首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated alterations in nerve growth factor (NGF) and ciliary neurotrophic factor (CNTF) contents during treatment with epalrestat, an aldose reductase inhibitor (ARI), on streptozotocin (STZ)-induced diabetic neuropathy in rats. Diabetic rats showed a statistically significant reduction in H-wave-related sensory nerve conduction velocity (HSNCV) and in NGF content in sciatic nerves during the experiment of 8 weeks. No reduction in the CNTF content in sciatic nerves was seen in the diabetic rats. The epalrestat treatment, which started 4 weeks after STZ injection, resulted in a significantly greater NGF content and faster HSNCV than those in untreated diabetic rats. But no statistically significant alterations of motor nerve conduction velocity (MNCV) or CNTF content were seen during the treatment. ARI showed the stimulating effect for NGF synthesis/secretion in rat Schwann cell culturein vitro.These findings suggest that decreased levels of NGF in diabetic sciatic nerves may be involved in the pathogenesis of diabetic neuropathy in these rats and further show that epalrestat treatment can be useful for the treatment of diabetic neuropathy through NGF-induction in Schwann cells and/or inhibition of the polyol pathway.  相似文献   

2.
Oxidative stress has a key role in the pathogenesis of diabetic complications. We have previously reported that taurine (T), which is known to counteract oxidative stress in tissues (lens, kidney, retina) of diabetic rats, attenuates nerve blood flow and conduction deficits in early experimental diabetic neuropathy (EDN). The purpose of this study was to evaluate whether dietary T supplementation counteracts oxidative stress and the nerve growth factor (NGF) deficit in the diabetic peripheral nerve. The experiments were performed in control rats and streptozotocin‐diabetic rats fed standard or 1% T‐supplemented diets for 6 weeks. All measurements were performed in the sciatic nerve. Malondialdehyde (MDA) plus 4‐hydroxyalkenals (4‐HA) were quantified with N‐methyl‐2‐phenylindole. GSH, GSSG, dehydroascorbate (DHAA), and ascorbate (AA) were assayed spectrofluorometrically, T by reverse‐phase HPLC, and NGF by ELISA. MDA plus 4‐HA concentration (mean +/? SEM) was increased in diabetic rats (0.127 +/?0.006 vs 0.053 +/?0.003 mu mol/g in controls, P<0.01), and this increase was partially prevented by T (0.0960.004, P<0.01 vs untreated diabetic group). GSH levels were similarly decreased in diabetic rats treated with or without taurine vs controls. GSSG levels were similar in control and diabetic rats but were lower in diabetic rats treated with T (P<0.05 vs controls). AA levels were decreased in diabetic rats (0.133+0.015 vs 0.219 +/?0.023 mu mol/g in controls, P<0.05), and this deficit was prevented by T. DHAA/AA ratio was increased in diabetic rats vs controls (P<0.05), and this increase was prevented by T. T levels were decreased in diabetic rats (2.7 +/?0.16 vs 3.8 +/?0.1 mu mol/g in controls, P<0.05) and were repleted by T supplementation (4.20.3). NGF levels were decreased in diabetic rats (2.35 +/?0.20 vs 3.57 +/?0.20 ng/g in controls, P<0.01), and this decrease was attenuated by T treatment (3.160.28, P<0.05 vs diabetic group). In conclusion, T counteracts oxidative stress and the NGF deficit in early EDN. Antioxidant effects of T in peripheral nerve are, at least in part, mediated through the ascorbate system of antioxidative defense. The findings are consistent with the important role for oxidative stress in impaired neurotrophic support in EDN.  相似文献   

3.
Oxidative stress has a key role in the pathogenesis of diabetic complications. We have previously reported that taurine (T), which is known to counteract oxidative stress in tissues (lens, kidney, retina) of diabetic rats, attenuates nerve blood flow and conduction deficits in early experimental diabetic neuropathy (EDN). The purpose of this study was to evaluate whether dietary T supplementation counteracts oxidative stress and the nerve growth factor (NGF) deficit in the diabetic peripheral nerve. The experiments were performed in control rats and streptozotocin-diabetic rats fed standard or 1% T-supplemented diets for 6 weeks. All measurements were performed in the sciatic nerve. Malondialdehyde (MDA) plus 4-hydroxyalkenals (4-HA) were quantified with N-methyl-2-phenylindole. GSH, GSSG, dehydroascorbate (DHAA), and ascorbate (AA) were assayed spectrofluorometrically, T by reverse-phase HPLC, and NGF by ELISA. MDA plus 4-HA concentration (mean +/- SEM) was increased in diabetic rats (0.127 +/- 0.006 vs 0.053 +/- 0.003 micromol/g in controls, P < 0.01), and this increase was partially prevented by T (0.096 +/- 0.004, P < 0.01 vs untreated diabetic group). GSH levels were similarly decreased in diabetic rats treated with or without taurine vs controls. GSSG levels were similar in control and diabetic rats but were lower in diabetic rats treated with T (P < 0.05 vs controls). AA levels were decreased in diabetic rats (0.133 +/- 0.015 vs 0.219 +/- 0.023 micromol/g in controls, P < 0.05), and this deficit was prevented by T. DHAA/AA ratio was increased in diabetic rats vs controls (P < 0.05), and this increase was prevented by T. T levels were decreased in diabetic rats (2.7 +/- 0.16 vs 3.8 +/- 0.1 micromol/g in controls, P < 0.05) and were repleted by T supplementation (4.2 +/- 0.3). NGF levels were decreased in diabetic rats (2.35 +/- 0.20 vs 3.57 +/- 0.20 ng/g in controls, P < 0.01), and this decrease was attenuated by T treatment (3.16 +/- 0.28, P < 0.05 vs diabetic group). In conclusion, T counteracts oxidative stress and the NGF deficit in early EDN. Antioxidant effects of T in peripheral nerve are, at least in part, mediated through the ascorbate system of antioxidative defense. The findings are consistent with the important role for oxidative stress in impaired neurotrophic support in EDN.  相似文献   

4.
Rats with streptozotocin-induced diabetes of 4 to 6 weeks duration showed a depletion of both substance P (P < 0.01) and calcitonin gene-related peptide (P < 0.01) in the sciatic nerve. Since expression of both peptides is sensitive to nerve growth factor (NGF) in vitro we examined the effect of treatment of diabetic rats with NGF, which significantly increased the levels of both peptides in treated diabetic animals (P < 0.01 for both). Treatment of non-diabetic rats with a similar NGF regime raised the mean peptide levels to a value similar to that seen in treated diabetic rats but the change was not statistically significant. In vehicle-treated diabetic rats the depletions of sciatic nerve neuropeptides were accompanied by a significant (P < 0.05) reduction in the level of CGRP mRNA in the 4th and 5th lumbar dorsal root ganglia, this was accompanied by an analogous reduction in the mRNA for γ-preprotachykinin A (γ-PPT), which did not attain statistical significance. Treatment of diabetic rats with NGF also prevented the deficits in the levels of CGRP and γ-PPT mRNA in the lumbar dorsal root ganglia (P < 0.05). Treatment of other diabetic rats with the related neurotrophin, brain-derived neurotrophic factor (BDNF), had no effect on the levels of substance P and calcitonin gene-related peptide in the sciatic nerve.  相似文献   

5.
In this study, experimental allergic encephalomyelitis (EAE) rats and rats exhibiting EAE expressing high circulating anti-nerve growth factor antibody were daily monitored for clinical signs and chronic relapses. Eighty-five days after EAE induction, blood, spinal cord and brain stem were used for histological examination, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) evaluation. The results showed that NGF-deprived rats display more severe clinical signs of disease. These effects were associated with a significant reduction of NGF in the brain stem and spinal cord but not of BDNF, which decreased only in spinal cord. These observations provide additional support to the hypothesis of a protective NGF role in rats exhibiting EAE.  相似文献   

6.
Lee PG  Cai F  Helke CJ 《Brain research》2002,941(1-2):127-136
Diabetes-induced alterations in nerve function include reductions in the retrograde axonal transport of neurotrophins. A decreased axonal accumulation of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of streptozotocin (STZ)-induced diabetic rats was previously shown. In the current study, no changes in the NGF and NT-3 protein or mRNA levels in the stomach or atrium, two vagally innervated organs, were noted after 16 or 24 weeks of diabetes. Moreover, the amounts of neurotrophin receptor (p75, TrkA, TrkC) mRNAs in the vagus nerve and vagal afferent nodose ganglion were not reduced in diabetic rats. These data suggest that neither diminished access to target-derived neurotrophins nor the loss of relevant neurotrophin receptors accounts for the diabetes-induced alteration in the retrograde axonal transport of neurotrophins. To assess whether diabetes causes a defect in axonal transport that may not be specific to neurotrophin transport, we studied the ability of a neuronal tracer (FluoroGold, FG) to be retrogradely transported by vagal neurons of control and diabetic rats. After vagal target tissue (stomach) injections of FG, the numbers of FG-labeled afferent and efferent vagal neurons were counted in the nodose ganglion and in the dorsal motor nucleus of the vagus, respectively. After 24 weeks of diabetes, FG was retrogradely transported to more than 50% fewer afferent and efferent vagal neurons in the STZ-diabetic compared to control rats. The diabetes-induced deficit in retrograde axonal transport of FG is likely to reflect alterations in basic axonal transport mechanisms in both the afferent and efferent vagus nerve that contribute to the previously observed reductions in neurotrophin transport.  相似文献   

7.
Abnormal availability of neurotrophins, such as nerve growth factor (NGF), has been implicated in diabetic somatosensory polyneuropathy. However, the involvement of neurotrophins in diabetic neuropathy of autonomic nerves, particularly the vagus nerve which plays a critical role in visceral afferent and in autonomic motor functions, is unknown. To assess the effects of hyperglycemia on the neurotrophin content and transport in this system, cervical vagus nerves of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after the induction of diabetes. Elevations in vagus nerve hexose (glucose and fructose) and polyol levels (sorbitol), and their normalization with insulin treatment, verified that the STZ treatment resulted in hyperglycemia-induced metabolic abnormalities in the nerve. Neurotrophin (NGF and neurotrophin-3; NT-3) content and axonal transport were assessed in the cervical vagus nerves from nondiabetic control rats, STZ-induced diabetic rats, and diabetic rats treated with insulin. The NGF, but not the NT-3, content of intact vagus nerves from diabetic rats was increased at 8 and 16 weeks (but not at 24 weeks). Using a double-ligation model to assess the transport of endogenous neurotrophins, the retrograde transport of both NGF and NT-3 was found to be significantly reduced in the cervical vagus nerve at later stages of diabetes (16 and 24 weeks). Anterograde transport of NGF or NT-3 was not apparent in the vagus nerve of diabetic or control rats. These data suggest that an increase in vagus nerve NGF is an early, but transient, response to the diabetic hyperglycemia and that a subsequent reduction in neuronal access to NGF and NT-3 secondary to decreased retrograde axonal transport may play a role in diabetes-induced damage to the vagus nerve.  相似文献   

8.
This study examined the effects of 4-methylcatechol (4-MC), a nonamine catechol compound, on the neuropathic process of streptozotocin (STZ)-induced diabetic rats. 4-MC is one of the potent stimulators of nerve growth factor (NGF) synthesis at the cellular level and in cultured sciatic nerve segments of rats. Diabetic rats showed a statistically significant fall in sciatic motor nerve conduction velocity (MNCV) and a significantly reduced NGF content in the sciatic nerve (38.5 +/- 2.8% of control, P less than 0.01) during the experimental period of 4 weeks. 4-MC treatment of the diabetic rats for 4 weeks starting from the STZ injection elevated the NGF content (140% of untreated diabetic rats, P less than 0.05) and prevented the reduction in MNCV, but no effect on high blood glucose levels was seen. These findings suggest that decreased NGF levels in the sciatic nerve of the experimental diabetic rat may be involved in the development of the diabetic neuropathic process and that 4-MC, which can elevate endogenous NGF levels in vivo, may compensate for the inhibitory effect of STZ on the NGF level in progressive diabetic neuropathy.  相似文献   

9.
Nerve fiber regeneration is impaired in diabetic nerve and contributes to the relentless nerve fiber loss characterizing this disorder. Immediate early gene responses constitute the initial response to nerve injury and include upregulation of NGF and IGF-1 primarily by Schwann cells. These responses are believed to initiate macrophage recruitment necessary for initiation of axonal regeneration. We examined NGF, IGF-1 and CNTF mRNA in sciatic nerve at 10 timepoints (0.5hr to 24d) following sciatic nerve crush in diabetic BB/W-rats. The peak of the immediate upregulation of IGF-1 and NGF occurred at 0.5 and 6 hrs respectively in control nerves and was delayed to 24 hrs and 2d for IGF-1 and NGF respectively in diabetic nerve. Also the expression of NGF p75 receptor was significantly attenuated in diabetic nerve. CNTF mRNA showed an immediate downregulation following nerve crush with no significant differences between control and diabetic rats. These findings suggest that attenuations of the immediate gene responses of para- and autocrine IGF-1 and NGF in diabetic nerve may be responsible for the earlier reported defect in macrophage recruitment and delayed initiation of nerve fiber regeneration.  相似文献   

10.
To study the role that immediate early gene responses may play in impaired nerve fiber regeneration in diabetes, diabetic male BB/Wor rats were subjected to sciatic nerve crush at 6 wk of diabetes. Sciatic nerve mRNA expression of IGF-I, IGF-1-receptor, NGF, and p75 (low affinity NGF receptor), as well as protein expression of C-FOS, were examined at various time points following crush injury and compared with age- and sex-matched nondiabetic BB/Wor rats. Diabetic rats showed a delay in the early peak expression of IGF-1, C-FOS, NGF, and p75. The earliest immediate gene responses were those of IGF-I and IGF-1-receptor, which peaked at 0.5 h post-crush in control rats. In diabetic rats, IGF-1 peaked at 24 h whereas IGF-1-receptor mRNA revealed no early peak. The early NGF mRNA expression showed a maximum response at 6 h and of p75 at 4 days post-crush in control rats, whereas in diabetic rats they occurred at 2 days and 6 days, respectively. C-FOS protein expression showed a maximum at 6 h in control rats and in diabetic animals an attenuated peak was present at 2 days. These data provide the first evidence that immediate early gene responses are delayed in diabetes following sciatic nerve crush injury. The delayed IGF-1 expression may affect C-FOS induction and may be responsible for the delay in the NGF response in diabetic rats. The delayed immediate early gene responses precede the previously described perturbed macrophage recruitment and delayed Wallerian degeneration in this type I model and provide a possible explanation for impaired nerve regeneration in diabetes.  相似文献   

11.
The study investigated the role of nerve growth factor (NGF) in the regeneration of noradrenergic nerves of the right atria from control and 8-week diabetic rats, after lesion caused by a single injection of 6-hydroxydopamine (6-OHDA, 100 mg/kg ip). This treatment caused a profound depletion of tissue noradrenaline (NA) of the right atria from both control and diabetic groups, followed by a progressive repletion that was not complete at 49 days. Immunoreactivity for the NGF receptors trkA and p75(NTR) was decreased and increased, respectively, between days 3 and 28 in right atria from diabetic rats and returned to pretreatment levels at day 49. Receptor levels were not significantly altered in controls. In contrast to tissue NA, at day 14 functional responses to electrical nerve stimulation of the right atria had completely returned to the pretreatment state in diabetic rats and were very close to normal in nondiabetic rats. NGF treatment (1 mg/kg, three times/week, for 2 weeks) increased tissue NA only in control rats; the pattern was similar after 6-OHDA. These findings are consistent with the hypothesis that NGF normally plays a role in the regulation of autonomic sympathetic nerves in the adult rat atrium and that mature and uninjured sympathetic neurons remain responsive to NGF. In injured noradrenergic neurons, NGF promotes regeneration in nondiabetic rats. The ability of NGF to promote regeneration of noradrenergic nerves is lost in diabetes and this may relate to the loss of trkA receptor on prejunctional nerve terminals after denervation.  相似文献   

12.
This study examined the influence of fibronectin conduits joining two halves of a sectioned sciatic nerve, with and without preimpregnation with nerve growth factor, on regeneration in rats with streptozotocin-induced diabetes mellitus. Regeneration, measured morphometrically in fibres containing immunoreactivity to calcitonin gene-related peptide (CGRP) and GAP-43, was significantly less ( P < 0.0001 for all comparisons) in diabetic rats with fibronectin mat grafts without nerve growth factor compared to similarly treated controls. Regeneration distances in diabetic rats were reduced to 43% (CGRP-reactive fibres) and 44% (GAP-43-reactive fibres) of controls, and the total amounts of immunoreactivities in the conduits were also reduced, though by lesser amounts (55 and 61% of controls respectively). Impregnation of the conduits with nerve growth factor before implantation increased the distance and amounts of regenerating immunoreactivity in both control and diabetic rats for both CGRP and GAP-43, such that these regeneration parameters were similar in nerve growth factor-treated diabetic rats to those in control rats implanted with untreated fibronectin mat conduits. These findings implicate impaired neurotrophic support in the defective regeneration characteristic of diabetic neuropathy.  相似文献   

13.
Recent evidence from animal models of diabetes and human diabetic subjects suggests that the reduced availability of neurotrophic factors may contribute to the pathogenesis of diabetic peripheral neuropathy (DPN). Of these proteins, nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin (NT-3) and NT-4/5 appear to be important for the development and maintenance of peripheral neurons, but others, including insulin-like growth factors (IGFs), may also be involved. Studies with NGF, NT-3, IGF-I and IGF-II both in vitro and in animal models of neuropathies (including DPN) suggest that these factors ameliorate nerve degeneration. Recombinant human NGF is the first neurotrophic factor to enter clinical trials for DPN and is currently being tested in two phase III studies.  相似文献   

14.
We have previously suggested that alterations in sequential early gene responses of trophic factors (IGF-1 -->c-fos-->NGF) contribute to impaired peripheral nerve regeneration in type 1 diabetic BB/W-rats. To study the role these responses may play in type 2 diabetic nerve regeneration, BB/Z-rats were subjected to sciatic nerve crush injury. The expression of IGF-1, c-fos, NGF and the receptors p75 and IGF-1R were determined at the protein and mRNA levels in sciatic nerve distal to the crush site by immunoblotting and semi-quantitative RT-PCR. In situ hybridization was performed to assess the cellular localization of IGF-1, NGF, p75, and IGF-1R mRNA and immunohistochemistry served to localize the source of p75 and IGF-1R protein expression. The data were compared to those of type 1 diabetic BB/Wor-rats and non-diabetic controls. Increased expression of IGF-1 in Schwann cells is the first growth factor response to injury and peaked at 0.5 hours (h) in control, 2 h in type 2 rats, and 24 h in type 1 rats. IGF-1R was expressed in Schwann cells and its expression was asynchronous to IGF-1 expression in type 1 rats but remained synchronous with IGF-1 in control and type 2 animals. The expression of the immediate early proto-oncogene c-fos exhibited an initial peak at 6 h in control animals, 24 h in type 2, and 2 days (d) in type 1 animals. The initial peak of NGF expression occurred at 6 h in non-diabetic rats, 24 h in type 2, and 2 d in type 1 diabetic rats. The expression of p75 was delayed and attenuated in type 1 diabetic rats; however, in type 2 diabetic rats it was similar to that of non-diabetic rats. These data indicate that early gene responses following nerve damage are significantly less perturbed in type 2 compared to type 1 diabetes. These differences may account for the more efficient nerve regeneration seen in type 2 diabetic polyneuropathy.  相似文献   

15.
In rats, autonomic nerve endings are damaged during Trypanosoma cruzi-induced myocarditis. Gradual recovery occurs after the acute phase. The present work shows the cardiac levels of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), and their cellular sources during T. cruzi infection in rats. Atrial and ventricular NGF levels (ELISA) increased significantly at day 20 post inoculation, the time-point of maximal sympathetic denervation. ELISA failed to show significant increase of cardiac GDNF levels. However immunohistochemistry showed a significant increase of anti-GDNF gold particles over atrial granules at day 20. Light microscopy showed stronger NGF immunostaining in atrial cardiomyocytes and several blood capillaries. In situ hybridization showed NGF and GDNF mRNAs in atrial and ventricular myocytes of both infected and uninfected animals. Endothelial cells exhibited NGF mRNA and protein only in infected rats. No evidence of neurotrophic factor expression by the infiltrating mononuclear cells was found. This is the first report on neurotrophic factor expression during T. cruzi infection. Our findings indicate an important role for NGF in the regenerative phenomena subsequent to a myocarditis able to damage sympathetic nerve endings, with preservation of preterminals and nerve trunks. GDNF could have a minor or a more transient participation.  相似文献   

16.
The recent Genentech/Roche sponsored FDA phase III clinical trial of nerve growth factor (NGF) for the treatment of diabetic neuropathy failed. The aim of this talk is to discuss the reasons for this failure and based upon the lessons learned identify if there remain any other viable avenues for studies on neurotrophins in diabetic neuropathy. The presentation will briefly introduce the basic biology of the neurotrophins and their putative role in the aetiology and/or treatment of diabetic neuropathy. Some details of the NGF clinical trials will be presented and reasons for failure assessed. The main part of the talk will focus on future strategies for neurotrophin work with an emphasis on the possible roles of neurotrophin-3 and brain-derived neurotrophic factor. Alternative approaches based upon regulation of endogenous neurotrophin expression and use of neurotrophin trk receptor agonists will also be discussed. The aim of the talk is to show that lessons learned from the failed NGF trial should lead to a re-invigoration of studies directed at determining alternative methods for optimising neurotrophic support of sensory neurones in diabetes.  相似文献   

17.
Sympathetic and neural-crest derived sensory neurons consisting of unmyelinated and small myelinated fibers are known to be affected at an early stage in diabetes mellitus (DM). Since these peripheral neurons need nerve growth factor (NGF) for their development and maintenance of function in adulthood, changes in endogenous NGF levels could be of relevance for the pathogenesis of diabetic neuropathy (DNP). Using an improved two-site enzyme immunoassay for NGF, we have investigated whether endogenous NGF levels are altered in Sprague-Dawley rats with DM induced by a single injection of streptozotocin (STZ). STZ-treated rats are known to develop in many respects equivalents to neuropathic complications observed in human DM. We found in some sympathetically innervated target organs decreased NGF contents by maximally 56%: transiently in the iris 2 weeks and in the ventricle 12-24 weeks after DM induction and permanently in the submandibular gland already 3 days after DM induction. Several weeks after onset of DM, NGF content was increased by maximally 145-300% in most peripheral targets investigated, such as in iris, cardiac atrium and ventricle, spleen, prostate gland, and vas deferens. This is suggestive for an impaired NGF removal by NGF-sensitive neurons in diabetic rats. Moreover, NGF levels were decreased to minimally 42.6 +/- 4% of control in the NGF-transporting sciatic nerve. NGF levels began to decrease not before 3 weeks after DM induction and remained decreased with 54.0 +/- 5% of control even after 6 months duration of DM. About the same time (i.e., 2 weeks after induction of DM) NGF levels began to decrease in the superior cervical ganglion (where the sympathetic perikarya are located) to minimally 53.2 +/- 4% of control 12 weeks after DM induction. No altered NGF levels were observed during a 3-month duration of DM in the terminal ileum and sensory trigeminal ganglion. Since NGF exerts its neurotrophic action in the perikarya after its retrograde transport from the NGF-producing periphery, our results are consistent with the hypothesis that an alteration in NGF levels may play a role in the pathogenesis of DNP as far as sympathetic neurons are concerned. Thus, our results suggest that DM influences the production and/or transport of endogenous NGF and consequently, that a deprivation of this neurotrophic factor may account for some of the functional deficits known to occur in DNP, such as impaired catecholaminergic transmitter synthesis. This hypothesis possibly opens the way for new concepts in the therapy of DNP.  相似文献   

18.
Peripheral neuropathy is a significant complication of diabetes resulting in increased patient morbidity and mortality. Deficiencies of neurotrophic substances (e.g. NGE NT-3, and IGF-I) have been proposed as pathogenetic mechanisms in the development of distal symmetrical sensory diabetic polyneuropathy, and salutary effects of exogenous NGF administration have been reported in animal models. In comparison, relatively little is known concerning the effect of NGF on experimental diabetic sympathetic autonomic neuropathy. We have developed an experimental animal model of diabetic autonomic neuropathy characterized by the regular occurrence of pathologically distinctive dystrophic axons in prevertebral sympathetic ganglia and ileal mesenteric nerves of rats with chronic streptozotocin (STZ)-induced diabetes. Treatment of STZ-diabetic rats for 2-3 months with pharmacologic doses of NGF or NT-3, neurotrophic substances with known effects on the adult sympathetic nervous system, did not normalize established neuroaxonal dystrophy (NAD) in diabetic rats in the prevertebral superior mesenteric ganglia (SMG) and ileal mesenteric nerves as had pancreatic islet transplantation and IGF-I in earlier experiments. NGF treatment of control animals actually increased the frequency of NAD in the SMG. New data suggests that, in adult sympathetic ganglia. NGF may contribute to the pathogenesis of NAD rather than its amelioration, perhaps as the result of inducing intraganglionic axonal sprouts in which dystrophic changes are superimposed. NT-3 administration did not alter the frequency of NAD in diabetic animals, although it resulted in a significant decrease in NAD in control SMG. Although deficiencies of neurotrophic substances may represent the underlying pathogenesis of a variety of experimental neuropathies, delivery of excessive levels of selected substances may produce untoward effects.  相似文献   

19.
We have previously reported that nerve growth factor (NGF), a polypeptide known for its neurotrophic activities, is also involved in the differentiation and survival of immune cells, and that NGF and its high-affinity receptor are present in the thymus. We here demonstrate that the thymus of humans affected by myasthenia gravis (MG) contains significant concentrations of NGF. These observations support our hypothesis of a role for NGF in the thymus and suggest that the changes observed in the thymus of subject with MG may have functional significance.  相似文献   

20.
Oxidative stress and inflammation are deemed to play a vital role in diabetic cerebral and neurological dysfunction. The present study was designed to investigate the protective effect of the naturally occurring antioxidant, lutein, against oxidative injury and inflammation in cerebral cortex (CCT) of diabetic animals. Using single IP injection of streptozotocin (STZ, 65 mg/kg) diabetes was induced in rats. Lutein dietary supplement was provided to diabetic animals for 5 consecutive weeks in three different doses. The extent of lipid peroxidation and cellular damage were estimated in CCT. Endogenous antioxidants molecules such as non-protein sulfhydryl groups (NP-SH) and enzymes including superoxide dismutase (SOD) and catalase (CAT) were also estimated in CCT. Levels of neurotrophic factors such as brain derived nerve factor (BDNF), nerve growth factor (NGF) and insulin growth factor (IGF) and pro-inflammatory cytokines, as markers for neural inflammation, were assessed in CCT. Lutein dietary supplement, significantly inhibited the diabetes induced increased in CCT levels of thiobarbituric acid reactive substances (TBARS), caspase-3, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. Diabetes caused inhibition in the levels of NP-SH, DNA and RNA was significantly increased following lutein dietary supplementation to diabetic group compared to normal diet fed animals in dose dependent manner. Diabetes induced down regulation of BDNF, NGF and IGF was also attenuated by lutein dietary supplementation to diabetic model for 5 weeks. These findings suggest that lutein has the potential to ameliorate diabetes-induced oxidative and inflammatory damage and neural degeneration in the CCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号