首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Das S  El-Deiry WS  Somasundaram K 《Oncogene》2003,22(52):8394-8402
Tumor suppressor p53 functions are downregulated in most cervical cancers, because the product of human papilloma virus (HPV) oncogene E6 binds to and inactivates p53 by promoting its degradation. p73, a p53 homologue, is similar to p53 in structure and function but yet not degraded by HPV E6 gene product. In this study, we have developed a replication-deficient recombinant adenovirus, which expresses p73beta (Ad-p73). Infection of human cancer cells with Ad-p73 results in several fold increase of p73beta levels as well as its known target genes like p21(WAF1/CIP1). Ad-p73-infected cells showed reduced cellular DNA synthesis, arrest in G1 phase of cell cycle and induction of apoptosis. Ad-p73 inhibited the growth of cancer cells of different types. More importantly, Ad-p73 inhibited the growth of cell lines carrying HPV E6 gene, which was introduced by stable integration, more efficiently in comparison to an Ad-p53. Furthermore, Ad-p73 also inhibited the growth of HeLa cells, a cell line derived from cervical cancer, very efficiently. The ability of Ad-p73 to inhibit the growth of HPV E6-expressing cells and HeLa cells correlated with the stable expression of functional p73 in the presence of E6. These results suggest that Ad-p73 could be used as a potential gene therapy agent against cervical cancer.  相似文献   

2.
EBV-associated nasopharyngeal cancer (NPC) occurs with high frequency in China and is a major cause of morbidity and mortality. To explore the potential use of adenovirus-mediated tumor suppressor p53 gene therapy In NPC, we first examined the in vitro effects of p53 introduced into the NPC cell lines RPMI 2650, Fadu and Detroit 562. p21(WAF1/CIP1) induction by chemotherapy was used as a functional assay which revealed that RPMI 2650 expresses wild-type p53 whereas Fadu and Detroit 562 encode mutant p53. Infection with p53-expressing adenovirus (Ad-p53) induced apoptosis and inhibited cell growth in all three NPC cell lines, regardless of the endogenous p53 status. Adenovirus infectivity was greatest in RPMI 2650 cells, with 100% of the cells expressing beta-galactosidase following Ad-LacZ infection using an MOI of 100, as compared to 20-30% infectivity with the other NPC lines. Using RPMI 2650 cells injected into nude mice, we developed an animal model for nasopharyngeal cancer. Established tumors (0.6-0.8 cm) were injected with 5x10(9) PFU Ad-LacZ, Ad-p53 or PBS in a 100 mu l volume. We found evidence for in vivo expression of beta-galactosidase or p53 and p21 up to two weeks following Ad-LacZ or Ad-p53 virus injection respectively. Objective regression of tumor size was observed at two weeks in 4/6 Ad-p53-treated tumors, but not in Ad-LacZ or PBS-treated tumors. The results provide an animal model for human nasopharyngeal cancer, and indicate a potential use of p53 in its therapy in vivo.  相似文献   

3.
It has been reported that overexpression of wild-type p53 protein induces suppression of tumor cell growth in vivo and in vitro. In this study, we further evaluated the differential effects of p53 delivered in an adenovirus vector on the cell growth, apoptosis and cell cycle progression in cervical cancer cell lines. We constructed a recombinant adenovirus expressing p53 and then delivered this into cervical carcinoma cell lines (CaSki, SiHa, and HeLa, HeLaS3) along with adenovirus expressing beta-galactosidase as a negative control. Adenovirus-delivered p53 overexpression resulted in a more significant suppression of cell growth in HPV 18-infected cells (HeLa and HeLaS3) and a lesser suppression in HPV 16-infected cells (CaSki and SiHa). However, no suppression was observed in cells infected with a negative control virus. p53 overexpression also induced apoptosis and cell cycle arrest, as determined by annexin V and propidium iodide staining. In particular, the cell cycle was arrested in the G(2)/M phase in CaSki cells. In contrast, cell cycles were arrested in the G(1) phase in HeLa cells, suggesting that the arrest phase is dependent upon the cervical cancer cell line. Taken together, these data support the idea that overexpressed p53 protein plays a differential role in suppressing cervical cancer cell growth through apoptosis and cell cycle arrest in either G(1) or G(2)/M phase, depending on the cancer cell line.  相似文献   

4.
Objective: To investigate the effects of 5-Aza-2’-deoxycytidine (5-Aza-Cdr) and trichostatin A (TSA) combined with p53-expressing adenovirus (Ad-p53) on Hep-2 cell line in vivo and in vitro, in order to explore its possibility in biological treatment of laryngocarcinoma. Methods: Effects of 5-Aza-Cdr and TSA in combination with Ad-p53 on Hep-2 cell line in vivo were determined by Cell Counting Kit-8 (CCK-8) assay. The effect of drug combination was calculated by Jin’s formula. Effects on the cell line in vitro were investigated by establishing the nude mice model. Results: 5-Aza-Cdr and TSA showed inhibitory effects on the proliferation of Hep-2 cells in dose- and time-dependent manner. Ad-p53 can inhibit the growth of Hep-2 cells in vivo and in vitro. However, the combination of epigenetic reagents (5-Aza-Cdr/TSA) and Ad-p53 was less effective than individual use of Ad-p53. 5-Aza-Cdr and Ad-p53 inhibited the growth of transplanted tumors and reduced the volume of tumors, and the tumor volume of Ad-p53 group was significantly smaller than that of the control group (P<0.05). Conclusion: Both epigenetic reagents (5-Aza-Cdr/TSA) and Ad-p53 can suppress cell proliferation on Hep-2 in vivo and in vitro and there may be some antagonistic mechanism between Ad-p53 and epigenetic reagents (5-Aza-Cdr/ TSA).  相似文献   

5.
It has been reported that overexpression of wild-type p53 protein induces suppression of tumor cell growth in vivo and in vitro. In this study, we further evaluated the differential effects of p53 delivered in an adenovirus vector on the cell growth, apoptosis and cell cycle progression in cervical cancer cell lines. We constructed a recombinant adenovirus expressing p53 and then delivered this into cervical carcinoma cell lines (CaSki, SiHa, and HeLa, HeLaS3) along with adenovirus expressing β-galactosidase as a negative control. Adenovirus-delivered p53 overexpression resulted in a more significant suppression of cell growth in HPV 18-infected cells (HeLa and HeLaS3) and a lesser suppression in HPV 16-infected cells (CaSki and SiHa). However, no suppression was observed in cells infected with a negative control virus. p53 overexpression also induced apoptosis and cell cycle arrest, as determined by annexin V and propidium iodide staining. In particular, the cell cycle was arrested in the G2/M phase in CaSki cells. In contrast, cell cycles were arrested in the G1 phase in HeLa cells, suggesting that the arrest phase is dependent upon the cervical cancer cell line. Taken together, these data support the idea that overexpressed p53 protein plays a differential role in suppressing cervical cancer cell growth through apoptosis and cell cycle arrest in either G1 or G2/M phase, depending on the cancer cell line.  相似文献   

6.
HPV16 E6小干扰RNA对人宫颈癌裸鼠移植瘤的抑制作用   总被引:2,自引:0,他引:2  
Guan LL  Peng ZL  Niu XY 《中华肿瘤杂志》2007,29(12):894-897
目的探讨HPV16 E6小干扰RNA(siRNA)对人宫颈癌移植瘤的抑制作用。方法建立人宫颈癌CaSki细胞裸鼠皮下接种模型,将HPV16 E6 siRNA注入瘤体内(实验组),同时设对照组,动态观察并测定肿瘤的生长。采用原位末端标记(TUNEL)法检测肿瘤细胞凋亡情况;免疫组化法测定E6、p53蛋白的表达;检测血清丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)含量;光镜观察肝肾脏结构的改变。结果HPV16 E6 siRNA处理后,肿瘤生长明显受到抑制,实验组肿瘤体积[(0.21±0.06)cm3]及瘤重[(0.13±0.04)g]均明显降低,与对照组差异有统计学意义(P<0.05);实验组肿瘤细胞凋亡[(29.8±1.4)%]明显增加,E6和p53蛋白表达均下调;实验组和对照组血清ALT、AST含量无明显差异,实验组肝肾脏结构无明显异常。结论HPV16 E6 siRNA能够抑制宫颈癌移植瘤生长,且对肝脏无毒副作用,可为官颈癌的治疗提供一个新的特异性基因治疗方法。  相似文献   

7.
榄香烯对HeLa细胞端粒酶催化亚单位基因表达的作用   总被引:13,自引:0,他引:13  
目的:探讨HeLa细胞凋亡过程中,人乳头瘤病毒18型E6(HPV18-E6)基因、p53基因、端粒酶催化亚单位(hTERT)基因表达的变化,为临床诊断、治疗宫颈癌提供新思路,方法:用流式细胞仪、电镜证实细胞凋亡;用PCR和RT-PCR方法研究HPV18-E6基因、p53基因、hTERT基因表达在细胞凋亡过程中的变化及相互关系。结果:在榄香烯作用下,HPV18-E6基因、p53基因表达没有变化,但hTERT基因表达受到抑制。结论:榄香烯诱导HeLa细胞凋亡过程中的变化及相互关系。结果:在榄香烯作用下,HPV18-E6基因、p53基因表达没有变化,但hTERT基因表达受到抑制。结论:榄香烯诱导HeLa细胞凋亡过程中,hTERT基因表达受到明显抑制,对于耐药性肿瘤,端粒酶活的抑制可能代表一种新的化疗策略。  相似文献   

8.
Recent clinical trials comparing concurrent chemotherapy and radiation with radiation alone in cervical cancer have shown that chemoradiation reduces the risk of death by 30-50%. Despite the clinical success, treatment responses at the cellular level are still inadequately explored. A key event in cervical carcinogenesis is the disruption of p53 tumor suppressor pathway by human papillomavirus (HPV) E6 oncogene. We found that regardless of the HPV type in SiHa (HPV 16+) CaSki (HPV 16+), HeLa (HPV 18+), and UT-DEC-1 (HPV 33+) cell lines, cisplatin, carboplatin, and a novel platinum compound, oxaliplatin, activated a p53 reporter and reduced the HPV E6 mRNA. Carboplatin and oxaliplatin treatment led also to stabilization of p53, whereas none of the platinums changed p73 levels. After irradiation (IR) alone, a decrease in HPV E6 mRNA levels and an activation of the p53-reporter were detected in SiHa, CaSki, and HeLa cells, but not in UT-DEC-1 cells. Concomitant platinum treatment and IR led to poly(ADP-ribose) polymerase cleavage as a sign of caspase-3 activation and apoptosis. Clonogenic survival was enhanced by expressing a dominant negative p53 or ectopic HPV16 E6 in SiHa and HeLa cells treated with IR, carboplatin, or oxaliplatin or with a combination of IR + carboplatin or oxaliplatin. In contrast, dominant negative p53 or ectopic HPV 16 E6 sensitized the cells to cisplatin. Pt chemotherapeutics and radiation had a synergistic cytotoxic effect as determined by Bliss independence criterion. Taken together, p53 has a significant role in the cellular response to chemoradiation treatment in cervical cancer cell lines, but p53 activity may have a dramatically different effect on cell survival depending on the platinum carrier ligand.  相似文献   

9.
The p53 gene is inactivated by the human papillomavirus (HPV) E6 protein in the majority of cervical cancers. Treatment of HeLa S3 cells with siRNA for HPV E6 permitted adenovirus-mediated transduction of a p53 gene linked to an upstream estrogen response element (ERE). Our previous study in non-siRNA treated HHUA cells, which are derived from an endometrial cancer and express estrogen receptor β, showed enhancing effects of an upstream ERE on adenovirus-mediated p53 gene transduction. In HeLa S3 cells treated with siRNA for HPV E6, adenovirus-mediated transduction was enhanced by an upstream ERE linked to a p53 gene carrying a proline variant at codon 72, but not for a p53 gene with arginine variant at codon 72. Expression levels of p53 mRNA and Coxsackie/adenovirus receptor (CAR) mRNA after adenovirus-mediated transfer of an ERE-linked p53 gene (proline variant at codon 72) were higher compared with those after non ERE-linked p53 gene transfer in siRNA-treated HeLa S3 cells. Western blot analysis showed lower β-tubulin levels and comparatively higher p53/β-tubulin or CAR /β-tubulin ratios in siRNA-treated HeLa S3 cells after adenovirus-mediated ERE-linked p53 gene (proline variant at codon 72) transfer compared with those in non siRNA-treated cells. Apoptosis, as measured by annexin V binding, was higher after adenovirus-mediated ERE linked p53 gene (proline variant at codon 72) transfer compared with that after non-ERE-linked p53 gene transfer in siRNA-treated cells.  相似文献   

10.
p63 and p73, the p53 family proteins, are similar to p53 in many aspects: structural homology, transactivation of p53-downstream genes, and induction of apoptosis. Interestingly, they also differ from p53; in particular, they are not inhibited by viral oncoproteins such as HPV E6. This feature would be an advantage over p53 in HPV-associated cancers and therefore, we evaluated the therapeutic potentials of various p53 family proteins (p73alpha, p73beta, p63alpha and p63gamma) against HPV-infected cervical cancers. In clonogenic assay, exogenous expression of p73alpha, p73beta and p63gamma inhibited the colony formation of HPV-positive cervical cancer cells under G418- selection while p53 could not. Recombinant adenoviruses Ad/CMVp73alpha, Ad/CMVp73beta and Ad/CMVp63gamma induced potent apoptosis in all infected cervical cancers (CasKi, SiHa, HeLa, C33A, SNU682, SNU17, SNU1005, SNU703), irrespective of their HPV-infection status. Unfortunately however, Ad/CMVp73alpha, Ad/CMVp73beta, and Ad/CMVp63gamma inhibited also normal cells such as endothelial cells, fibroblasts, and keratinocytes thus, tumorspecific promoter was indispensable to the p53 family proteins-based therapy. Here we report a stringent tumor killing by p73beta in combination with ESM6, a synthetic promoter targeting the DNA tumor virusassociated cancers. Recombinant adenoviruses encoding p73beta by ESM6 (Ad/ESM6p73beta and Ad/ESM6p73bENH) expressed p73beta and induced apoptosis only in the cancer cells but not in normal cells. Collectively, we suggest that the p53 family proteins are potent therapeutic agents for HPV-associated uterine cervical cancers and ESM6 mediated expression of the p53 family proteins would be a safe and strong tumor targeting strategy.  相似文献   

11.
12.
Cervical cancer, which commonly contains a wild-type p53 gene, is highly correlated with human papilloma virus (HPV) infection. Because the oncoprotein E6, derived from HPV, inhibits the function of p53 protein, the inhibition of apoptosis via the p53 pathway by HPV may be related to cisplatin (CDDP)-sensitivity in cervical cancer. We conducted the present study to determine whether and how HPV is related to CDDP-sensitivity in HPV-positive cervical cancer cells. We used cervical carcinoma cell lines HeLa with integrated HPV 18 and SiHa with integrated HPV 16. An HPV-negative cell line, Yumoto, with wild-type p53 gene was used as a control. Leptomycin B (LMB) enhanced sensitivity to CDDP and CDDP-induced apoptosis in HeLa and SiHa cells, but not in Yumoto cells. After exposure to LMB or CDDP alone, we observed weak p53 staining in HeLa, SiHa and Yumoto cells. Nuclear p53 staining was significantly increased by combined treatment with CDDP and LMB in HeLa and SiHa cells, but not in Yumoto cells. The expression of p53 and Bax protein increased with exposure to CDDP and was enhanced by LMB in HeLa and SiHa cells. The present study demonstrated that LMB enhanced CDDP-sensitivity via nuclear accumulation of p53 protein in HPV-positive cells.  相似文献   

13.
We investigated the effect of HMGB2 on the stability of p53 protein in HeLa cells. Overexpression of HMGB2 led to accumulation of the p53 protein, whereas HMGB2 knockdown with siRNA resulted in a substantial decrease in the p53 protein level. The HMGB2-dependent increase of p53 stability was specific for HPV-positive HeLa cells as HCT116 and MCF7 cell lines did not demonstrate this response. Co-expression of HMGB2 and HPV E6 prevented HPV E6 protein-mediated ubiquitination and degradation of p53. FACS analysis exhibited that HeLa cells transfected with HMGB2 displayed decreased cell proliferation, with a concomitant increase of the p53 protein and arrest of the cell cycle, predominantly in G1 phase. Our findings collectively suggest that HMGB2 could stabilize p53 by interfering with E6/E6AP-mediated p53 degradation in HPV-positive HeLa cells.  相似文献   

14.
Binding of p53 to miR-34a promoter activates the expression of tumor-suppressive miR-34a. Oncogenic human papillomavirus (HPV) infection downregulates miR-34a expression through viral E6 degradation of p53. In our report, we found that miR-34a specifically targets p18Ink4c, a CDK4 and CDK6 inhibitor induced by E2F transactivation. HPV18(+) HeLa cells with ectopic miR-34a expression or by E6 siRNA knockdown-induced expression of endogenous miR-34a exhibited a substantial reduction of p18Ink4c in a dose-dependent manner, but had no effect on p16Ink4a, another member of CDK4/6 inhibitor family. In contrast, de novo infection by oncogenic HPVs of human keratinocyte-derived raft tissues increased p18Ink4c expression. Suppression of endogenous miR-34a in cell lines with a miR-34a inhibitor also increased p18Ink4c. We found that miR-34a suppresses the expression of p18Ink4c by binding to a specific seed match in the 5' UTR of p18Ink4c. Further investigation found remarkable increase of p18Ink4c in cervical precancer lesions and cervical cancer. Immunohistochemical staining of cervical tissue arrays showed increased expression of p18Ink4c in 68% of cervical cancer, 8.3% of chronic cervical inflammation and 4.8% of normal cervix. Although p18Ink4c inhibits cell proliferation in general and regulates E2F1 expression in HCT116 cells, it appears not to function as a tumor suppressor in cervical cancer cells lacking an intact G1 checkpoint because of viral E7 degradation of pRB. In summary, our study demonstrates an intimate connection among oncogenic HPV E6, p53, miR-34a and p18Ink4c and identifies p18Ink4c as a possible biomarker for cervical cancer.  相似文献   

15.
16.
We have previously shown that the HDAC inhibitors (HDACI) activate the p53 molecule through acetylation of 320 and 373 lysine residues, upregulate PIG3 and NOXA and induce apoptosis in cancer cells expressing wild and pseudo-wild type p53 genes (Terui T, et al. Cancer Res 2003; 63:8948-54). It has also been reported that expression of the Coxsackie adenovirus receptor and subsequent transfection efficiency of the adenovirus in cancer cells were enhanced by HDACI treatment. In this study, we extended these observations to explore the combination effect of adenoviral vector carrying wild type p53 (Ad-p53) gene therapy with a HDACI, sodium butyrate (SB), on xenografted human gastric cancer cells (KATO-III) and hepatocellular carcinoma cells (HuH7) in nude mice. We first confirmed an increased expression of Coxsackie adenovirus receptors with an associated increment of transgene (X-gal) expression by SB treatment in KATO-III cells. We then injected Ad-p53 into subcutaneous tumors of KATO-III and HuH7 combined with intraperitoneal administration of SB and found a significantly higher growth suppressive effect than single treatments of each. Even a complete regression of tumors was observed in three of five mice treated with this combination while with single treatment no tumor regression was observed. Tumors treated with the combination showed higher numbers of TUNEL positive cells than those treated with a single modality. Moreover, necrotic changes were more evident in tumors treated with the combination than separately, a compatible finding to the observation that vascularity revealed by CD34 staining was poorer in tumors treated with the combination than those treated with p53 gene or SB alone. This was further supported by the finding that BAI-1 (brain specific angiogenesis inhibitor-1), an inhibitor of vascularization, was induced by SB treatment in KATO-III and HuH7 cells transfected with Ad-p53. Thus SB was shown to be an efficient potentiator of p53 gene therapy for cancer.  相似文献   

17.
In this study, we investigated the suppressive effect of a short hairpin RNA delivered by a lentiviral vector (LV-shRNA) against human papillomavirus (HPV) type 18 E6 on the expression of the oncogenes E6 and E7 in cervical cancer HeLa cells both in vitro and in vivo. The LV-shRNA effectively delivered the shRNA to HeLa cells and lead to a dose-dependent reduction of E7 protein and the stabilization of E6 target proteins, p53 and p21. Low-dose infection of HeLa cells with LV-shRNA caused reduced cell growth and the induction of senescence, whereas a high-dose infection resulted in specific cell death via apoptosis. Transplant of HeLa cells infected with a low dose of LV-shRNA into Rag-/- mice significantly reduced the tumor weight, whereas transplant of cells infected with a high dose resulted in a complete loss of tumor growth. Systemic delivery of LV-shRNA into mice with established HeLa cell lung metastases led to a significant reduction in the number of tumor nodules. Our data collectively suggest that lentiviral delivery is an effective way to achieve stable suppression of E6/E7 oncogene expression and induce inhibition of tumor growth both in vitro and in vivo. These results encourage further investigation of this form of RNA interference as a promising treatment for cervical cancer.  相似文献   

18.
19.
Munagala R  Kausar H  Munjal C  Gupta RC 《Carcinogenesis》2011,32(11):1697-1705
Cervical cancer is caused by human papilloma virus (HPV) expressing E6 and E7 oncoproteins, which are known to inactivate tumor suppressor proteins p53 and pRb, respectively. Repression of HPV oncoproteins would therefore result in reactivation of tumor suppressor pathways and cause apoptosis in cancer cells. Withaferin A (WA), the active component of the medicinal plant Withania Somnifera, has exhibited inhibitory effects against several different cancers. We examined the activity of WA on human cervical cancer cells in vitro and in vivo. WA potently inhibited proliferation of the cervical cancer cells, CaSki (IC(50) 0.45 ± 0.05 μM). Mechanistically, WA was found to (i) downregulate expression of HPV E6 and E7 oncoproteins, (ii) induce accumulation of p53, (iii) increase levels of p21(cip1/waf1) and its interaction with proliferating cell nuclear antigen (PCNA), (iv) cause G(2)/M cell cycle arrest, associated with modulation of cyclin B1, p34(cdc2) and PCNA levels, (v) decrease the levels of STAT3 and its phosphorylation at Tyr(705) and Ser(727) and (vi) alter expression levels of p53-mediated apoptotic markers-Bcl2, Bax, caspase-3 and cleaved PARP. In vivo, WA resulted in reduction of nearly 70% of the tumor volume in athymic nude mice with essentially similar trend in the modulation of molecular markers as in vitro. This is the first demonstration indicating that WA significantly downregulates expression of HPV E6/E7 oncogenes and restores the p53 pathway, resulting in apoptosis of cervical cancer cells. Together, our data suggest that WA can be exploited as a potent therapeutic agent for the treatment and prevention of cervical cancer without deleterious effects.  相似文献   

20.
Tumor suppressor p53-based gene therapy strategy is ineffective in certain conditions. p73, a p53 homologue, could be a potential alternative gene therapy agent as it has been found to be an important determinant of chemosensitivity in cancer cells. Previously, we have reported the generation of a replication-deficient adenovirus expressing p73 beta (Ad-p73). In this study, we evaluated the therapeutic potential of Ad-p73 against a panel of cancer cells (n=12) of different tissue origin. Ad-p73 infected all the cell lines tested very efficiently resulting in several-fold increase in p73 beta levels, which is also functional as it activated the known target gene p21(WAF1/CIP1). Infection with Ad-p73 resulted in potent cytotoxicity in all the cell lines tested. The mechanism of p73-induced cytotoxicity in these cell lines is found to be due to a combination of cell cycle arrest and induction of apoptosis. In addition, exogenous overexpression of p73 by Ad-p73 infection increased the chemosensitivity of cancer cells by many fold to commonly used drug adriamycin. Moreover, Ad-p73 is more efficient than Ad-p53 in enhancing the chemosensitivity of mutant p53 harboring cells. Furthermore, Ad-p73 infection did not induce apoptosis in human normal lung fibroblasts (HEL 299) and human immortalized keratinocytes (HaCaT). These results suggest that Ad-p73 is a potent cytotoxic agent specifically against cancer cells and could be developed as a cancer gene therapy agent either alone or in combination with chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号