首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the European rabbit (Oryctolagus cuniculus) nursing acts as a strong non-photic synchronizer of circadian rhythmicity in the newborn young. Rabbits only nurse for a few minutes once every 24 h and previous studies have shown that the pups, blind at birth, display endogenous circadian rhythms in behavior and physiology entrained by this regular daily event. As a further step toward understanding the neural organization of the rabbit's early circadian system, we investigated the expression of clock genes in the suprachiasmatic nucleus of the hypothalamus (SCN; the principal circadian pacemaker in adult mammals) across the pups' 24-h day. We used 43 pups from seven litters maintained in constant darkness and entrained non-photically by nursing at the same time each day until P7. After nursing on day 7, pups were killed in the dark at 3-h intervals so as to obtain eight groups (n=5-6 pups/group) distributed evenly across the 24 h before the next scheduled nursing. Profiles in the expression of the clock genes Per1, Per2, Cry1 and Bmal1 were determined using in situ hybridization in brain sections through the hypothalamus at the level of the SCN. We report for the first time: 1) that Per1, Per2, Cry1 and Bmal1 are all expressed in the SCN of the newborn rabbit, 2) that the expression of Per1, Per2 and Bmal1 but not Cry1 shows diurnal rhythmicity similar to that in adult mammals, and 3) that the expression of Per1, Per2 and Bmal1 is consistent with the strong entraining effect of nursing found in previous studies. Unexpectedly, and contrasting somewhat to the pattern in the SCN, we also found diurnal rhythmicity in the expression of Cry1 and Bmal1 but not of Per1 in the anterior ventromedial hypothalamic nucleus. Overall, our findings suggest that the SCN is a functional part of the newborn rabbit's circadian system and that it can be entrained by non-photic cues associated with the mother's daily nursing visit.  相似文献   

3.
4.
5.
The molecular mechanisms of the mammalian circadian clock located in the suprachiasmatic nucleus have been essentially studied in nocturnal species. Currently, it is not clear if the clockwork and the synchronizing mechanisms are similar between diurnal and nocturnal species. Here we investigated in a day-active rodent Arvicanthis ansorgei, some of the molecular mechanisms that participate in the generation of circadian rhythmicity and processing of photic signals. In situ hybridization was used to characterize circadian profiles of expression of Per1, Per2, Cry2 and Bmal1 in the suprachiasmatic nucleus of A. ansorgei housed in constant dim red light. All the clock genes studied showed a circadian expression. Per1 and Per2 mRNA increased during the subjective day and decreased during the subjective night. Also, Bmal1 exhibited a circadian expression, but in anti-phase to that of Per1. The expression of Cry2 displayed a circadian pattern, increasing during the late subjective day and decreasing during the late subjective night. We also obtained the phase responses to light for wheel-running rhythm and clock gene expression. At a behavioral level, light was able to induce phase shifts only during the subjective night, like in other diurnal and nocturnal species. At a molecular level, light pulse exposure during the night led to an up-regulation of Per1 and Per2 concomitant with a down-regulation of Cry2 in the suprachiasmatic nucleus of A. ansorgei. In contrast, Bmal1 expression was not affected by light pulses at the circadian times investigated. This study demonstrates that light exposure during the subjective night has opposite effects on the expression of the clock genes Per1 and Per2 compared with that of Cry2. These differential effects can participate in photic resetting of the circadian clock. Our data also indicate that the molecular mechanisms underlying circadian rhythmicity and photic synchronization share clear similarities between diurnal and nocturnal mammals.  相似文献   

6.
Aging is associated with alterations of the circadian rhythms (shortened amplitude and phase-advance). We studied by quantitative RT-PCR the influence of aging on the expression of circadian clock genes (Clock, Bmal1, Cry1,2, Per1-3) in peripheral tissues (liver and heart) of middle-aged (13 months) and old (27 months) rats of the Wag/Rij strain exposed to a 12 hours light/12 hours dark cycle. Rats were killed at the light-dark transition (8 am and 8 pm). In the liver, Per, Cry et Bmal1 genes showed a morning/evening difference of expression; in addition, old rats exhibited a significant decrease of Per gene expression in the evening vs middle-aged rats. The heart showed similar profiles with only a tendency toward a decrease of Per expression and an increased Bmal1 expression in the evening in old rats. These results show that aging is associated with circadian gene expression changes.  相似文献   

7.
Preoperative neoadjuvant chemoradiation therapy may be useful in patients with operable rectal cancer, but treatment responses are variable. We examined whether expression levels of circadian clock genes could be used as biomarkers to predict treatment response. We retrospectively analyzed clinical data from 250 patients with rectal cancer, treated with neoadjuvant chemoradiation therapy in a single institute between 2011 and 2013. Gene expression analysis (RT-PCR) was performed in tissue samples from 20 patients showing pathological complete regression (pCR) and 20 showing non-pCR. The genes analyzed included six core clock genes (Clock, Per1, Per2, Cry1, Cry2 and Bmal1) and three downstream target genes (Wee1, Chk2 and c-Myc). Patient responses were analyzed through contrast-enhanced pelvic MRI and endorectal ultrasound, and verified by histological assessment. pCR was defined histologically as an absence of tumor cells. Among the 250 included patients, 70.8% showed regression of tumor size, and 18% showed pCR. Clock, Cry2 and Per2 expressions were significantly higher in the pCR group than in the non-pCR group (P<0.05), whereas Per1, Cry1 and Bmal1 expressions did not differ significantly between groups. Among the downstream genes involved in cell cycle regulation, c-Myc showed significantly higher expression in the pCR group (P<0.05), whereas Wee1 and Chk2 expression did not differ significantly between groups. Circadian genes are potential biomarkers for predicting whether a patient with rectal cancer would benefit from neoadjuvant chemoradiation therapy.  相似文献   

8.
Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.  相似文献   

9.
10.
Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation, and differentiation marker genes. Expression of the clock genes Per1 and Bmal1 were elevated in differentiated HC-11 cells, whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands, as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, whereas Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels, whereas Per1 and Bmal1 expression changed in conjunction with beta-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation.  相似文献   

11.
Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturnal animals, or are also present in diurnal species is unknown. We explored this question by examining the light-induced Per1 and Per2 gene expression in functionally distinct SCN subregions, using diurnal grass rats Arvicanthis niloticus. Light exposure during nighttime induced Per1 and Per2 expression in the SCN, showing unique spatiotemporal profiles depending on the phase of the light exposure. After a phase delaying light pulse (LP) in the early night, strong Per1 induction was observed in the retinorecipient core region of the SCN, while strong Per2 induction was observed throughout the entire SCN. After a phase advancing LP in the late night, Per1 was first induced in the core and then extended into the whole SCN, accompanied by a weak Per2 induction. This compartmentalized expression pattern is very similar to that observed in nocturnal rodents, suggesting that the same molecular and intercellular pathways underlying acute photic responses are present in both diurnal and nocturnal species. However, after an LP in early subjective day, which induces phase advances in diurnal grass rats, but not in nocturnal rodents, we did not observe any Per1 or Per2 induction in the SCN. This result suggests that in spite of remarkable similarities in the SCN of diurnal and nocturnal rodents, unique mechanisms are involved in mediating the phase shifts of diurnal animals during the subjective day.  相似文献   

12.
In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) is mainly synchronized to photic cues provided by the daily light/dark cycle. Phase-shifts produced by light exposure during the night are correlated with rapid induction of two clock genes, Per1 and Per2, in the SCN. Nonphotic stimuli such as behavioral and pharmacological cues, when presented during the subjective day, induce behavioral phase-advances and a down-regulation of Per1 and Per2 expression in the SCN. When applied during the subjective day, dark pulses in continuous light also produce phase-advances. These phase-shifting effects have been interpreted as reflecting either a photic image mirror, nonphotic cues, or a combination of both. Here we evaluated in Syrian hamsters housed in constant light how dark pulses applied in late subjective day affect levels of Per1, Per2 and Cry1 mRNA. Four-hour dark pulses with no access to a wheel produced 1.2+/-0.4 h phase-advances of locomotor activity rhythm while control manipulation induced non-significant shifts (0.1+/-0.2 h). Dark pulses transiently down-regulated Per1 and Per2 mRNA levels in the SCN by 40 and 20% respectively, while the levels of Cry1 mRNA remained unaffected. In behaviorally split hamsters in which Per oscillations were asymmetric between the left and right sides of the SCN, dark pulses reduced Per expression in the half-SCN with high Per. This study shows that exposure during the late subjective day to dark pulses independent of wheel-running have nonphotic-like effects on the SCN clock at both behavioral and molecular levels.  相似文献   

13.
While peripheral tissues and serum-shocked fibroblasts express rhythmic oscillations in clock gene expression, only the suprachiasmatic nucleus (SCN) is capable of endogenous, self-sustained rhythmicity and of functioning as a pacemaker by imposing rhythmic properties upon other cells. To differentially examine the molecular elements necessary for the distinctive rhythm-generating and pacemaking properties of the SCN, the effects of antisense inhibition of Clock expression on the rhythms in 2-deoxyglucose uptake and Per gene expression were compared in immortalized SCN cells and a fibroblast cell line. Similar to changes in molecular and physiological rhythmicity observed in the SCN of Clock mutant mice, the rhythmic pattern of Per2 expression was disrupted and the period of metabolic rhythmicity was increased in SCN2.2 cells subjected to antisense inhibition of Clock. NIH/3T3 fibroblasts cocultured with antisense-treated SCN2.2 cells showed metabolic rhythms with comparable increases in period and decreases in rhythm amplitude. Per2 expression in these cocultured fibroblasts exhibited a similar reduction in peak levels, but was marked by non-24 h or irregular peak-to-peak intervals. In serum-shocked NIH/3T3 fibroblasts, oscillations in Per2, Bmal1, and Cry1 expression persisted with some change in rhythm amplitude during antisense inhibition of CLOCK, demonstrating that feedback interactions between Clock and other core components of the clock mechanism may be regulated differently in SCN2.2 cells and fibroblasts. The present results suggest that CLOCK is differentially involved in the generation of endogenous molecular and metabolic rhythmicity within SCN2.2 cells and in the regulation of their specific outputs that control rhythmic processes in NIH/3T3 cells.  相似文献   

14.
15.
Dentine- and enamel-forming cells secrete matrix in consistent rhythmic phases, resulting in the formation of successive microscopic growth lines inside tooth crowns and roots. Experimental studies of various mammals have proven that these lines are laid down in subdaily, daily (circadian), and multidaily rhythms, but it is less clear how these rhythms are initiated and maintained. In 2001, researchers reported that lesioning the so-called master biological clock, the suprachiasmatic nucleus (SCN), halted daily line formation in rat dentine, whereas subdaily lines persisted. More recently, a key clock gene (Bmal1) expressed in the SCN in a circadian manner was also found to be active in dentine- and enamel- secretory cells. To probe these potential neurological and local mechanisms for the production of rhythmic lines in teeth, we reexamined the role of the SCN in growth line formation in Wistar rats and investigated the presence of daily lines in Bmal1 knockout mice (Bmal1−/−). In contrast to the results of the 2001 study, we found that both daily and subdaily growth lines persisted in rat dentine after complete or partial SCN lesion in the majority of individuals. In mice, after transfer into constant darkness, daily rhythms continued to manifest as incremental lines in the dentine of each Bmal1 genotype (wild-type, Bmal+/–, and Bmal1−/−). These results affirm that the manifestation of biological rhythms in teeth is a robust phenomenon, imply a more autonomous role of local biological clocks in tooth growth than previously suggested, and underscore the need further to elucidate tissue-specific circadian biology and its role in incremental line formation. Investigations of this nature will strengthen an invaluable system for determining growth rates and calendar ages from mammalian hard tissues, as well as documenting the early lives of fossil hominins and other primates.  相似文献   

16.
17.
In mammals, numerous physiological and behavioural functions are controlled by an endogenous circadian clock located in the suprachiasmatic nuclei (SCN). Within the SCN neurons, clock genes such as Per1 and Per2 interact in a molecular clockwork regulating the expression of hundreds of output genes. Through the timed release of humoral and neuronal signals, the rhythmicity of numerous biological processes, including reproductive behaviour, the oestrus cycle and endocrine parameters is controlled by the SCN. Mutations in Per genes in mice affect a wide array of physiological functions. Interestingly, most of these studies use only male animals, thus neglecting potential gender-specificities in clock function. In an attempt to broaden this perspective we have investigated the impact of Per1 and Per2 mutations on both glucocorticoid (GC) metabolite excretion and locomotor activity in relation to age and oestrus cycle stage of female mice. We show that the Per2 mutation dampens daily GC rhythms in young adult females. While locomotor activity does not vary along the different oestrus stages in Per2 mutant females, oestrus effects on GC excretion and locomotor activity are largely comparable between Per1 mutants and wild-type animals. 20 month-old, acyclic Per1 and wild-type females show reduced GC levels when compared to young adults while aged Per2 mutants retain their normal GC rhythmicity. Correlating with this, onsets of locomotor activity do not change with age in Per2 mutant females. Together, our data highlight specific roles for Per1 and Per2 in both the regulation of locomotor activity and endocrine functions in the female organism.  相似文献   

18.
The mammalian suprachiasmatic nucleus (SCN) contains the main circadian clock. Neuropeptide Y (NPY) that is released from the intergeniculate leaflet of the lateral geniculate body to the SCN, acts in the SCN to advance circadian phase in the subjective day via the NPY Y2 receptor. We used semi-quantitative in situ hybridization to determine the effect of NPY on circadian clock genes, Period 1 (Per1) and Period 2 (Per2), expression in SCN slices. Addition of NPY to the brain slices in the subjective day resulted in reduction of Per1 and Per2 mRNA levels 0.5 and 2 h after treatment. NPY Y1/Y5 and Y2 agonists decreased Per1 within 0.5 h. These results suggest that NPY may induce phase shifts by mechanisms involving or resulting in reduction of Per1 and Per2 mRNA levels.  相似文献   

19.
Salivary secretion displays day–night variations that are controlled by the circadian clock. The central clock in the suprachiasmatic nucleus (SCN) regulates daily physiological rhythms by prompting peripheral oscillators to adjust to changing environments. Aquaporin 5 (Aqp5) is known to play a key role in salivary secretion, but the association between Aqp5 and the circadian rhythm is poorly understood. The aim of our study was to evaluate whether Aqp5 expression in submandibular glands (SMGs) is driven by the central clock in the SCN or by autonomous oscillations. We observed circadian oscillations in the activity of period circadian protein homolog 2 and luciferase fusion protein (PER2::LUC) in cultured SMGs with periodicity depending on core clock genes. A daily rhythm was detected in the expression profiles of Aqp5 in SMGs in vivo. In cultured SMGs ex vivo, clock genes showed distinct circadian rhythms, whereas Aqp5 expression did not. These data indicate that daily Aqp5 expression in the mouse SMG is driven by the central clock in the SCN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号