mouse models of AD. The most developmentally advanced of these compounds is semagacestat, presently in Phase III clinical trials. In animals, semagacestat reduced Aβ levels in the plasma, cerebrospinal fluid (CSF), and the brain. However, studies have not reported on its cognitive effects. Studies in both healthy volunteers and patients with AD have demonstrated a dose‐dependent inhibition of plasma Aβ levels, and a recent study in healthy subjects demonstrated a robust, dose‐dependent inhibition of newly generated Aβ in the CSF after single oral doses. Conclusions: Unfortunately, γ‐secretase inhibitors may cause intestinal goblet cell hyperplasia, thymus atrophy, decrease in lymphocytes, and alterations in hair color, effects associated with the inhibition of the cleavage of Notch, a protein involved in cell development and differentiation. Nevertheless, at least other two promising γ‐secretase inhibitors are being tested clinically. This class of drugs represents a major hope to slow the rate of decline of AD.  相似文献   

16.
The GAD mouse is a spontaneous neurological mutant with axonal dystrophy in the gracile tract of the medulla oblongata and spinal cord. The immunoreactivity of amyloid precursor protein (APP-IR) and amyloid β-protein (AβP-IR) was examined in the gracile tract and the dorsal root ganglia of normal and GAD mice. The mice were studied at 4, 9, 18, and 32 weeks of age. These periods correspond clinically to the initial, progressive, critical, and terminal stages of the disease, respectively. The APR-IR in both axons and glial cells was already accentuated to a higher level as early as 4 weeks of age in the gracile nucleus of GAD mouse. Similarly there was increase in APR-IR of GAD mouse in the dorsal root ganglia. Almost all of the primary neurons in the dorsal root ganglia at the lumbar cord level of GAD mouse revealed stronger APP-IR than those of normal mouse throughout all stages. The cells showing immunoreactivity for amyloid β-protein became positive in axons and glial cells in the gracile nucleus by approximately the 9th week, and followed by an increase of AβP-IR in order of the cervical, thoracic and lumbar spinal cords. These results suggest that the initial feature in GAD mouse is an accumulation of amyloid precursor protein induced by axonal dystrophy which then leads to a deposition of amyloid β-protein within the cytoplasm of both axons and glial cells in the gracile tract.  相似文献   

17.
Amyloid β-protein precursor is associated with extracellular matrix   总被引:2,自引:0,他引:2  
F.G. Klier  G. Cole  W. Stallcup  D. Schubert   《Brain research》1990,515(1-2):336-342
The ultrastructural distribution of the amyloid beta-protein precursor (ABPP) in cultures of a neuronal cell line is examined. ABPP is associated with the extensive extracellular matrix (ECM) secreted by these cells. The possible role of matrix associated ABPP in the pathogenesis of Alzheimer's disease is discussed.  相似文献   

18.
Patients with the Lewy body variant (LBV) of Alzheimer's disease (AD) have ubiquitinated intraneuronal and neuritic accumulations of α-synuclein and show less neuron loss and tau pathology than other AD patients. Aged Tg2576 transgenic mice overexpressing human βAPP695. KM670/671NL have limited neuron loss and tau pathology, but frequent ubiquitin- and α-synuclein-positive, tau-negative neurites resembling those seen in the LBV of AD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号