首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The functional organization of the low-threshold supplementary eye field (SEF) was studied by analyzing presaccadic activity, electrically elicited saccades, and the relationship between them. Response-field optimal vectors, defined as the visual field coordinates or saccadic eye-movement dimensions evoking the highest neural discharge, were quantitatively estimated for 160 SEF neurons by systematically varying peripheral target location relative to a central fixation point and then fitting the responses to Gaussian functions. Saccades were electrically elicited at 109 SEF sites by microstimulation (70 ms, 10-100 microA) during central fixation. The distribution of response fields and elicited saccades indicated a complete representation of all contralateral saccades in SEF. Elicited saccade polar directions ranged between 97 and 262 degrees (data from left hemispheres were transformed to a right-hemisphere convention), and amplitudes ranged between 1.8 and 26.9 degrees. Response-field optimal vectors (right hemisphere transformed) were nearly all contralateral as well; the directions of 115/119 visual response fields and 80/84 movement response fields ranged between 90 and 279 degrees, and response-field eccentricities ranged between 5 and 50 degrees. Response-field directions for the visual and movement activity of visuomovement neurons were strongly correlated (r = 0.95). When neural activity and elicited saccades obtained at exactly the same sites were compared, response fields were highly predictive of elicited saccade dimensions. Response-field direction was highly correlated with the direction of saccades elicited at the recording site (r = 0.92, n = 77). Similarly, response-field eccentricity predicted the size of subsequent electrically elicited saccades (r = 0.49, n = 60). However, elicited saccades were generally smaller than response-field eccentricities and consistently more horizontal when response fields were nearly vertical. The polar direction of response fields and elicited saccades remained constant perpendicular to the cortical surface, indicating a columnar organization of saccade direction. Saccade direction progressively shifted across SEF; however, these orderly shifts were more indicative of a hypercolumnar organization rather than a single global topography. No systematic organization for saccade amplitude was evident. We conclude that saccades are represented in SEF by congruent visual receptive fields, presaccadic movement fields, and efferent mappings. Thus SEF specifies saccade vectors as bursts of activity by local groups of neurons with appropriate projections to downstream oculomotor structures. In this respect, SEF is organized like the superior colliculus and the frontal eye field even though SEF lacks an overall global saccade topography. We contend that all specialized oculomotor functions of SEF must operate within the context of this fundamental organization.  相似文献   

2.
1. The discharge of 255 neurons in the fastigial nuclei of three trained macaque monkeys was investigated during visually guided saccades. Responses of these neurons were examined also during horizontal head rotation and during microstimulation of the oculomotor vermis (lobules VIc and VII). 2. One hundred and two units were characterized by bursts of firing in response to visually guided saccades. Ninety-eight of these (96.1%) were located within the anatomic confines of the fastigial oculomotor region (FOR), on the basis of reconstruction of recording sites. During contralateral saccades, these neurons showed bursts that preceded the onset of saccades (presaccadic burst), whereas, during ipsilateral saccades, they showed bursts associated with the end of saccades (late saccadic burst). They were hence named saccadic burst neurons. Sixty-one saccadic burst neurons (62.2%) were inhibited during microstimulation of the oculomotor vermis with currents less than 10 microA. 3. All saccadic burst neurons were spontaneously active, and the resting firing rate varied considerably among units, ranging from 10 to 50 imp/s. The tonic levels of activity did not correlate significantly with eye position. 4. The presaccadic burst started 18.5 +/- 4.7 (SD) ms (n = 45) before the onset of saccades in the optimal direction (the direction associated with the maximum values of burst lead time, number of spikes per burst, and burst duration). Optimal directions covered the entire contralateral hemifield, although there was a slightly higher incidence in both horizontal and upper-oblique directions in the present sample. The duration of the presaccadic burst was highly correlated with the duration of saccade (0.85 less than or equal to r less than or equal to 0.97). 5. The late saccadic burst was most robust in the direction opposite to the optimal in each unit (the nonoptimal direction). Its onset preceded the completion of ipsilateral saccade by 30.4 +/- 5.9 ms. The lead time to the end of saccade was consistent among different units and was constant also for saccades of various sizes. Thus the late saccadic burst started even before the saccade onset when the saccade duration was less than 30 ms. Unlike the presaccadic burst, its duration was not related to the duration of saccade. 6. Discharge rates of saccadic burst neurons were correlated neither to eye positions during fixation nor to the initial eye positions before saccades. 7. Eye-position units and horizontal head-velocity units were located rostral to the FOR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
To understand the neural mechanism of fixation, we investigated effects of electrical stimulation of the frontal eye field (FEF) and its vicinity on visually guided (Vsacs) and memory-guided saccades (Msacs) in trained monkeys and found that there were two types of suppression induced by the electrical stimulation: suppression of ipsilateral saccades and suppression of bilateral saccades. In this report, we characterized the properties of the suppression of bilateral Vsacs and Msacs. Stimulation of the bilateral suppression sites suppressed the initiation of both Vsacs and Msacs in all directions during and approximately 50 ms after stimulation but did not affect the vector of these saccades. The suppression was stronger for ipsiversive larger saccades and contraversive smaller saccades, and saccades with initial eye positions shifted more in the saccadic direction. The most effective stimulation timing for the suppression of ipsilateral and contralateral Vsacs was approximately 40-50 ms before saccade onset, indicating that the suppression occurred most likely in the superior colliculus and/or the paramedian pontine reticular formation. Suppression sites of bilateral saccades were located in the prearcuate gyrus facing the inferior arcuate sulcus where stimulation induced suppression at < or =40 microA but usually did not evoke any saccades at 80 microA and were different from those of ipsilateral saccades where stimulation evoked saccades at < or =50 microA. The bilateral suppression sites contained fixation neurons. The results suggest that fixation neurons in the bilateral suppression area of the FEF may play roles in maintaining fixation by suppressing saccades in all directions.  相似文献   

4.
Evidence for a supplementary eye field   总被引:14,自引:0,他引:14  
Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.  相似文献   

5.
Summary Microstimulation of oculomotor regions in primate cortex normally evokes saccadic eye movements of stereotypic directions and amplitudes. The fixed-vector nature of the evoked movements is compatible with the creation of either an artificial retinal or motor error signal. However, when microstimulation is applied during an ongoing natural saccade, the starting eye position of the evoked movement differs from the eye position at stimulation onset (due to the latency of the evoked saccade). An analysis of the effect of this eye position discrepancy on the trajectory of the eventual evoked saccade can clarify the oculomotor role of the structure stimulated. The colliding saccade paradigm of microstimulation was used in the present study to investigate the type of signals conveyed by visual, visuomovement, and movement unit activities in the primate frontal eye field. Colliding saccades elicited from all sites were found to compensate for the portion of the initial movement occurring between stimulation and evoked movement onset, plus a portion of the initial movement occurring before stimulation. This finding suggests that activity in the frontal eye field encodes a retinotopic goal that is converted by a downstream structure into the vector of the eventual saccade. Offprint requests to: J. Schlag, Department of Anatomy and Cell Biology  相似文献   

6.
Neural mechanisms for evoking saccadic eye movements by microstimulation of the posterior vermis were investigated in monkeys trained to fixate a visual target. The low-threshold region from which saccadic eye movements could be evoked with currents less than 10 microA was confined to lobule VII in two monkeys and it included a posterior part of lobule VI (lobule VIc) in another monkey. The region from which saccade-related neural activity was recordable coincided with the low-threshold region. This region corresponded to the vermal lobules from which eye position and saccade-related Purkinje cells were recorded. Kainic acid (kainate) injected in the white matter of lobule VII resulted in severe losses of Purkinje cells within a radius of 1-2 mm of the injection site. The lesion tended to be larger toward the peripheral cerebellar cortices, which were connected to the injection site by natural courses of the afferent and efferent fibers. After the kainate administration, the distribution of saccade-related neural activity did not differ significantly from that of the preoperative mapping, in spite of the severe losses of cortical neurons. Burst discharges of mossy fibers were recordable in the white matter near the injection site, indicating that afferent fibers were relatively unaffected by kainate. After kainate administration, the saccadic eye movements could no longer be evoked by microstimulation applied to the posterior vermis. The stimulus sites from which saccades could be evoked after kainate administration were always associated with the presence of intact Purkinje cells. In such cases, the minimum current necessary to evoke saccades depended on the percentages of intact Purkinje cells spared. In the folia with normal Purkinje cell layers, the amplitude and direction of evoked saccades and the thresholds for evoking such eye movements were almost comparable to the preoperative data. Saccadic eye movements in response to microstimulation of the posterior vermis were caused by orthodromic impulses conveyed through the axons of the Purkinje cells. Insofar as the saccades elicited from lobule VII with currents less than 10 microA are concerned, antidromic activation of the afferent fibers is not the neural mechanisms subserving the oculomotor responses.  相似文献   

7.
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and to classify them as visual, visuomovement, or movement cells with the use of the criteria described previously (Bruce and Goldberg 1985). The neurons were then studied by the use of double-step tasks that dissociated the retinal coordinates of visual targets from the dimensions of saccadic eye movements necessary to acquire those targets. These tasks required that the monkeys make two successive saccades to follow two sequentially flashed targets. Because the second target disappeared before the first saccade occurred, the dimensions of the second saccade could not be based solely on the retinal coordinates of the target but also depended on the dimensions of the first saccade. We used two versions of the double-step task. In one version neither target appeared in the cell's receptive or movement field, but the second eye movement was the optimum amplitude and direction for the cell (right-EM/wrong-RF task). In the other the second stimulus appeared in the cell's receptive field, but neither eye movement was appropriate for the cell (wrong-EM/right-RF task). 3. Most frontal-eye-field cells discharged in the right-EM/wrong-RF version of the double-step task. Their discharge began after the first saccade and continued until the second saccade was made. They usually discharged even on occasional trials in which the monkey failed to make the second saccade. They discharged much less, or not at all, in the wrong-EM/right-RF version of the double-step paradigm. Thus most presaccadic cells in the frontal eye fields were tuned to the dimensions of saccadic eye movements rather than to the coordinates of retinal stimulation. 4. Eleven movement cells (including 1 which also had independent postsaccadic activity for saccades opposite its presaccadic movement field) were studied, and all had significant activity in the right-EM/wrong-RF task. 5. Almost all (28/32) visuomovement cells, including 12 with independent postsaccadic activity, discharged in the right-EM/wrong-RF task. None of the four that failed had independent postsaccadic activity. 6. The majority (26/40) of visual cells were responsive in the right-EM/wrong-RF task.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Summary Electrical stimulation of the frontal eye fields of the rhesus monkey evokes saccadic eye movements. Both the amplitude of electrically elicited saccades and the threshold current for eliciting them are primarily determined by the location of the stimulating electrode within the frontal eye fields; however, threshold and amplitude also are systematically affected by the monkey's behavioral state when the stimulation is applied. If the monkey is alert, but not performing a task, saccade amplitudes are largest and thresholds are lowest. Conversely, if the monkey actively fixates a visual target, elicited saccades are smaller and threshold currents are higher. Saccades evoked during fixation have slower velocities appropriate for their reduced amplitude. Phase plane plots of eye velocity versus eye position indicate that these saccades are originally programmed to be smaller and slower, and hence are not large saccades voluntarily braked in mid-flight. As opposed to their amplitude and threshold, the direction of electrically evoked saccades is unaffected by the state of fixation. The state of attentive fixation, but not the visual fixation target itself, is the responsible factor for these effects. These results suggest that there is a difference between the state of active fixation and the state of having the eye still in the orbit without active fixation. The oculomotor system in the latter case is relatively more susceptible to signals from the cerebral cortex.  相似文献   

9.
The purpose of this study was to investigate the temporal relationship between presaccadic neuronal discharges in the frontal eye fields (FEF) and supplementary eye fields (SEF) and the initiation of saccadic eye movements in macaque. We utilized an analytical technique that could reliably identify periods of neuronal modulation in individual spike trains. By comparing the observed activity of neurons with the random Poisson distribution generated from the mean discharge rate during the trial period, the period during which neural activity was significantly elevated with a predetermined confidence level was identified in each spike train. In certain neurons, bursts of action potentials were identified by determining the period in each spike train in which the activation deviated most from the expected Poisson distribution. Using this method, we related these defined periods of modulation to saccade initiation in specific cell types recorded in FEF and SEF. Cells were recorded in SEF while monkeys made saccades to targets presented alone. Cells were recorded in FEF while monkeys made saccades to targets presented alone or with surrounding distractors. There were no significant differences in the time-course of activity of the population of FEF presaccadic movement cells prior to saccades generated to singly presented or distractor-embedded targets. The discharge of presaccadic movement cells in FEF and SEF could be subdivided quantitatively into an early prelude followed by a high-rate burst of activity that occurred at a consistent interval before saccade initiation. The time of burst onset relative to saccade onset in SEF presaccadic movement cells was earlier and more variable than in FEF presaccadic movement cells. The termination of activity of another population of SEF neurons, known as preparatory set cells, was time-locked to saccade initiation. In addition, the cessation of SEF preparatory set cell activity coincided precisely with the beginning of the burst of SEF presaccadic movement cells. This finding raises the possibility that SEF preparatory set cells may be involved in saccade initiation by regulating the activation of SEF presaccadic movement cells. These results demonstrate the utility of the Poisson spike train analysis to relate periods of neuronal modulation to behavior.  相似文献   

10.
Primate frontal eye fields. I. Single neurons discharging before saccades   总被引:25,自引:0,他引:25  
We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual stimuli whether or not the monkey made saccades. Movement activity preceded purposive saccades, even those made without visual targets. Anticipatory activity preceded even the cue to make a saccade if the monkey could reliably predict what saccade he had to make. These three different activities were found in different presaccadic cells in different proportions. Forty percent of presaccadic cells had visual activity (visual cells) but no movement activity. For about half of the visual cells the response was enhanced if the monkey made saccades to the receptive-field stimulus, but there was no discharge before similar saccades made without visual targets. Twenty percent of presaccadic neurons discharged as briskly before purposive saccades made without a visual target as they did before visually guided saccades, and had weak or absent visual responses. These cells were defined as movement cells. Movement cells discharged much less or not at all before saccades made spontaneously without a task requirement or an overt visual target. The remaining presaccadic neurons (40%) had both visual and movement activity (visuomovement cells). They discharged most briskly before visually guided eye movements, but also discharged before purposive eye movements made in darkness and responded to visual stimuli in the absence of saccades. There was a continuum of visuomovement cells, from cells in which visual activity predominated to cells in which movement activity predominated. This continuum suggests that although visual cells are quite distinct from movement cells, the division of cell types into three classes may be only a heuristic means of describing the processing flow from visual input to eye-movement output. Twenty percent of visuomovement and movement cells, but fewer than 2% of visual cells, had anticipatory activity. Only one cell had anticipatory activity as its sole response. When the saccade was delayed relative to the target onset, visual cells responded to the target appearance, movement cells discharged before the saccade, and visuomovement cells discharged in different ways during the delay, usually with some discharge following the target and an increase in rate immediately before the saccade. Presaccadic neurons of all types were actively suppressed following a saccade into their response fields.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. Single-neuron activity was recorded from the prefrontal cortex of monkeys performing saccadic eye movements in oculomotor delayed-response (ODR) and visually guided saccade (VGS) tasks. In the ODR task the monkey was required to maintain fixation of a central spot throughout the 0.5-s cue and 3.0-s delay before making a saccadic eye movement in the dark to one of four or eight locations where the visual cue had been presented. The same locations were used for targets in the VGS tasks; however, unlike the ODR task, saccades in the VGS tasks were visually guided. 2. Among 434 neurons recorded from prefrontal cortex within and surrounding the principal sulcus (PS), 147 changed their discharge rates in relation to saccadic eye movements in the ODR task. Their response latencies relative to saccade initiation were distributed between -192 and 460-ms, with 22% exhibiting presaccadic activity and 78% exhibiting only postsaccadic activity. Among PS neurons with presaccadic activity, 53% also had postsaccadic activity when the monkey made saccadic eye movements opposite to the directions for which the presaccadic activity was observed. 3. Almost all (97%) PS neurons with presaccadic activity were directionally selective. The best direction and tuning specificity of each neuron were estimated from parameters used to fit a Gaussian tuning curve function. The best direction for 62% of the neurons with presaccadic activity was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (23%) or along the vertical meridian (15%). 4. Most postsaccadic activity of PS neurons (92%) was also directionally selective. The best direction for 48% of these neurons was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (36%) or along the vertical meridian (16%). Eighteen percent of the neurons with postsaccadic activity showed a reciprocal response pattern: excitatory responses occurred for one set of saccade directions, whereas inhibitory responses occurred for roughly the opposite set of directions. 5. Sixty PS neurons with saccade-related activity in the ODR task were also examined in a VGS task. Forty of these neurons showed highly similar profiles of directional specificity and response magnitude in both tasks, 13 showed saccade-related activity only in the ODR task, and 7 changed their response characteristics between the ODR and VGS tasks.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Saccadic eye movements are thought to be influenced by blinking through premotor interactions, but it is still unclear how. The present paper describes the properties of blink-associated eye movements and quantifies the effect of reflex blinks on the latencies, metrics, and kinematics of saccades in the monkey. In particular, it is examined to what extent the saccadic system accounts for blink-related perturbations of the saccade trajectory. Trigeminal reflex blinks were elicited near the onset of visually evoked saccades by means of air puffs directed on the eye. Reflex blinks were also evoked during a straight-ahead fixation task. Eye and eyelid movements were measured with the magnetic-induction technique. The data show that saccade latencies were reduced substantially when reflex blinks were evoked prior to the impending visual saccades as if these saccades were triggered by the blink. The evoked blinks also caused profound spatial-temporal perturbations of the saccades. Deflections of the saccade trajectory, usually upward, extended up to approximately 15 degrees. Saccade peak velocities were reduced, and a two- to threefold increase in saccade duration was typically observed. In general, these perturbations were largely compensated in saccade mid-flight, despite the absence of visual feedback, yielding near-normal endpoint accuracies. Further analysis revealed that blink-perturbed saccades could not be described as a linear superposition of a pure blink-associated eye movement and an unperturbed saccade. When evoked during straight-ahead fixation, blinks were accompanied by initially upward and slightly abducting eye rotations of approximately 2-15 degrees. Back and forth wiggles of the eye were frequently seen; but in many cases the return movement was incomplete. Rather than drifting back to its starting position, the eye then maintained its eccentric orbital position until a downward corrective saccade toward the fixation spot followed. Blink-associated eye movements were quite rapid, albeit slower than saccades, and the velocity-amplitude-duration characteristics of the initial excursions as well as the return movements were approximately linear. These data strongly support the idea that blinks interfere with the saccade premotor circuit, presumably upstream from the neural eye-position integrator. They also indicated that a neural mechanism, rather than passive elastic restoring forces within the oculomotor plant, underlies the compensatory behavior. The tight latency coupling between saccades and blinks is consistent with an inhibition of omnipause neurons by the blink system, suggesting that the observed changes in saccade kinematics arise elsewhere in the saccadic premotor system.  相似文献   

13.
We investigated the properties of human saccadic eye movements evoked by acoustic stimuli in the two-dimensional frontal plane. These movements proved to be quite accurate, both in azimuth and in elevation, grovided the sound source spectrum had a broad bandwidth and a sufficiently long duration. If the acoustic target was a tone, the azimuth of the saccadic end points remained equally accurate, whereas the elevation of the response was related to the frequency of the tone, rather than to the physical position of the target. Saccade elevation accuracy also declined substantially for short-duration noise bursts, although response elevation remained highly correlated with target elevation. The latencies of auditory saccades depended on the amplitude, but not on the direction of the eye movement, suggesting a polar coordinate origin of auditory saccade initiation. We also observed that the trajectories of auditory saccades were often substantially curved. Both a qualitative and a model-based analysis showed that this curvature corrected for errors in the initial direction of the saccade. The latter analysis also suggested that the kinematic properties of auditory saccades could be described by the superposition of two overlapping saccadic eye movements, hypothesized to be based on binaural difference cues and monaural spectral cues in the auditory signal, respectively. It is argued that, although the audio-oculomotor system has to operate in a feedforward way, it must nevertheless have access to an accurate representation of actual and desired eye position. Different models underlying the generation of auditory saccades are discussed.  相似文献   

14.
1. Systematic exploration throughout the deep cerebellar nuclei and white matter disclosed that the region from which saccadic eye movements (saccades) were evoked with weak currents (less than 10 microA) was confined to the fastigial nucleus and the adjacent white matter. 2. When an electrode for stimulation was advanced in the cerebellum, saccades were evoked in the direction of the stimulated side (ipsilateral saccades) as it entered the low-threshold region. In some tracks, particularly when the electrode was advanced in the medial portion of the fastigial nucleus, the direction of the evoked saccades changed from the ipsilateral to the contralateral. 3. The mappings with microstimulation disclosed that the ipsilateral saccades were elicited from a relatively wide region that included almost the full extent of the fastigial nucleus. The low-threshold region continued in the white matter caudally into vermal lobule VII and rostrally into the dorsal aspect of the brachium conjunctivum. On the other hand, the contralateral saccades were evoked from a relatively circumscribed region in the ventromedial portion of the fastigial nucleus. 4. The reversal in the direction of the horizontal component occurred always in a narrow zone in the core of the fastigial nucleus. The caudal part of this zone coincided with an ellipsoidal region where anterogradely labeled axons of the Purkinje cells terminated when HRP was injected into vermal lobule VII. 5. When bicuculline (0.2-1 microgram) was injected in the ellipsoidal region, the ipsilateral saccades evoked from the dorsocaudal aspect of the region were suppressed for several hours. On the other hand, the contralateral saccades evoked from the ventromedial portion of the fastigial nucleus were either unchanged or enhanced. 6. Because the ipsilateral saccades were suppressed by bicuculline, they were most probably evoked by stimulation of the presynaptic component of gamma-amino-butyric acid-(GABA) mediated synapses, namely the axons of Purkinje cells. 7. Because stimulation of the presynaptic component of the inhibitory synapses evoked ipsilateral saccades, activation of the postsynaptic component would evoke contralateral saccades. In fact, the distribution of the fastigial sites yielding contralateral saccades coincided with the course of axons of fastigial neurons arising in the ellipsoidal region. It is most likely, therefore, that the contralateral saccades were evoked by stimulation of fastigial neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
1. Oculomotor responses to microstimulation of the cerebellar vermis of macaque monkeys were investigated by using a magnetic search-coil method. 2. The oculomotor responses were conjugate eye movements with an ipsilateral horizontal component. Analyses of amplitude-velocity and amplitude-duration relationships revealed that the peak eye velocities and the durations of the responses were comparable to those of saccadic eye movements. 3. Systematic mapping with microstimulation disclosed that the region in the cerebellar vermis that yielded saccades with weak stimulus currents was confined to lobule VII in five monkeys but included a part of folium VIc in the other four monkeys. This region coincided with the distribution of the saccade-related neural activity observed in the present study and also corresponded to the vermal folia from which we recorded the burst mossy-fiber units and the oculomotor Purkinje cell activity. 4. The oculomotor vermis was defined as that region of the cerebellar vermis that met the following criteria: 1) saccades were evoked with low-intensity microstimulation (with currents less than 10 microA); 2) vigorous saccade-related neural activity was present; and 3) Purkinje cell discharges were modulated with eye movements. The oculomotor vermis was more circumscribed and located more posteriorly than the vermal cortex explored in previous microstimulation experiments on monkeys. 5. Microstimulation of the oculomotor vermis evoked more or less curved saccades in oblique directions. The horizontal and vertical components were not simultaneous in some saccades: the shorter component started later or ended earlier than the other component and their peak velocities were not always synchronous. 6. The amplitude of the saccade depended on stimulus parameters; microstimulation with 10-12 pulses within a period of approximately 20 ms (500-600 Hz) was shown to be optimal. When the pulses were applied to the white matter or to the granular layer, a stimulus current of 10 microA was sufficient to evoke saccades. When the molecular layer was stimulated, evoked saccades were smaller and frequently curved, and an increase in the stimulus current changed either the initial direction or the trajectory of the saccade. 7. When the stimulus current was carefully controlled and maintained near the threshold, the direction of the saccade evoked from the oculomotor vermis was topographically organized.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Variation in response latency to identical sensory stimuli has been attributed to variation in neural activity mediating preparatory set. Here we report evidence for a relationship between saccadic reaction time (SRT) and set-related brain activity measured with event-related functional magnetic resonance imaging. We measured hemodynamic activation time-courses during a preparatory "gap" period, during which no visual stimulus was present and no saccades were made. The subjects merely anticipated appearance of the target. Saccade direction and latency were recorded during scanning, and trials were sorted according to SRT. Both the frontal (FEF) and supplementary eye fields showed pre-target preparatory activity, but only in the FEF was this activity correlated with SRT. Activation in the intraparietal sulcus did not show any preparatory activity. These data provide evidence that the human FEF plays a central role in saccade initiation; pre-target activity in this region predicts both the type of eye movement (whether the subject will look toward or away from the target) and when a future saccade will occur.  相似文献   

17.
Summary Single unit activity was studied in the dorsomedial edge of the frontal lobe, above the superior arcuate sulcus in three trained monkeys (Macaca nemestrina). Gaze and head movements were recorded with two magnetic search coils. Discharges preceding spontaneous eye movements in a preferred direction were consistently observed in light and in dark, in a limited cortical territory at the anterior border of the supplementary motor area. Microstimulation at these sites elicited saccades in the unit preferred direction. Five presaccadic units were studied head fixed and head free and showed the same saccade-related activity under both conditions. Preliminary data suggest that the area studied may be a supplementary eye field distinct from the arcuate frontal eye field.  相似文献   

18.
When a saccade occurs to an interesting object, visual fixation holds its image on the fovea and suppresses saccades to other objects. Electrical stimulation of the frontal eye field (FEF) has been reported to elicit saccades, and recently also to suppress saccades. This study was performed to characterize properties of the suppression of visually guided (Vsacs) and memory-guided saccades (Msacs) induced by electrical stimulation of the FEF in trained monkeys. For any given stimulation site, we determined the threshold for electrically evoked saccades (Esacs) at < or =50 microA and then examined suppressive effects of stimulation at the same site on Vsacs and Msacs. FEF stimulation suppressed the initiation of both Vsacs and Msacs during and about 50 ms after stimulation at stimulus intensities lower than those for eliciting Esacs, but did not affect the vector of these saccades. Suppression occurred for ipsiversive but not contraversive saccades, and more strongly for saccades with larger amplitudes and those with initial eye positions shifted more in the saccadic direction. The most effective stimulation timing for suppression was about 50 ms before saccade onset, which suggests that suppression occurred in the efferent pathway for generating Vsacs at the premotor rather than the motoneuronal level, most probably in the superior colliculus and/or the paramedian pontine reticular formation. Suppression sites of ipsilateral saccades were distributed over the classical FEF where saccade-related movement neurons were observed. The results suggest that the FEF may play roles in not only generating contraversive saccades but also maintaining visual fixation by suppressing ipsiversive saccades.  相似文献   

19.
Microstimulation studies on monkeys have shown that the cerebellar cortex which is related to saccadic function is located in lobules VIc and VII of the vermis. This vermal area is designated as the oculomotor vermis and characterized by low thresholds (less than 10 microA) and by saccade-related neuronal activity. The saccade evoked by the vermal stimulation has been shown to be the result of activation of Purkinje-cell axons. On the other hand, an anterograde WGA-HRP transport study has indicated that the Purkinje-cell axons of the oculomotor vermis terminate almost exclusively in a fatigial region which is designated as the fastigial oculomotor region (FOR). Microstimulation of the oculomotor vermis and the ventromedial aspect of the FOR results in saccades which differ in their horizontal directions, with vermal stimulation resulting in ipsilateral and fastigial stimulation resulting in contralateral saccades. Since the ipsilateral saccades evoked from the caudal part of the FN were suppressed by bicuculline, they were the results of stimulation of the Purkinje axons. It has been also shown that stimulation of the oculomotor vermis causes inhibition of FOR neurons. Furthermore, fastigial neurons bursting with saccades can be recorded only within the anatomical confines of the FOR. These data are consistent with the concept that signals from the vermis are transmitted to the saccadic nuclei of the brainstem via the FOR. Neurons in the FOR have been shown to project to various saccade-related nuclei, including the riMLF and PPRF. Some neurons in the FOR have divergent axon collaterals which terminate in both the vertical and horizontal preoculomotor nuclei. When the initial eye position is changed by stimulating the FN prior to visually-guided saccades, monkeys cannot compensate for the stimulation-induced movement. When the stimulation is delived 75-130 ms after the target presentation, saccades are triggered prematurely. The visuomotor processing for saccades seems to be completed during this period, which is approximately half the latency of normal saccades. When saccades were triggered prematurely at an early stage of information processing, the eyes moved first in the direction of evoked saccade and then changed the direction toward the location of the target without any intervening period. The retinal error information sampled before the stimulation was not disturbed by the cerebellar stimulation. These observations suggest that cerebellar output impulses are projected downstream to saccade-programming circuits where visual information has already been converted into motor-command signals. The cerebellum is a domain for parallel processing of visuomotor information.  相似文献   

20.
We compared the effects of intracortical microstimulation (ICMS) of the lateral wall of the intraparietal sulcus (LIP) with those of ICMS of the frontal eye field (FEF) on monkeys performing oculomotor tasks. When ICMS was applied during a task that involved fixation, contraversive saccades evoked in the LIP and FEF appeared similar. When ICMS was applied to the FEF at the onset of voluntary saccades, the evoked saccades collided with the ongoing voluntary saccade so that the trajectory of voluntary saccade was compensated by the stimulus. Thus the resultant saccade was redirected and came close to the endpoint of saccades evoked from the fixation point before the start of voluntary saccade. In contrast, when ICMS was applied to the LIP at the onset of voluntary saccades, the resultant saccade followed a trajectory that was different from that evoked from the FEF. In that case, the colliding saccades were redirected toward an endpoint that was close to the endpoint of saccades evoked when animals were already fixating at the target of the voluntary saccade. This finding suggests that the colliding saccade was directed toward an endpoint calculated with reference to the target of the voluntary saccade. We hypothesize that, shortly before initiation of voluntary saccades, a dynamic process occurs in the LIP so that the reference point for calculating the saccade target shifts from the fixation point to the target of a voluntary saccade. Such predictive updating of reference points seems useful for immediate reprogramming of upcoming saccades that can occur in rapid succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号