首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.  相似文献   

2.
The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.  相似文献   

3.

BACKGROUND AND PURPOSE

Bradykinin, through its B2 receptor, is involved in inflammatory processes related to arthropathies. In carrageenan and lipopolysaccharide (LPS)-induced arthritis in rat, the anti-inflammatory activity of MEN16132, a potent and selective kinin B2 receptor antagonist, was compared with that of steroidal and nonsteroidal anti-inflammatory drugs. The interaction between MEN16132 and dexamethasone was also investigated.

EXPERIMENTAL APPROACH

Drugs, alone or in combination, were injected into the knee joint 30 min before intra-articular administration of carrageenan or LPS, in pentobarbital anaesthetized rats. Effects on incapacitation, oedema, neutrophil recruitment and kallikrein system activation, in the knee joint, were assessed.

KEY RESULTS

MEN16132 and dexamethasone (10–300 µg per knee) dose-dependently reduced carrageenan-induced joint pain, oedema and neutrophil infiltration, reaching a maximal inhibition of about 50%. Dexketoprofen exerted a similar analgesic activity, whereas it did not affect the other inflammatory responses. MEN16132 showed a partial inhibition of LPS-induced joint pain, whereas dexamethasone produced a full analgesic effect. Combination of MEN16132 and dexamethasone showed a strong synergistic interaction in inhibiting both carrageenan and LPS-induced knee joint inflammation. Dexamethasone did not prevent the contact activation of prekallikrein by carrageenan and the subsequent release of kallikreins and bradykinin in the synovium.

CONCLUSIONS AND IMPLICATIONS

Steroids and kinin B2 receptor antagonists appear to relieve arthritic symptoms induced by carrageenan or LPS and act synergistically to inhibit joint inflammation. This could have interesting therapeutic implications, possibly opening the way for combination therapies in the control of inflammatory arthropathies.  相似文献   

4.

BACKGROUND AND PURPOSE

Icatibant is a well-known kinin B2 receptor antagonist currently used for angiooedema attacks. MEN16132 is a non-peptide B2 receptor antagonist, more potent and long lasting than icatibant in different models. Here we studied the reasons for these differences between the two antagonists.

EXPERIMENTAL APPROACH

Rate of reversibility (over about 3 h) of the functional receptor blockade exerted by the antagonists was compared (inositol phosphates accumulation assay) in CHO cells expressing the human B2 receptor and in human synovial cells. Antagonist pretreated cells were washed with medium and the time taken to restore bradykinin (BK) response measured. Antagonist affinity was measured by radioligand binding to wild type and mutated B2 receptors.

KEY RESULTS

Recovery of BK-induced responses was slower in cells pretreated with MEN16132 than in those treated with icatibant. The affinity of icatibant (for the [3H]-BK or the B2 receptor antagonist [3H]-MEN11270 binding site) was compared to that of MEN16132 using a panel of point-mutated receptors with mutations located at the transmembrane regions of the B2 receptor, previously shown to decrease MEN16132 high affinity interaction. No consistent decrease of icatibant affinity was observed. From the different affinity of MEN16132 derivatives at wild type and W86A (transmembrane 2 region) receptors, and by evaluating its antagonist profile at the D266A/D284A double mutant receptor, a model of the MEN16132-B2 receptor complex is proposed.

CONCLUSIONS AND IMPLICATIONS

MEN16132 dissociated from the B2 receptor compartment more slowly than icatibant and interacted at a deeper level in transmembrane regions of the receptor.  相似文献   

5.
We have investigated the effect of a new bradykinin receptor antagonist, Hoe 140 (D-Arg- Hyp3,Thi5,D-Tic7,Oic8]-bradykinin), on bradykinin- and platelet-activating factor (PAF)-induced bronchoconstriction and airway microvascular leakage in anesthetized guinea pigs. Extravasation of Evans blue dye and lung resistance were measured simultaneously. Both i.v. (15 nmol/kg) and inhaled bradykinin (1 mM, 45 breaths) caused a significant increase in lung resistance and leakage of dye at all airway levels. Hoe 140 (100 nmol/kg i.v.) almost completely inhibited these airway responses induced by bradykinin except for dye extravasation in trachea induced by inhaled bradykinin. Inhaled PAF (3 mM, 30 breaths) significantly increased lung resistance and leakage of due at all airway levels, but Hoe 140 had no effect on these responses. Bradykinin-induced bronchoconstriction and airway microvascular leakage are predominantly mediated by activation of B2 receptor, since Hoe 140 is a B2 receptor antagonist. Bradykinin receptor-mediated mechanisms do not play an important role on inhaled PAF-induced bronchoconstriction and microvascular leakage.  相似文献   

6.
We have investigated the role of bradykinin in airway microvascular leakage and bronchoconstriction induced by inhaled sodium metabisulphite (MBS) in guinea pigs. A selective bradykinin B2 receptor antagonist, HOE 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), was used because this drug has been shown to abolish the airway responses induced by bradykinin. Lung resistance (RL) was measured for 6 min after challenge with MBS, followed by measurement of extravasation of Evans Blue dye into airway tissues, used as an index of plasma exudation. Aerosolized MBS (40 and 80 mmol/L, 30 breaths) induced a significant increase in RL and leakage of dye in the trachea, main bronchi and intrapulmonary airways, whereas 20 mmol/L MBS caused these responses except for the dye leakage in the trachea and main bronchi. HOE 140 (100 nmol/kg iv) had no effect against these airway responses. We conclude that bradykinin-mediated mechanisms do not play a significant role in the acute airway effects induced by inhaled MBS.  相似文献   

7.
The involvement of histamine, leukotriene D4 (LTD4) and platelet-activating factor (PAF) in cutaneous anaphylaxis was investigated in a guinea pig model. When given alone, the H1 receptor antagonist chlorpheniramine, the LTD4/E4 antagonist LY171883 and the PAF antagonist WEB2086 were unable to inhibit increased microvascular plasma protein leakage in passive cutaneous anaphylaxis (PCA) reactions, as monitored by the extravasation of intravenously injected 125I-albumin. Furthermore the H2 receptor antagonist cimetidine and the serotonin antagonist methysergide were unable to reduce PCA responses when given alone or in combination with chlorpheniramine. In marked contrast, combinations of antagonists were able to reduce plasma leakage significantly. A combination of chlorpheniramine, LY171883 and WEB2086 virtually abolished plasma leakage during the PCA response, but did not influence the plasma protein leakage induced by intradermal injection of bradykinin. These results demonstrate that these allergic reactions involve several mediators and that the inability of an individual mediator antagonist to reduce responses does not necessarily rule out a role for that mediator.  相似文献   

8.
Dry and persistent cough is one of the commonest side effects experienced by patients treated with angiotensin-converting enzyme (ACE) inhibitors for the therapy of hypertension and congestive heart failure. The present study investigated the effect of zofenopril and ramipril on cough induced by citric acid in guinea pig and the involvement of bradykinin (BK) and prostaglandin E2 (PGE2) in mediating the responses of these drugs. Zofenopril (10 mg/kg) or ramipril (3–10 mg/kg), which is threefold more potent than zofenopril, on a mg basis, in lowering blood pressure, was orally administered daily in drinking water for 2 weeks. At the end of this period, aerosol of citric acid solution (0.1 M) was performed and the number of cough counted for 10 min. The role of the kinin B2 receptor was also investigated. BK and PGE2 levels in the bronchoalveolar lavage (BAL) fluid were measured after repeated oral treatment with zofenopril or ramipril (10 mg/kg). Ramipril (3–10 mg/kg) increased citric acid-induced cough by 40% and 60%, respectively, as compared to the vehicle control group (15.0?±?1.8), while zofenopril (10 mg/kg) was without effect. The enhancement of citric acid-induced cough caused by ramipril (10 mg/kg) was reduced by the kinin B2 receptor antagonist MEN16132 (0.25 mg/kg ip). BK and PGE2 levels in the BAL fluid were increased, in comparison to the control group, after ramipril treatment, while they were unchanged after zofenopril administration. Zofenopril, contrary to ramipril, did not affect either citric acid-induced cough in the guinea pigs or BK and PGE2 production in the airways.  相似文献   

9.
We investigated the effect of the orally active non-peptide bradykinin B2 receptor antagonist, FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[N-[2.4-di-chloro-3-[(2-methyl-8-quinoli nyl)oxymethyl]phenyl]-N-methy-laminocarbonylmethyl] acrylamide), on plasma extravasation mediated by activation of sensory nerves in guinea pig airways. Plasma extravasation was assessed by the photometric measurement of the extravasated Evans blue after formamide extraction. We found that the increase in Evans blue dye extravasation evoked by an aerosol of bradykinin (0.1 mM, 2 min) in the presence of phosphoramidon (2.5 mg/kg, i.v.) was abolished completely by FR173657 (20 mg/kg, p.o.) in the trachea and main bronchi. In sensitized guinea pigs pretreated with phosphoramidon, FR173657 (20 mg/kg, p.o.) inhibited plasma extravasation evoked by ovalbumin aerosol (5%, 2 min) by 77+/-14.2% in the trachea and 65+/-11.2% in the main bronchi. FR173657 (20 mg/kg, p.o.) did not affect the plasma extravasation caused by aerosolised capsaicin. These findings suggest that FR173657 is an orally active, promising anti-inflammatory agent for kinin-dependent inflammation following antigen challenge.  相似文献   

10.
Plasma extravasation responses to silver nitrate (AgNO3), histamine, 5-hydroxytryptamine (5-HT), bradykinin and prostaglandin E1 (PGE1) in the abdominal skin, hindpaw ankle joint and subplantar region of rats have been investigated using the Evans blue dye leakage technique. All substances tested produced plasma extravasation and combination of low doses (5 x 10(-10) mol) of either histamine or bradykinin with PGE1 (5 x 10(-10) mol) exhibited potentiation of responses of all regions. Responses to AgNO3 (1 x 10(-6) mol) were significantly reduced by the H1 receptor antagonist, mepyramine, only in the abdominal skin, but the H2 receptor antagonist metiamide reduced the responses at subplantar and ankle joint regions. Indomethacin significantly reduced the AgNO3 responses at the ankle joint only, but aprotinin reduced it at the other two regions. In rats pretreated with a combination of all antagonists the residual plasma extravasation response to AgNO3 was very small, indicating that the response could be almost totally accounted for by the combined actions of mast cell amines, kinins and prostanoids. The finding that prostanoids played a major role in the plasma extravasation response of the rat ankle joint to AgNO3 indicated that this model would be useful for the screening of non-steroidal anti-inflammatory drugs.  相似文献   

11.
Bradykinin can be inactivated by the peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), both of which are present in the airways. We evaluated the role of these enzymes in bradykinin-induced airway microvascular leakage and lung resistance in anesthetized and mechanically ventilated guinea pigs. We studied the effects of captopril (inhaled; 350 nmol), a specific ACE inhibitor, and phosphoramidon (inhaled; 7.5 nmol), a specific NEP inhibitor. Airway microvascular leakage was measured with the albumin marker Evans Blue dye (20 mg/kg i.v.), and airflow obstruction was measured as lung resistance (RL). Bradykinin was given by inhalation (0.1, 0.3 and 1 mM; 45 breaths), and caused a dose-dependent increase in both RL and airway microvascular leakage. Inhibition of NEP or ACE potentiated the bradykinin-induced microvascular leakage in main bronchi and proximal and distal intrapulmonary airways. However, only NEP inhibition significantly potentiated the extravasation of Evans Blue dye into the tracheal wall and lumen. The combined inhibition of NEP and ACE significantly potentiated plasma leakage at all airway levels, as well as the increase in RL induced by inhaled bradykinin. Recovery RL after one lung inflation significantly correlated with the extravasation of Evans Blue dye in the tissue at all airway levels, indicating that airway edema may have contributed to airway narrowing. We conclude that in the guinea pig, both NEP and ACE modulate bradykinin-induced airway microvascular leakage.  相似文献   

12.
Bradykinin has been suggested to be involved in allergic diseases. In this study, we tested the effect of FK3657 ((E)-3-(6-acetamido-3-pyridyl)-N-[N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)-oxymethyl]phenyl]-N-methylaminocarbonylmethyl]acrylamide), an orally active non-peptide bradykinin B(2) receptor antagonist, on allergic airway disease models in guinea pigs. FK3657 given orally inhibited bradykinin-induced or dextran sulfate (an activator of kinin-kallikrein cascade)-induced bronchoconstriction and plasma extravasation in the lower airways (trachea and main bronchi) and nasal mucosa of guinea pigs with ED(50) of 0.04-0.23 mg/kg. In the antigen-induced dual asthmatic response model of guinea pigs, FK3657 significantly attenuated the late phase asthmatic response, but not the immediate asthmatic response. FK3657 also significantly inhibited the 2,4-tolylene diisocyanate (TDI)-induced plasma extravasation in nasal mucosa of TDI-sensitized guinea pigs. These results suggest that oral FK3657 may be useful for asthma or allergic rhinitis as a therapeutic drug.  相似文献   

13.
1. The objective of this study in the hamster cheek pouch was to investigate the role of nitric oxide in bradykinin-induced microvascular leakage. The cheek pouch microcirculatory bed of the anaesthetized hamster was directly observed under microscope and vascular leakage was evidenced by dextranfluorescein isothiocyanate (FITC-dextran) extravasation. 2. Bradykinin superfusion (but not [des-Arg9]-bradykinin up to 3 x 10(-6) M) induced an increase in microvascular permeability (log EC50: -6.5 +/- 0.4) which was exclusively located on the post-capillary venule. Plasma extravasation was blocked by intravenous pretreatment with Hoe 140, a bradykinin B2 receptor antagonist (estimated log ID50: -9.5 +/- 0.2). 3. The effects of bradykinin (3 x 10(-7) M) superfusion were partially but significantly inhibited by indomethacin (10(-5) M, P < 0.05) and abolished by pretreatment with L-nitro-arginine (L-NOARG; 10(-5) M). 4. Acetylcholine (10(-6) M, which releases endothelial nitric oxide (NO), and sodium nitroprusside (10(-6) M, a nitrovasodilator) superfusion did not induce any changes in permeability, per se. Cromakalim (10(-5) M, a potassium channel opener) superfusion induced a moderate but significant plasma extravasation. 5. The effects of bradykinin, blocked by L-NOARG pretreatment, were restored by the co-perfusion of either sodium nitroprusside or cromakalim. Conversely vasoconstriction, produced by a stable analogue of thromboxane A2 (U46619, 3 x 10(-7) M), inhibited the increase in permeability produced by bradykinin. 6. The measurement of arteriolar diameter showed that bradykinin induced a vasodilatation which was blocked by L-NOARG. L-NOARG in itself was a powerful vasoconstrictor. Sodium nitroprusside and cromakalim, in the presence of L-NOARG, were able to restore the inhibited vasodilator response to bradykinin. 7. These results suggest: (1) bradykinin-induced microvascular leakage is mediated by bradykinin B2 receptor activation; (2) the increase in permeability is due to two different independent phenomena, i.e. post-capillary venular endothelial gap formation and arteriolar vasodilatation which increases the post-capillary venular transmural pressure: (3) NO is only involved in the arteriolar dilatation component of the bradykinin-induced increase in microvascular permeability.  相似文献   

14.
速激肽受体拮抗剂抗豚鼠过敏性哮喘的作用   总被引:2,自引:1,他引:1  
实验目的是研究速激肽与哮喘的关系,评价速激肽受体拮抗剂对哮喘的治疗作用。结果表明,ip速激肽NK-1受体拮抗剂CP-96345,NK- 2受体拮抗剂SR-48968或两药合用,均可有效减少清醒致敏豚鼠吸入抗原引起的喘息反应,降低过敏性休克死亡率。SR-48968减轻麻醉豚鼠抗原引起的气道收缩,并浓度依赖性降低抗原引起的气管和支气管平滑肌收缩幅度。CP-96345可抑制抗原诱导的支气管和肺叶伊文思蓝渗出,仅对支气管平滑肌收缩有部分抑制作用。结果提示,速激肽参与哮喘发病,速激肽受体拮抗剂可抑制抗原诱导的气道平滑肌收缩(NK-2受体)和微血管渗漏(NK-1受体)而减轻哮喘反应。  相似文献   

15.
本实验探讨了内源性速激肽是否参与白三烯C4(LTC4)的气道效应.LTC4(0.5μgkg-1,iv)可增高豚鼠肺内压(IPP)和气道内依文思蓝渗出。速激肽NK-1受体拮抗剂CP-96345{(2S,3S)-顺式-2-(二苯甲基)-N-[(2-甲氧苯)-甲基]-1-杂氮双环[2.2.2]辛烷-3-胺}1mgkg-1,iv,可减弱LTC4诱导的依文思蓝渗出;NK-2受体拮抗剂SR-48968{(S)-N-甲基-N-[4-(4-乙酰氨基-4-苯基哌啶)-2-(3,4-二氯苯基)丁基]苯甲酰胺},1mgkg-1,iv,可抑制IPP的增高.白三烯拮抗剂ONO-1078(0.03mgkg-1,iv)可阻断这两种反应.结果说明内源性速激肽增强LTC4的气道作用,其中NK-1受体介导微血管渗漏,NK-2受体介导支气管收缩.  相似文献   

16.
1. Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Our previous results suggest that microvascular leakage induced, in the guinea-pig airways, by intra-oesophageal hydrochloric acid (HCl) infusion was mainly dependent on the release of tachykinins. Nociceptin, an endogenous ligand of the opioid receptor NOP, has been shown to inhibit bronchoconstriction and cough in guinea-pig or cat by inhibiting tachykinin release. 2. The purpose of this study was to investigate the effects of nociceptin on the intra-oesophageal HCl-induced airway microvascular leakage evaluated by Evans blue dye extravasation measurement in anaesthetised guinea-pigs pretreated with propranolol, atropine and phosphoramidon. 3. Infusion of intra-oesophageal HCl led to a significant increase in plasma extravasation in the main bronchi and trachea. This increase was abolished when animals underwent a bilateral vagotomy. 4. Airway microvascular leakage was inhibited by nociceptin (3-30 microg x kg(-1) i.v.) in a dose-dependent manner (maximal inhibition at the dose of 30 microg x kg(-1): 19.76+/-1.13 vs 90.92+/-14.00 ng x mg(-1) tissue for nociceptin and HCl infusion, respectively, in the main bronchi, P<0.01). The NOP receptor agonist [Arg(14),Lys(15)]N/OFQ mimicked the inhibitory effect of nociceptin, but at a 10-fold lower dose (3 microg x kg(-1) i.v). The NOP receptor antagonist J-113397 had no effect on plasma protein extravasation by itself, but was able to block the inhibitory effect of nociceptin. 5. Morphine (1 mg x kg(-1)) had a similar inhibitory effect as that of nociceptin. Naloxone pretreatment abolished the effect of morphine, but was enable to block the inhibitory effect of nociceptin. 6. Under similar conditions, nociceptin, in the previous range of concentration, was unable to counteract the airway microvascular leakage induced by substance P (SP). 7. These results suggest that airway plasma extravasation induced by intra-oesophageal HCl instillation might be inhibited by specific stimulation of the NOP receptor with nociceptin. Nociceptin is likely to act at a pre-junctional level, by inhibiting tachykinin release, since it was unable to prevent SP-induced airway plasma extravasation.  相似文献   

17.
BACKGROUND AND PURPOSE: The aim was to characterize the recently discovered non-peptide antagonist MEN16132 at the mouse B2 receptor, relative to other antagonists. EXPERIMENTAL APPROACH: [3H]-BK binding experiments used mouse lung and ileum tissue membranes and antagonist potency was measured in the isolated ileum contractility assay. KEY RESULTS: Two BK binding sites resulted from saturation and homologous competition experiments. A role for the B1 receptor was excluded because of the poor affinity of B1 receptor ligands (pIC50<5). MEN16132, and the other reference antagonists, inhibited only one portion of BK specific binding, and the rank order of potency was (pIC50): Icatibant (lung 10.7; ileum 10.2)=MEN11270 (lung 10.4; ileum 9.9)=MEN16132 (lung 10.5; ileum 9.9).>LF16-0687 (lung 8.9; ileum 8.8)>FR173657 (lung 8.6; ileum 8.2). BK homologous curves performed with lung membranes after treatment with the antagonist MEN16132 or Icatibant (10 nM) displayed only the low affinity site. The functional antagonism by MEN16132 (pA2 9.4) and Icatibant (pA2 9.1), towards BK (control EC50 6.1 nM) induced ileum contractions, was concentration-dependent and surmountable, but the Schild plot slope was less than unity. CONCLUSIONS AND IMPLICATIONS: In mouse tissue, radiolabelled BK recognizes two binding sites and B2 receptor antagonists can compete only for the higher affinity one. The pharmacological profile of the novel non-peptide antagonist MEN16132 indicates that it exhibits subnanomolar affinity and potency for the mouse B2 receptor and is suitable for further characterization in in vivo pathophysiological models.  相似文献   

18.
1. Porphyromonas gingivalis is one of the bacteria likely to be related to pain in periodontitis. Several enzymes isolated from P. gingivalis have been reported to have kininogenase activity. Since kinin release could be held responsible for inflammatory symptoms and pain in periodontitis, we investigated whether the inflammatory and algesic effects of a sonic extract from P. gingivalis (PGSE) could be inhibited by the potent bradykinin B2 receptor antagonist, icatibant (Hoe 140). 2. In anaesthetized rats, the subplantar injection of PGSE (0.1 and 1.0 mg) caused a dose-dependent oedema of the hind paws. The net increase of the paw volume 60 min after the injection was 23 +/- 5% and 77 +/- 12%, respectively. The oedema was rich in plasma proteins as determined by the Evans blue method. Pretreatment with icatibant (300 nmol kg-1, s.c.) significantly reduced the effect of 1.0 mg of PGSE whereas the effects of 0.1 mg of PGSE remained unaffected. 3. The subplantar injection of 1.0 mg of PGSE in unanaesthetized rats caused nociceptive behavioural responses which started about 5 min after the injection and lasted for about 10-15 min. These responses were completely prevented by pretreatment with icatibant (300 nmol kg-1, s.c.). 4. The present results show that the plasma extravasation induced by non-algesic doses of a sonic extract from P. gingivalis are caused by mechanisms other than B2 kinin receptor activation whereas inflammatory effects of algesic doses are due to the action of kinins. The pain elicited by the extract is solely mediated by kinins and can be prevented by icatibant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The effect of bradykinin, capsaicin, substance P and low pH medium on plasma extravasation in the guinea-pig conjunctiva has been studied. Evans blue dye was measured in the conjunctiva after local instillation of the agents into the conjunctival sac. 2. Bradykinin (2-50 nmol), capsaicin (20-50 nmol) and substance P (0.5-5 nmol) caused a dose-dependent increase in plasma extravasation with the following order of potency: substance P > bradykinin = capsaicin. The effect of capsaicin (50 nmol) and substance P (5 nmol) was abolished by the tachykinin NK1 receptor antagonist, CP-99,994 (8 mumol kg-1, i.v.) (P < 0.01), whereas CP-100,263 (8 mumol kg-1, i.v.) the inactive enantiomer of CP-99,994 was without effect. CP-99,994 inhibited by 70% (P < 0.01) the effect of bradykinin. 3. The kinin B2 receptor antagonist, Hoe 140 (icatibant, 10 nmol kg-1, i.v.) abolished the response to bradykinin (50 nmol) (P < 0.01), but did not affect the responses to capsaicin (50 nmol) or substance P (5 nmol). Plasma extravasation induced by low pH medium (pH 1) was abolished by CP-99,994 (P < 0.01) and by Hoe 140 (P < 0.01). 4. The present findings suggest that: endogenous or exogenous tachykinins increase plasma extravasation in the guinea-pig conjunctiva by activation of NK1 receptors; bradykinin-induced plasma extravasation is mediated by tachykinin release from sensory nerve endings; low pH media cause plasma extravasation via release of kinins that by activation of B2 receptors release tachykinins from sensory nerve endings.  相似文献   

20.
1. Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide ligand for a specific G-protein coupled receptor, the N/OFQ peptide receptor (NOP). The N/OFQ-NOP receptor system has been reported to play an important role in pain, anxiety and appetite regulation. In airways, N/OFQ was found to inhibit the release of tachykinins and the bronchoconstriction and cough provoked by capsaicin. 2. Here we evaluated the effects of NOP receptor activation in bronchoconstriction and airway microvascular leakage induced by intraesophageal (i.oe.) hydrochloric acid (HCl) instillation in rabbits. We also tested the effects of NOP receptor activation in SP-induced plasma extravasation and bronchoconstriction. 3. In anesthetized New Zealand rabbits bronchopulmonary function (total lung resistance (R(L)) and dynamic compliance (C(dyn))) and airway microvascular leakage (extravasation of Evans blue dye) were evaluated. 4. Infusion of i.oe. HCl (1 N) led to a significant increase in bronchoconstriction and plasma extravasation in the main bronchi and trachea of rabbits pretreated with propranolol, atropine and phosphoramidon. 5. Bronchoconstriction and airway microvascular leakage were inhibited by N/OFQ (3-30 microg kg(-1) i.v.) in a dose-dependent manner. The NOP receptor agonist [Arg14,Lys15]N/OFQ mimicked the inhibitory effect of N/OFQ, being 10-fold more potent, UFP-101, a peptide selective NOP receptor antagonist, blocked the inhibitory effects of both agonists. 6. Under the same experimental conditions, N/OFQ and [Arg14,Lys15]N/OFQ did not counteract the bronchoconstriction and airway microvascular leakage induced by substance P. 7. These results suggest that bronchoconstriction and airway plasma extravasation induced by i.oe. HCl instillation are inhibited by activation of prejunctional NOP receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号