首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A long-term increase in the amplitude and quantum composition of potentials from the end-plate was observed in isolated rat diaphragm with inhibited acetylcholinesterase during washing from acetylcholine. The amplitude and temporal parameters of the miniature potentials did not change, while their frequency decreased in the presence of acetylcholine and continuel to fall during 1–2 h of washing. The addition of ouabain restored the frequency of these potentials; in the presence of ouabain acetylcholine had no effect on this parameter. Hyperpolarization of the extrasynpatic area of muscle fibers (2–3 mV) caused by acetylcholine is preserved during washing. Hyperpolarization was also observed against the background of tolbutamide but not in the presence of oubain and heparin. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 123, No. 5, pp. 531–534, May, 1997  相似文献   

4.
Large conductance voltage and calcium-activated K(+) channels play critical roles in neuronal excitability and vascular tone. Previously, we showed that coexpression of the transmembrane beta2 subunit, KCNMB2, with the human pore-forming alpha subunit of the large conductance voltage and Ca(2+)-activated K(+) channel (hSlo) yields inactivating currents similar to those observed in hippocampal neurons [Hicks GA, Marrion NV (1998) Ca(2+)-dependent inactivation of large conductance Ca(2+)-activated K(+) (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol (Lond) 508 (Pt 3):721-734; Wallner M, Meera P, Toro L (1999b) Molecular basis of fast inactivation in voltage and Ca(2+)-activated K(+) channels: A transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137-4142]. Herein, we report that coexpression of beta2 subunit with hSlo can also modulate hSlo surface expression levels in HEK293T cells. We found that, when expressed alone, beta2 subunit appears to reach the plasma membrane but also displays a distinct intracellular punctuated pattern that resembles endosomal compartments. beta2 Subunit coexpression with hSlo causes two biological effects: i) a shift of hSlo's intracellular expression pattern from a relatively diffuse to a distinct punctated cytoplasmic distribution overlapping beta2 expression; and ii) a decrease of hSlo surface expression that surpassed an observed small decrease in total hSlo expression levels. beta2 Site-directed mutagenesis studies revealed two putative endocytic signals at the C-terminus of beta2 that can control expression levels of hSlo. In contrast, a beta2 N-terminal consensus endocytic signal had no effect on hSlo expression levels. Thus, beta2 subunit not only can influence hSlo currents but also has the ability to limit hSlo surface expression levels via an endocytic mechanism. This new mode of beta2 modulation of hSlo may depend on particular coregulatory mechanisms in different cell types.  相似文献   

5.
Background and aim: In skeletal muscles, electrical shocks may elicit acute loss of force, possibly related to increased plasma membrane permeability, induced by electroporation (EP). We explore the role of the Na+,K+ pumps in force recovery after EP. Methods: Isolated rat soleus or extensor digitorum longus (EDL) muscles were exposed to EP paradigms in the range 100–800 V cm?1, and changes in tetanic force, Na+,K+ contents, membrane potential, 14C‐sucrose space and the release of the intracellular enzyme lactic acid dehydrogenase (LDH) were characterized. The effects of Na+,K+ pump stimulation or inhibition were followed. Results: Electroporation caused voltage‐dependent loss of force, followed by varying rates and degrees of recovery. EP induced a reversible loss of K+ and gain of Na+, which was not suppressed by tetrodotoxin, but associated with increased 14C‐sucrose space and release of LDH. In soleus, EP at 500 V cm?1 induced complete loss of force, followed by a spontaneous, partial recovery. Stimulation of active Na+,K+ transport by adrenaline, the β2‐agonist salbutamol, calcitonin gene‐related peptide (CGRP) and dibutyryl cyclic AMP increased initial rate of force recovery by 183–433% and steady‐state force level by 104–143%. These effects were blocked by ouabain (10?3 m ), which also completely suppressed spontaneous force recovery. EP caused rapid and marked depolarization, followed by a repolarization, which was accelerated by salbutamol. Also in EDL, EP caused complete loss of force, followed by a spontaneous partial recovery, which was markedly stimulated by salbutamol. Conclusion: Electroporation induces reversible depolarization, partial rundown of Na+,K+ gradients, cell membrane leakage and loss of force. This may explain the paralysis elicited by electrical shocks. Na+,K+ pump stimulation promotes restoration of contractility, possibly via its electrogenic action. The major new information is that the Na+,K+ pumps are sufficient to compensate a simple mechanical leakage. This may be important for force recovery in leaky muscle fibres.  相似文献   

6.
Attempts have been made to apply the patch-clamp technique to enzymatically dispersed smooth muscle cells of frog and toad stomach. The rate of successful gigaseal formation has been extremely low, but better results can be obtained when patches are taken from membrane evaginations which develop on single cells after mechanical agitation and incubation in Ca2+-containing solutions at 25° C. Also ball-shaped single cells formed by the confluence of membrane evaginations were found to be equally useful for patch-clamp studies. Giga-seal formation was obtained in more than 80% of all attempts. Electron micrographs indicate that the myofilaments in membrane evaginations an in ball-shaped cells are separated from the cell membrane. Channel activity in membrane patches of such myoballs or evaginations is similar to the channel activity as found in intact cells. Two types of K+ channels (100 and 200 pS) have been observed that can be blocked by tetraethylammonium. Channels with the conductance of 200 pS are activated by intracellular Ca2+. The formation of evaginations has also been observed in other cells and may help to apply the patch-clamp technique to cells contaminated with surface coats.  相似文献   

7.
The properties of the Ca2+-activated K+ channel in unfertilized hamster oocytes were investigated at the single-channel level using inside-out excised membrane patches. The results indicate a new type of Ca2+-activated K+ channel which has the following characteristics: (1) single-channel conductance of 40–85 pS for outward currents in symmetrical K+ (150 mM) solutions, (2) inward currents of smaller conductance (10–50 pS) than outward currents, i.e. the channel is outwardly rectified in symmetrical K+ solutions, (3) channel activity dependent on the internal concentration of free Ca+ and the membrane potential, (4) modification of the channel activity by internal adenosine 5 diphosphate (0.1 mM) producing a high open probability regardless of membrane potential.  相似文献   

8.
The Drosophila Hyperkinetic (Hk) gene encodes a beta subunit of Shaker (Sh) K+ channels and shows high sequence homology to aldoketoreductase. Hk mutations are known to modify the voltage dependence and kinetics of Sh currents, which are also influenced by the oxidative state of the N-terminus region of the Sh channel, as demonstrated in heterologous expression experiments in frog oocytes. However, an in vivo role of Hk in cellular reduction/oxidation (redox) has not been demonstrated. By using a fluorescent indicator of reactive oxygen species (ROS), dihydrorhodamine-123 (DHR), we show that the presynaptic nerve terminal of larval motor axons is metabolically active, with more rapid accumulation of ROS in comparison with muscle cells. In Hk terminals, DHR fluorescence was greatly enhanced, indicating increased ROS levels. This observation implicates a role of the Hk beta subunit in redox regulation in presynaptic terminals. This phenomenon was paralleled by the expected effects of the mutations affecting glutathione S-transferase S1 as well as applying H2O2 to wild-type synaptic terminals. Thus, our results also establish DHR as a useful tool for detecting ROS levels in the Drosophila neuromuscular junction.  相似文献   

9.
The voltage-dependence of the inhibitory effect of mucosal Cs+ on the inward K+ current through the apical membrane of frog skin (Rana temporaria) was studied by recording transepithelial current-voltage relations. Experiments were performed with skins exposed to NaCl and KCl Ringer solutions on the serosal and mucosal side respectively (contron skins), as well as with tissues incubated with K2SO4 Ringer solutions on both sides (depolarized skins). Studies of the dose-depedence of the Cs+ block showed that under both experimental conditions the apparent affinity of Cs+ increased as the transepithelial potential was clamped at higher mucosal positive voltages. Under control conditions, the concentration of Cs+ required to block 50% of the K+ current (KCs) recorded while the transepithelial voltage was clamped at zero mV was 16 mmol/1. KCs decreased exponentially with muscosal positive voltages. The dependence of KCs on the membrane potential was analyzed with Eyring rate theory in which Cs+ was assumed to block the K+ transport by binding to a site within the channel. The analysis showed that this site is located at a relative electrical distance =0.32 of the voltage drop across the apical membrane, measured from the cytosolic side. The Hill coefficient obtained from this analysis wasn=3.1. Experiments with K+-depolarized tissues showed that only inward K+ currents recorded with positive transepithelial voltages were depressed by external Cs+. Also under these conditions KCs showed an exponential dependence on the transepithelial potential. The analysis of these data with the rate theory revealed =0.09 andn=1.7. The difference in found in control and depolarized tissues can be explained by the influence of the basolateral membrane resistance on theI–V relations.  相似文献   

10.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

11.
Evidence, based on voltage-clamp and current-clamp recording, is presented for endogenous receptors for vasoactive intestinal polypeptide (VIP) on the cell membrane of the Xenopus oocyte. At normal resting potential a hyperpolarisation is produced by VIP, associated with an increase in K+ conductance. The response is dose-dependent, with a threshold near 10(-9)M VIP. The effect is potentiated by forskolin. Of several other types of neuropeptide tested, only avian pancreatic polypeptide gives a response: this is similar to that of VIP, but this peptide can also potentiate the response to VIP.  相似文献   

12.
The patch-clamp technique and fluorescence polarization analysis were used to study the dependence of Ca2+-dependent K+ channel kinetics and membrane fluidity on cholesterol (CHS) levels in the plasma membranes of cultured smooth muscle rabbit aortic cells. Mevinolin (MEV), a potent inhibitor of endogenous CHS biosynthesis was used to deplete the CHS content. Elevation of CHS concentration in the membrane was achieved using a CHS-enriching medium. Treatment of smooth muscle cells with MEV led to a nearly twofold increase in the rotational diffusion coefficient of DPH (D) and to about a ninefold elevation of probability of the channels being open (P o). The addition of CHS to the cells membrane resulted in a nearly twofold decrease in D and about a twofold decrease in P o. Elementary conductance of the channels did not change under these conditions. These data suggest that variations of the CHS content in the plasma membrane of smooth muscle cells affect the kinetic properties of Ca2+-dependent K+ channels presumably due to changes in plasma membrane fluidity. Our results give a possible explanation for the reported variability of Ca2+-dependent K+ channels kinetics in different preparations.  相似文献   

13.
The effect of intracellular protons (Hi +) on the inward rectifier K+ channel of the guinea-pig ventricular cell membrane was examined, using the patch-clamp technique. The inward single-channel current was recorded in inside-out and outside-out patch configurations, while the pH of the solution perfusing the intra and extracellular side, respectively, was varied. Low intracellular pH (pHi), but not low extracellular pH, inhibited the channel. Low pHi reduced the unit amplitude, which was about 20% smaller at pHi 6.0 than that at pHi 7.4 at every voltage tested. The slope conductance decreased from 41.7 pS at pHi 7.4 to 35.1 pS at pHi 6.0. Low pHi also reduced the channel activity without apparent voltage dependence. The concentration/response curve indicated the half-maximum inhibition at pHi 6.11 and a Hill coefficient of 2.52. Lowering the pHi from 7.4 to 6.0 did not affect the distributions of the open times and the closed times below 50 ms, while the time constant of the histogram constructed from closings longer than 50 ms was approximately doubled. These results indicate that the inward rectifier K+ channel in ventricular myocytes is inhibited by H+ from the intracellular side. This might contribute to the depolarization of the resting membrane potential induced by intracellular acidosis during myocardial ischaemia.  相似文献   

14.
The presence of Ca2+- and voltage-activated K+ channels was directly demonstrated in the apical cell membrane of gallbladder epithelium by patch-clamp single-channel current recording. In K+-depolarized epithelial cells, negative pipette potentials induced outward current steps when the patch-pipette was filled with Na+-rich solution and these current steps were not affected by the presence or absence of Cl. When K+-rich solution was in the pipette and K+-depolarized cells were examined, the current-voltage relations were linear with a single-channel conductance of 140 pS and polarity was reversed at 0 mV. In excised inside-out membrane patches, raising the free Ca2+ concentration of the medium facing the inner side of the membrane from 10–7 to 10–6 M evoked a marked increase in open state probability of the channels without affecting the elementary current steps. This suggests that intracellular Ca2+ as a second messenger plays a crucial role in the regulatory mechanism of the membrane potential by modulating the high-conductance apical K+ channels.  相似文献   

15.
16.
Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicular soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE) that has been implicated in neurite outgrowth. It has previously been reported that TI-VAMP is localised in the somatodendritic compartment of neurons indicating a role in membrane fusion events within dendrites. Using a newly produced monoclonal antibody to TI-VAMP that improves signal/noise immunodetection, we report that TI-VAMP is also present in subsets of axon terminals of the adult rat brain. Four distinctive populations of labelled axon terminals were identified: 1) the hippocampal mossy fibres of the dentate gyrus and of CA3, 2) the striatal peridendritic terminal plexuses in the globus pallidus (GP), substantia nigra pars reticulata (SNr), 3) peridendritic plexuses in the central nucleus of the amygdala, and 4) the primary sensory afferents in the dorsal horn of the spinal cord. The presynaptic localisation of TI-VAMP in these locations was demonstrated by co-localisation with synaptophysin. Ultrastructural studies showed TI-VAMP labelling over synaptic vesicles in the mossy fibres, whereas it was localised in tubulo-vesicular structures and multivesicular bodies in the pyramidal cell dendrites. The presynaptic localisation of TI-VAMP occurred by P15, so relatively late during development. In contrast, dendritic labelling was most prominent during the early post-natal period. Co-localisation with markers of neurotransmitters showed that TI-VAMP-positive terminals are GABAergic in the GP and SNr and glutamatergic in the mossy fibre system and in the dorsal root afferents. Most of these terminals are known to co-localise with neuropeptides. We found met-enkephalin-immunoreactivity in a sizeable fraction of the TI-VAMP positive terminals in the GP, amygdala, and dorsal horn, as well as in a few mossy fibre terminals. The function of TI-VAMP in subsets of mature axon terminals remains to be elucidated; it could participate in the exocytotic molecular machinery and/or be implicated in particular growth properties of the mature axon terminals. Thus, the presence of TI-VAMP in the mossy fibres may correspond to the high degree of plasticity that characterises this pathway throughout adult life.  相似文献   

17.
The major plasma membrane proteins of rabbit neutrophils were characterized by SDS-PAGE, surface iodination, 125I-concanavalin A binding, and detergent extraction. Neutrophil membranes were prepared which lacked significant intracellular contamination with good retention of protease-sensitive proteins. The major protein and predominant Con A-binding protein was as surface exposed, 140,000 D (gp 140) protein which was solubilized by nonionic detergents but not low ionic strength. Actin and myosin but not other cytosol proteins were prominently associated with the isolated membrane particularly in a Triton-insoluble form. Membranes were also prepared from surface-iodinated neutrophils previously stimulated with a chemotactic peptide or degranulated. The granule membrane enzyme alkaline phosphatase was incorporated into the plasma membrane fraction of degranulated neutrophils. However, the membrane proteins in the different membrane preparations were identical on SDS-PAGE and autoradiography. Therefore, using these techniques, no major alterations in protein composition of the plasma membrane could be detected following stimulation or degranulation of rabbit neutrophils.  相似文献   

18.
1. The complex impedances and impedance magnitude functions were obtained from neurons in in vitro slices of trigeminal root ganglia using frequency-domain analyses of intracellularly recorded voltage responses to specified oscillatory input currents. A neuronal model derived from linearized Hodgkin-Huxley-like equations was used to fit the complex impedance data. This procedure yielded estimates for membrane electrical properties. 2. Membrane resonance was observed in the impedance magnitude functions of all investigated neurons at their initial resting membrane potentials and was similar to that reported previously for trigeminal root ganglion neurons in vivo. Tetrodotoxin (10(-6) M), a Na+-channel blocker, applied in the bathing medium for 20 min produced only minor changes, if any, in the resonance, although gross impairment of Na+-spike electrogenesis was apparent in most of the neurons. Brief applications (1-5 min) of a K+-channel blocker, tetraethylammonium (TEA; 10(-2) M), increased the impedance magnitude and abolished, in a reversible manner, the resonant behavior. In all cases, the resonant frequency was decreased by TEA administration prior to total blockade of resonance. 3. The TEA-induced blockade of resonance was associated with decreases in the estimates of the membrane conductances, without significant alterations of input capacitance. A particularly large decrease was observed in Gr, the time-invariant resting conductance that includes a lumped leak conductance component. The voltage- and time-dependent conductance, GL, and associated relaxation time constant, tau u, also declined progressively during administration of TEA. 4. Systematic variations in the membrane potentials of trigeminal root ganglion neurons were produced by intracellular injections of long-lasting step currents with superposition of the oscillatory current stimuli, in order to assess the effects of TEA on the relationship of the electrical properties to the membrane potential. Applications of TEA led to a depolarizing shift in the dependence of the membrane property estimates, suggesting voltage-dependence of the effects of TEA on presumed K+ channels in the membrane. 5. These data suggest a primary involvement of K+ conductance in the genesis of membrane resonance. This electrical behavior or its ionic mechanism is a major modulator of the subthreshold electrical responsiveness of trigeminal root ganglion neurons.  相似文献   

19.
Staining of the presynaptic axonal membrane of the neuromuscular junction with horseradish peroxidase-labeled α-bungarotoxin was utilized as a marker for observing directly the fate of this membrane during the process of synaptic vesicle release and recycling. The neuromuscular junctions of frog sartorius-sciatic nerve preparations were stained with horseradish peroxidase-α-bungarotoxin and stimulated by electrical stimulation of the nerve, high concentration of external potassium ions, and black widow spider venom. Some preparations were stimulated in the presence of exogenous horseradish peroxidase tracer after incubation in the conjugate and were found to contain horseradish peroxidase within many synaptic vesicles, indicating that the conjugate did not affect the process of synaptic vesicle recycling. Stimulation was followed by depletion of synaptic vesicles and appearance of axolemmal infoldings and membranous cisternae. With rest after electrical and potassium stimulation, synaptic vesicles were reconstituted and terminals assumed a more normal appearance. Membrane staining after stimulation occurred in the axolemmal infoldings, some of the intra-axonal cisternae, and in a few coated vesicles. However, all synaptic vesicles were unreactive, in either rested or unrested terminals. Thus, axonal membrane labeled with horseradish peroxidase-α-bungarotoxin did not become incorporated into new synaptic vesicles.These observations support a mechanism of recycling of synaptic vesicles by specific retrieval of vesicle membrane or constituents from the axolemma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号