首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Some kinds of breast cancer cell lines, similar to several types of solid tumors, express epidermal growth factor receptor (EGFR). However, gefitinib, an EGFR tyrosine kinase inhibitor, is not effective for all these cell lines. Similarly, taxane is effective for many of the cell lines, although some, such as the multidrug-resistant MCF7/ADR cell line, show taxane-resistance. Here, we examined the growth inhibitory effect of combination treatment with gefitinib and taxane on the breast cancer cell lines MDA-MB-231 (EGFR-positive) and MCF7/ADR (EGFR- and HER2-positive). To estimate the combined effect, a Combination Index was calculated for each cell line. The combination of gefitinib and taxane showed a strong synergistic effect on MCF7/ADR cells, but an invitro additive-antagonistic effect on MDA-MB-231 cells. Similarly, the combination treatment showed a significantly increased tumor inhibitory effect on MCF7/ADR xenografts, but not on MDA-MB-231 xenografts. Regarding the mechanism of the synergistic effect, Western blotting analysis revealed that taxane activated the EGFR-Akt pathway in MCF7/ADR cells but not in MDA-MB-231. To determine the optimal sequential administration of gefitinib and taxane for MCF7/ADR cells, we used flow cytometry to analyze the cell cycle and apoptosis; finding that taxane treatment followed by gefitinib produced a higher rate of G2 arrest and apoptosis than gefitinib treatment followed by taxane. These results suggest gefitinib overcomes the drug-resistance of these cells, thereby increasing the effects of taxane on MCF7/ADR cells. Further, activation of the EGFR-Akt pathway by taxane is related to this synergistic effect.  相似文献   

2.
Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24–48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.  相似文献   

3.
BACKGROUND: Expression of epidermal growth factor receptor (EGFR) by human breast cancer tissues is associated with poor clinical response. The EGFR tyrosine kinase inhibitor (EGFR-TKI), gefitinib ('Iressa', ZD1839), is a leading example of a molecular targeted agent, and has an anti-proliferative effect on various cancer cells. But the details of the anti-cancer effect and mechanism have not been elucidated. We studied the anti-cancer effect of gefitinib in breast cancer cell lines and the intracellular pathway downstream of EGFR associated with cell migration. METHODS: In this study, we analysed the anti-proliferative and anti-migratory effect of gefitinib in EGFR (+) breast cancer cell lines by WST-1 analysis and chemotaxis chamber analysis. We analyzed several intracellular phosphorylated pathways which are activated by mitogen activated kinases (extracellular signal-regulated protein kinase 1 and 2: MEK), phosphatidylinositol 3'-kinase (PI3K) and phpspholipase C (PLC), by blocking those pathways using inhibitors of each kinase, and also investigated the effects on the phosphorylation of myosin light chain (MLC). RESULTS: Gefitinib inhibited proliferation in most of these cell lines. MDA-MB231 was shown to be resistant. Furthermore, proliferation of MDA-MB231 cells was not affected by EGF stimulation, but migration of MDA-MB231 cells was significantly inhibited. PI3K and PLC inhibitors blocked EGF-stimulated cell migration and MLC phosphorylation, but the MEK inhibitor did not influence cell migration. CONCLUSIONS: Gefitinib has an anti-migratory effect on MDA-MB231 that results in an anti-proliferative effect. PI3K and PLC are important for the migration of MDA-MB231 cells, and gefitinib may inhibit migration by blocking these signalling pathways.  相似文献   

4.
5.
Pancreatic cancer is a devastating malignancy, characterized by low responsiveness to conventional chemotherapies. Gefitinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) has shown clinical activity against EGFR-expressing tumors. Since pancreatic cancers frequently overexpress EGFR (ErbB-1) and its ligands, our aim was to investigate the potential role of gefitinib in this disease. The GI50 of gefitinib as well as the effects of gefitinib on growth factor actions in pancreatic cancer cell lines were analyzed using MTT assays. FACS analysis using Annexin and propidium iodide (PI) staining were performed to study cell cycle, apoptosis and cell death. Western blot analysis was carried out to investigate expression levels of the 4 members of the ErbB family of receptors in pancreatic cancer cell lines, as well as MAP kinase and EGFR phosphorylation. Soft agar assays were used to measure colony formations. Invasiveness of cancer cells was analyzed using Matrigel-coated filters. gefitinib inhibited cell proliferation of pancreatic cancer cell lines with GI50 concentrations ranging from 2.5 to over 10 micro M. Gefitinib completely inhibited EGF-induced cell proliferation, but did not significantly influence insulin-like growth factor (IGF)-induced mitogenesis. Gefitinib also completely abolished EGF-induced phosphorylation of EGFR and MAP kinase. Furthermore, gefitinib inhibited basal and EGF-induced anchorage-independent cell growth and invasion. Our data demonstrate that gefitinib inhibits pancreatic cancer cell growth through EGFR-dependent pathways. Gefitinib also inhibits anchorage-independent growth and invasiveness, suggesting that gefitinib may offer a new approach for the treatment of pancreatic cancer.  相似文献   

6.
Epidermal growth factor receptor [EGFR (HER1, erbB1)] is a receptor with associated tyrosine kinase activity, and is expressed in colorectal cancers and many other solid tumors. We examined the effect of the selective EGFR tyrosine kinase inhibitor (EGFR-TKI) gefitinib ("Iressa") in combination with the DNA topoisomerase I inhibitor CPT-11 (irinotecan) on human colorectal cancer cells. EGFR mRNA and protein expression were detected by RT-PCR and immunoblotting in all 7 colorectal cancer cell lines studied. Gefitinib inhibited the cell growth of the cancer cell lines in vitro with an IC(50) range of 1.2-160 microM by 3,(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Lovo cells exhibited the highest level of protein and autophosphorylation of EGFR and were the most sensitive to gefitinib. The combination of gefitinib and CPT-11 induced supra-additive inhibitory effects in COLO320DM, WiDR and Lovo cells, assessed by an in vitro MTT assay. Administration of gefitinib and CPT-11 had a supra-additive inhibitory effect on WiDR cells and tumor shrinkage was observed in Lovo cell xenografts established in nude mice, whereas no additive effect of combination therapy was observed in COLO320DM cells. To elucidate the mechanisms of synergistic effects, the effect of CPT-11-exposure on phosphorylation of EGFR was examined by immunoprecipitation. CPT-11 increased phosphorylation of EGFR in Lovo and WiDR cells in time- and dose-dependent manners. This EGFR activation was completely inhibited by 5 microM gefitinib and gefitinib-induced apoptosis was enhanced by combination with CPT-11, measured by PARP activation although no PARP activation was induced by 5 microM CPT-11 alone. These results suggested that these modification of EGFR by CPT-11, in Lovo cells, is a possible mechanism for the synergistic effect of CPT-11 and gefitinib. These findings imply that the EGFR-TKI gefitinib and CPT-11 will be effective against colorectal tumor cells that express high levels of EGFR, and support clinical evaluation of gefitinib in combination with CPT-11, in the treatment of colorectal cancers.  相似文献   

7.
The selective ER downregulator, fulvestrant, is currently approved as a second line endocrine therapy after onset of resistance to prior antiestrogen therapy in postmenopausal breast cancer patients. Resistance to antihormonal therapies is common and, therefore, we anticipate that fulvestrant-resistance will occur as well. The current study was undertaken to investigate the underlying molecular changes after fulvestrant-resistance and find new therapeutic targets and agents for fulvestrant-resistant breast cancer cells. We developed a unique fulvestrant-resistant cell line (MCF-7/F), derived from MCF-7 estrogen receptor alpha (ERalpha)-positive human breast cancer cells, by culturing them in 1 microM fulvestrant containing medium for approximately 18 months. MCF-7/F cells became irreversibly ERalpha negative as withdrawal of fulvestrant did not alter the ERalpha-negative phenotype, determined by real-time PCR, Western blot analysis, and ERE-luciferase transfection assays. MCF-7/F cells grew in a hormone-independent manner. Interestingly, MCF-7/F cells overexpressed both epidermal growth factor receptor (EGFR) and breast cancer resistant protein (BCRP). Gefitinib, a specific EGFR tyrosine kinase inhibitor, preferentially inhibited the growth of MCF-7/F cells relative to MCF-7 cells by inhibiting both MAPK44/42 and Akt phosphorylation. MCF-7/F cells became less sensitive to chemotherapeutic agents such as mitoxantrone. Moreover, fumitremorgin C, a specific BCRP inhibitor, significantly increased the efficacy of mitoxantrone in MCF-7/F cells. Gefitinib increased the inhibitory effect of mitoxantrone on cell growth. Similarly, fumitremorgin C increased the inhibitory effect of gefitinib on cell growth, suggesting that there is a bidirectional crosstalk between EGFR and BCRP. More importantly, these results provide a molecular basis for using gefitinib, BCRP inhibitors, and chemotherapeutic agents as combination therapy approaches in fulvestrant-resistant breast cancer.  相似文献   

8.
Epidermal growth factor receptor (EGFR)/HER1 is expressed at high levels in at least 20% of breast cancers. This high expression correlates with a poor prognosis in patients with breast cancer. Experimental and clinical findings suggest that aberrant activation of tyrosine receptor kinases, such as HER1 pathway, play a causal role in the development of antiestrogen resistance in breast cancer. Recent preclinical and clinical evidence shows that inhibition of growth factor signaling pathways suppresses the growth of malignant cells without serious toxicities. To test the hypothesis that inhibition of the HER1 signaling pathway enhances the antitumor effect of endocrine therapy, a promising signal transduction inhibitor (STI) of HER1 tyrosine kinase, gefitinib, and an estrogen receptor (ER) antagonist, fulvestrant, were administered to human breast cancer cells. Our experimental results have revealed that gefitinib additively enhances the antitumor effect of fulvestrant in estrogen receptor (ER)-positive breast cancer cells under estrogen-supplemented conditions. An additive increase in the protein expression level of a cyclin-dependent kinase inhibitor, p21 may play a key role of this additive cytostatic effect. The rationale and future perspectives of the combined use of STIs with endocrine therapy in breast cancer are discussed.  相似文献   

9.
Oh M  Lee JY  Shin DH  Park JH  Oian T  Kim HJ  Cho SD  Oh SH  Min YK  Kong G 《Cancer science》2011,102(3):597-604
Epidermal growth factor receptor (EGFR) is one of the most promising targets for cancer therapy. Here, we show the in vitro and in vivo anticancer effects and associated mechanisms of KO-202125, one of the synthesized aristolactam analogs, as a novel EGFR inhibitor, in EGFR-overexpressing cancer cell lines. KO-202125 showed more effective growth inhibition and apoptosis induction than gefitinib, a representative EGFR inhibitor, in various EGFR-overexpressing human cancers including estrogen receptor (ER)-negative MDA-MB-231 human breast cancer cells. Epidermal growth factor receptor phosphorylation at Tyr1068 was reduced and, consequently, the association of EGFR with p85 was decreased by KO-202125 treatment in MDA-MB-231 cell lines. This led to inactivation of the PI3K/Akt pathway, and consequently suppression of activation of the Wnt pathway and enhancement of the nuclear import of p27Kip1. KO-202125 treatment in nude mice injected with MDA-MB-231 cells showed inhibition of tumor growth without toxicity. Collectively, our results showed the possibility of KO-202125 as an effective therapy agent of EGFR-overexpressing cancer cells through reduced EGFR activity and downregulation of the Akt pathway.  相似文献   

10.
Gefitinib (Iressa), an epidermal growth factor receptor targeting drug, has been clinically useful for the treatment of patients with non-small cell lung cancer (NSCLC). Gefitinib is currently being applied in clinical studies as either a monotherapy, or as part of a combination therapy against prostate, head and neck, gastric, breast, and colorectal tumors. However, success rates vary between different tumor types, and thus it is important to understand which molecular target(s) are responsible for limiting the therapeutic efficacy of the drug. In this study, we ask whether expression of HER2 affects sensitivity to gefitinib in human lung cancer cells. We established two clones, LK2/HER2-32 and LK2/HER2-57, by transfecting HER2 cDNA into LK2, a NSCLC line with a low expression level of HER2. We observed no mutations in exons 18, 19, and 21 of EGFR gene in LK2, LK2/mock- and two HER2-trasfectants when we observed in-frame deletion mutations (E746-A750) adjacent to K745 in a gefitinib-sensitive NSCLC cell line, PC9. These LK2/HER2-32 and LK2/HER2-57 were much more sensitive to the cytotoxic effects of gefitinib than the parental LK2 lines. Treatment with 0.5 to 1 micromol/L gefitinib specifically blocked Akt activation in both HER2-transfectant lines, but not in the parental LK2 cells. Extracellular signal-regulated kinase-1/2 activation, however, was not blocked by gefitinib up to 10 micromol/L in either the parent or transfectant lines. Gefitinib was also shown to induce cell cycle arrest in the G1-S phase, and an accompanying increase of p27Kip1 was observed. LK2/HER2 transfectants showed constitutive formation of HER2/HER3 heterodimer, which were seen to associate with a regulatory subunit of phosphoinositide-3-kinase, p85alpha, when active. Treatment of LK2/HER2 cells with gefitinib markedly decreased the formation of HER2/HER3 heterodimers, HER3 basal phosphorylation, and the association of p85alpha with HER3. This study is the first to show that under basal growth conditions, HER2 sensitizes low-EGFR NSCLC cell lines to growth inhibition by gefitinib.  相似文献   

11.
Deregulated signaling through the epidermal growth factor receptor (EGFR) is involved in chemoresistance. To identify the molecular determinants of sensitivity to the EGFR inhibitor gefitinib (Iressa, ZD1839) in chemoresistance, we compared the response of matched chemosensitive and chemoresistant glioma and ovarian cancer cell lines. We found that chemoresistant cell lines were 2- to 3-fold more sensitive to gefitinib growth-inhibitory effects, because of decreased proliferation rather than survival. Sensitivity to gefitinib correlated with overexpression and constitutive phosphorylation of HER2 and HER3, but not EGFR, altered HER ligand expression, and enhanced activation of EGF-triggered EGFR pathway. No activating mutations were found in EGFR. Gefitinib fully inhibited EGF-induced and constitutive Akt activation only in chemoresistant cells. In parallel, gefitinib downregulated constitutively phosphorylated HER2 and HER3, and activated GSK3beta with a concomitant degradation of cyclin D1. Ectopically overexpressed HER2 on its own was insufficient to sensitize chemonaive cells to gefitinib. pHER3 coimmunoprecipitated with p85-PI3K in chemoresistant cells and gefitinib dissociated these complexes. siRNA-mediated inhibition of HER3 decreased constitutive activation of Akt and sensitivity to gefitinib in chemoresistant cells. Our study indicates that in chemoresistant cells gefitinib inhibits both an enhanced EGF-triggered pathway and a constitutive HER3-mediated Akt activation, indicating that inhibition of HER3 together with that of EGFR could be relevant in chemorefractory tumors. Furthermore, in combination experiments gefitinib enhanced the effects of coadministered drugs more in chemoresistant than chemosensitive ovarian cancer cells. Combined treatment might be therapeutically beneficial in chemoresistant tumors from ovary and likely from other tissues.  相似文献   

12.
EGFR signalling pathways appear involved in endocrine therapy resistance in breast cancer. This trial estimates the antitumor efficacy and toxicity of the EGFR tyrosine kinase inhibitor gefitinib in combination with anastrozole or fulvestrant in postmenopausal hormone receptor positive breast cancer. Subjects with estrogen receptor and/or PgR positive, metastatic breast cancer were randomized into this phase II study of gefitinib (initial dose was 500 mg orally daily, due to high rate of diarrhea, starting dose was reduced to 250 mg orally daily) with either anastrozole 1 mg daily or fulvestrant 250 mg every 4 weeks. The primary endpoint was clinical benefit (complete responses plus partial responses plus stable disease for 6 months or longer). 141 eligible subjects were enrolled, 72 in the anastrozole plus gefitinib arm, and 69 in the fulvestrant plus gefitinib arm. Anastrozole plus gefitinib had a clinical benefit rate of 44% [95% confidence interval (CI) 33-57%] and fulvestrant plus gefitinib 41% (95% CI 29-53%). Median progression-free survival was 5.3 months (95% CI 3.1-10.4) versus 5.2 months (95% CI 2.9-8.2) for anastrozole plus gefitinib versus fulvestrant plus gefitinib, respectively. Median survival was 30.3 months (95% CI 21.2-38.9+) versus 23.9 months (95% CI 15.4-33.5) for anastrozole plus gefitinib versus fulvestrant plus gefitinib, respectively. In general, the toxicity is greater than expected for single agent endocrine therapy alone. Anastrozole plus gefitinib and fulvestrant plus gefitinib have similar clinical benefit rates in the treatment of estrogen and/or PgR positive metastatic breast cancer, and the rates of response are not clearly superior to gefitinib or endocrine therapy alone. Further studies of EGFR inhibition plus endocrine therapy do not appear warranted, but if performed should include attempts to identify biomarkers predictive of antitumor activity.  相似文献   

13.
One of the major targets for breast cancer therapy is the epidermal growth factor receptor (EGFR) and related receptors, which signal via different signal transduction pathways including the mitogen-activated protein kinase (MAPK) pathway. This study determined whether there is a correlation between EGFR/HER2 status and MAPK (ERK1/2) phosphorylation in breast cancer cells, and how this affects the response to an inhibitor of the receptors. Expression of EGFR, HER2 and phosphorylated ERK1/2 were measured by immunoblotting in a panel of breast cancer cell lines. Several lines expressed high levels of pERK1/2, with no obvious correlation with the level of EGFR/HER2. The EGFR tyrosine kinase inhibitor PKI166 inhibited growth and induced apoptosis in some cells with high levels of growth factor receptors (MDA-MB-468, SUM149, SKBR3), but was less effective in cells that also had high basal ERK1/2 activity (MDA-MB-231). The combination of an inhibitor of MAPK signalling (U0126) and PKI166 produced significantly more inhibition and apoptosis than either agent alone. This suggests that constitutive activation of the MAPK pathway may bypass inhibition of EGFR/HER2 tyrosine kinases, and lead to insensitivity to agents targeting the receptors. However, inhibiting both EGFR/HER2 and MAPK signalling can result in significant growth inhibition and apoptosis of EGFR-expressing breast cancer cells.  相似文献   

14.
Progression from an androgen-dependent to an androgen-independent state often occurs in patients with prostate cancer (PCa) who undergo hormonal therapy. We have investigated whether inhibition of the epidermal growth factor receptor (EGFR) signaling pathway affects the antitumor effect of a nonsteroidal antiandrogen. Gefitinib (Iressa), an EGFR tyrosine kinase inhibitor, and bicalutamide (Casodex), a nonsteroidal antiandrogen [androgen receptor (AR) antagonist], were administered alone and in combination to AR-positive human PCa cell lines. FACS analysis showed lower EGFR expression levels on AR-positive cells (LNCaP, CWR22, CWR22R 2152 and AR-transfected DU145 cell lines) compared with AR-negative cells (DU145, PC3 and TSU-Pr1). Moreover, in AR-transfected DU145 cells, chronic treatment with bicalutamide increased EGFR expression to levels similar to androgen-independent DU145 cells. All AR-positive PCa cell lines were sensitive to gefitinib (IC50 = 0.1-0.6 microM), whereas higher concentrations of bicalutamide were needed to reduce AR-positive PCa cell line proliferation (IC50 = 0.8-2.0 microM). Low doses of gefitinib increased the antitumor effects of bicalutamide by strongly reducing the IC50 of bicalutamide (approximately 10-fold). Similarly, bicalutamide increased the antiproliferative effects of gefitinib by reducing the IC50 of gefitinib (approximately 5-fold). Taken together, our data suggest that in androgen-dependent cell lines, addition of gefitinib in combination with bicalutamide results in concurrent dual inhibition of AR and EGFR/HER2 pathways. This causes a significant delay in the onset of EGFR-driven androgen independence.  相似文献   

15.
  目的  探讨酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)阿法替尼(afatinib)对乳腺癌细胞增殖、周期及凋亡的影响,并就阿法替尼与吉非替尼(gefitinib)对乳腺癌细胞的作用进行比较。  方法  应用MTT法检测人乳腺癌细胞系MCF-7、T47D、MDAMB-231细胞活性,流式细胞术的PI染色法检测细胞周期变化以及Annexin-V/PI双染法检测细胞凋亡,通过Western blot法检测蛋白表达情况。  结果  阿法替尼对MCF-7、T47D、MDA-MB-231细胞均有明显的抑制作用,IC50分别为0.101、0.141、0.887 μmol/L。阿法替尼对T47D、MDA-MB-231细胞作用24 h后G0/G1期细胞比例明显升高,细胞凋亡率增加,晚期的凋亡率分别为88.9%、58.1%,并可促进细胞凋亡通路蛋白PARP、caspase-3发生剪切。阿法替尼、吉非替尼使MDA-MB-231细胞的EGFR磷酸化水平受到明显抑制,相同浓度下,阿法替尼作用较吉非替尼更强、持续时间更长。  结论  阿法替尼可显著抑制乳腺癌细胞增殖、促进其凋亡,且具有明显的量效关系,较吉非替尼具有更有效的作用。   相似文献   

16.
Yang JL  Qu XJ  Russell PJ  Goldstein D 《Oncology》2005,69(3):224-238
OBJECTIVE: Interferon-alpha (IFN alpha) treatment is associated with up-regulation of epidermal growth factor receptor (HER 1/EGFR) expression and marked growth inhibition of colon cancer cell lines in vitro.We aimed to determine the effect of combining IFN alpha and gefitinib on colon cancer cell line growth. METHODS: A panel of nine colon cancer cell lines were characterised for expression of HER 1/EGFR and then treated with gefitinib alone, or IFN alpha alone, or IFN alpha plus gefitinib, following a pre-treatment using vehicle or IFN alpha. Crystal violet staining and flow cytometry were used to assess cell proliferation and expression of HER 1/EGFR. The indexes and statistical assays were used to evaluate significant differences between treatment groups against vehicle control. RESULTS: All cell lines except SW 620 were HER 1/EGFR positive. IFN alpha treatment was associated with significant up-regulation of cell surface HER 1/EGFR expression in all HER 1/EGFR-positive cell lines except KM 12 SM. Concurrent treatment with IFN alpha and gefitinib, or IFN alpha pre-treatment followed by gefitinib, or IFN alpha pre-treatment followed by a combination of IFN alpha plus gefitinib, additively or supra-additively/synergistically enhanced the sensitivity of the seven HER 1/EGFR-up-regulated cell lines. CONCLUSION: IFN alpha improves the anti-proliferative effect of EGFR inhibition in colorectal cancer cell lines. This approach may have clinical implications for improving treatment based on targeting of HER 1/EGFR.  相似文献   

17.
Cao WG  Ma T  Li JF  Li H  Ji YB  Chen XH  Liu BY  Jin YN 《癌症》2007,26(12):1330-1335
背景与目的:表皮生长因子受体(epidermal growth factor receptor,EGFR)在绝大部分人类上皮肿瘤中都有表达,其表达高低与放疗抗拒有关.我们检测EGFR酪氨酸激酶抑制剂吉非替尼(gefitinib)对高表达胃癌细胞株放射增敏的作用,并初步探讨其机制.方法:Western blot法测定7株人胃癌细胞株(MKN45、SGC7901、SNU-1、N87、AGS、SNU-16、KATO-Ⅲ)中EGFR蛋白的表达,选取2株EGFR相对高表达的胃癌细胞用于后续实验.采用MTT法测定吉非替尼的半数抑制浓度(50%inhibition concentration,IC50),克隆形成实验计算细胞存活率,拟合生存曲线并计算放射生物学参数,流式细胞仪检测吉非替尼联合放疗的凋亡率及细胞周期分布.结果:选取7株胃癌细胞中EGFR表达最高的MKN45和SGC7901细胞,发现其存活率均随吉非替尼浓度或放射剂量的增加而明显下降(P<0.05).MTT法检测吉非替尼对MKN45及SGC7901细胞的IC50分别为0.4mmol/L和0.8 mmol/L.MKN45细胞在0.1×IC50及0.2×IC50剂量下的增敏比(SER)分别为1.102和1.154,SGC7901则为1.092和1.176.吉非替尼或照射均可增加凋亡率,减少S期细胞比例及增加G2/M期细胞比例(P<0.01).结论:吉非替尼序贯照射应用可提高EGFR高表达胃癌细胞的放射敏感性并阻碍细胞增殖、促进凋亡和干扰细胞周期分布.吉非替尼有望成为EGFR高表达胃癌的放射增敏剂.  相似文献   

18.
PURPOSE: Recognition that the epidermal growth factor receptor (EGFR) was a therapeutic target in non-small cell lung cancer (NSCLC) and other cancers led to development of the small-molecule receptor tyrosine kinase inhibitors gefitinib and erlotinib. Clinical trials established that EGFR tyrosine kinase inhibitors produced objective responses in a minority of NSCLC patients. We examined the sensitivity of 23 NSCLC lines with wild-type or mutated EGFR to gefitinib to determine genes/proteins related to sensitivity, including EGFR and HER2 cell surface expression, phosphorylated EGFR expression, EGFR gene copy number, and EGFR mutational status. Downstream cell cycle and signaling events were compared with growth-inhibitory effects. EXPERIMENTAL DESIGN: We determined gefitinib sensitivity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, EGFR expression by fluorescence-activated cell sorting and immunohistochemistry, phosphorylated EGFR by Western blotting, EGFR gene copy number by fluorescence in situ hybridization, and EGFR mutation by sequencing. The cellular effects of gefitinib on cell cycle were determined by flow cytometry and the molecular effects of gefitinib EGFR inhibition on downstream signal proteins by Western blotting. Gefitinib in vivo effects were evaluated in athymic nude mice bearing sensitive and resistant NSCLC xenografts. RESULTS: There was a significant correlation between EGFR gene copy number, EGFR gene mutations, and gefitinib sensitivity. EGFR protein was necessary but not sufficient for predicting sensitivity. Gefitinib-sensitive lines showed a G(1) cell cycle arrest and inactivation of downstream signaling proteins; resistant cell lines had no changes. The in vivo effects mirrored the in vitro effects. CONCLUSIONS: This panel of NSCLC lines characterized for gefitinib response was used to identify predictive molecular markers of response to gefitinib. Several of these have subsequently been shown to identify NSCLC patients likely to benefit from gefitinib therapy.  相似文献   

19.
Gastric cancer metastasised to the liver was found to overexpress HER2 at a significantly higher incidence than primary gastric cancers. The purpose of the present study was to investigate the possibility of molecular therapy targeting HER2 overexpression in gastric cancer liver metastasis. We developed three new HER2-overexpressing gastric cancer cell lines (GLM-1, GLM-2, GLM-4) without epidermal growth factor receptor (EGFR) mutations derived from such liver metastasis, two of which had HER2 gene amplifications. All these GLM series of cell lines were highly sensitive to gefitinib in vitro, a specific inhibitor of EGFR tyrosine kinase (Iressa) rather than anti-HER2 antibody trastuzumab (Herceptin), whereas most of the HER2 low-expressing counterparts were not. In these HER2-overexpressing GLM series, protein kinase B (Akt), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was constitutively phosphorylated, and gefitinib efficiently inhibited this Akt phosphorylation, induced strong apoptosis in vitro and exhibited antitumour activity in tumour xenografts in nude mice. This gefitinib-mediated antitumour effect in xenograft was significantly potentiated by trastuzumab treatment. On the other hand, gefitinib-resistant cells (GLM-1R) exhibited increased EGFR expression, followed by constitutive activation of mitogen-activated protein kinase (MAPK) pathway. These results suggest that the antitumour effect of gefitinib is due to the effective inhibition of HER2-driven constitutive activation of phosphatidylinositol-3-kinase (PI3K)/Akt pathway, and that the acquired resistance to gefitinib is due to the constitutive activation of Ras/MAPK pathway in compensation for PI3K/Akt pathway. Gastric cancer liver metastasis with HER2 overexpression would be a potential molecular target for gefitinib and trastuzumab.  相似文献   

20.
In many solid tumors, overexpression of human epidermal growth factor receptors (e.g., HER1/EGFR and HER2) correlates with poor prognosis. Erlotinib (Tarceva) is a potent HER1/EGFR tyrosine kinase inhibitor. Pertuzumab (Omnitarg), a novel HER2-specific, recombinant, humanized monoclonal antibody, prevents heterodimerization of HER2 with other HERs. Both mechanisms disrupt signaling pathways, resulting in tumor growth inhibition. We evaluated whether inhibition of both mechanisms is superior to monotherapy in tumor cell lines expressing different HER levels. Human non-small cell lung cancer (NSCLC) cells (Calu-3: HER1/EGFR 0+, HER2 3+; QG56: HER1/EGFR 2-3+, HER2 0+) and breast cancer cells (KPL-4: HER1/EGFR 2-3+, HER2 3+) were implanted into BALB/c nu/nu mice and severe combined immunodeficient beige mice, respectively. Tumor-bearing mice (n = 12 or 15 per group) were treated with vehicle (Captisol or buffer), erlotinib (orally, 50 mg/kg/d), pertuzumab (i.p. 6 mg/kg/wk with a 2-fold loading dose), or erlotinib and pertuzumab for 20 (QG56), 27 (KPL-4), or 49 (Calu-3) days. Drug monotherapy had antitumor activity in all models. Tumor volume treatment-to-control ratios (TCR) with erlotinib were 0.36 (Calu-3), 0.79 (QG56), and 0.51 (KPL-4). Pertuzumab TCR values were 0.42, 0.51, and 0.64 in Calu-3, QG56, and KPL-4 models, respectively. Combination treatment resulted in additive (QG56: TCR 0.39; KPL-4: TCR 0.38) or greater than additive (Calu-3: TCR 0.12) antitumor activity. Serum tumor markers for NSCLC (Cyfra 21.1) and breast cancer (soluble HER2) were markedly inhibited by combination treatment (80-97% in Calu-3 and QG56; 92% in KPL-4), correlating with decreased tumor volume. Overall, erlotinib and pertuzumab are active against various human xenograft models, independently of HER1/EGFR or HER2 expression. A combination of these HER-targeted agents resulted in additive or greater than additive antitumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号