首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study explored the possibility that cholinergic and GABAergic systems of medial septum (MS) might influence acquisition of memory by regulation of acetylcholine (Ach) and γ-aminobutyric acid (GABA) receptors function in hippocampus and vice versa. The step-through passive avoidance (PA) task was used. The results showed that pre-training intra-MS/CA1 administration of nonselective muscarinic Ach antagonist, scopolamine (0.5, 1 and 2μg/rat) and GABA(A) receptor agonist, muscimol (0.01 and 0.02μg/rat) impaired, while acetylcholinesterase inhibitor, physostigmine (0.5 and 1μg/rat) and GABA(A) receptor antagonist, bicuculline (0.25μg/rat) improved memory acquisition. Moreover, intra-CA1/MS administration of a subthreshold dose of muscimol or bicuculline increased and reversed the impairment induced by scopolamine in MS/CA1 respectively (cross injection). Also, the result revealed that, intra-CA1/MS administration subthreshold dose of muscimol reduced improvement of memory induced by physostigmine in the MS/CA1, respectively (cross injection). On the other hand, subthreshold dose of bicuculline in CA1/MS did not alter memory improvement induced by physostigmine in the other site (MS/CA1). In conclusion, both cholinergic and GABAergic systems not only seem to play a role in the modulation of memory in the MS and CA1 but also to have a complex interaction.  相似文献   

2.
In the present study the effect of ghrelin or ghrelin/nicotine injection into the anterior ventral tegmental area (aVTA) on morphine-induced amnesia in passive avoidance learning have been evaluated. Also, the role of the aVTA nicotinic receptors in possible ghrelin-induced effects has been investigated. All animals were bilaterally implanted with chronic cannulas in the aVTA. A step-through type passive avoidance task was used for measurement of memory. We found that post-training subcutaneous (s.c.) injection of morphine (0.5–7.5 mg/kg) dose-dependently reduced the step-through latency, indicating morphine-induced amnesia. Post-training bilateral infusion of ghrelin (0.3, 1.5 and 3 nmol/μl) in a dose-dependent manner reversed amnesia induced by morphine (7.5 mg/kg, s.c.). Furthermore, reversal effect of ghrelin (3 nmol/μl) was blocked by pre-treatment of intra-aVTA administration of mecamylamine (1–3 μg/rat), a nicotinic acetylcholine receptor antagonist. Intra-aVTA administration of the higher dose of mecamylamine (3 μg/rat) into the aVTA by itself decreased the step-through latency and induced amnesia. In addition, post-training intra-aVTA administration of nicotine (0.25, 0.5, 1 μg/rat) which alone cannot affect memory consolidation, decreased significantly the amnesia induced by morphine (7.5 mg/kg, s.c.). Co-treatment of an ineffective dose of ghrelin (0.3 nmol/μl) with an ineffective dose of nicotine (0.25 μg/rat) significantly increased step-through latency of morphine (7.5 mg/kg, s.c.) treated animals, indicating the synergistic effect of the drugs. Taken together, our results suggest that intra-aVTA administration of ghrelin reversed morphine-induced amnesia and that ghrelin interacts synergistically with nicotine to mitigate morphine-induced amnesia.  相似文献   

3.
In the present study, the effects of intra-central amygdala (CeA) injection of dopamine D1 receptor agonist and antagonist on morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (0.5-10 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intra-CeA administration of the dopamine D1 receptor agonist, SKF 38393 (2 and 4 micro g/rat) with an ineffective dose of morphine (0.5 mg/kg), elicited a significant conditioned place preference. On the other hand, a single dose of SKF 38393 (2 micro g/rat, intra-CeA) in combination with the lower doses (0.5 and 2.5 mg/kg), but not with the higher doses of morphine potentiated morphine-induced CPP. Furthermore, intra-CeA administration of the dopamine D1 receptor antagonist, SCH 23390 (0.5-1 micro g/rat) decreased the acquisition of conditioned place preference induced by morphine (7.5 mg/kg). The response of SKF 38393 was decreased by SCH 23390 (0.75 micro g/rat). SKF 38393 or SCH 23390 by themselves did not elicit any effect on place conditioning. On the other hand, intra-CeA administration of SKF 38393 or SCH 23390 significantly decreased the expression of morphine (7.5 mg/kg)-induced place preference. SKF 38393 or SCH 23390 injections into the CeA had no effects on the locomotor activity on the test sessions. The results indicate that the dopamine D1 receptors in the CeA may be involved in the acquisition and expression of morphine-induced place preference.  相似文献   

4.
In the literature, there is some evidence indicating that H3 histamine receptor antagonists, in particular thioperamide, can facilitate learning and memory retrieval in laboratory rodents. The present study aimed at verifying whether this also holds for memory consolidation, a phase of memory for which there is scarcity of convincing data on the effects of H3 receptor antagonists given systemically. To that end, memory consolidation was assessed in C57BL/6J mice using the one-trial step-through inhibitory avoidance task, the compounds being injected immediately after training (foot-shock) and performance measured 24 h later. More specifically, the following effects of thioperamide (1.25-20 mg/kg) were dose-dependently analysed: (1) its potential direct effects on memory consolidation; (2) its potential reversing effects on retrograde amnesia induced by the NMDA antagonist dizocilpine (MK-801, 0.5 mg/kg) and (3) its potential reversing effects on the well-known amnesia induced by the muscarinic antagonist scopolamine (0.25 mg/kg). We found that thioperamide exerted a dose-dependent facilitative effect on memory consolidation. Furthermore, the H3 receptor antagonist reversed scopolamine- and especially dizocilpine-induced amnesia. The results strongly support the view that the brain mechanisms of memory consolidation involve a functional interaction between the NMDA and the H3 sites.  相似文献   

5.
In the present study, the effects of intra-ventral tegmental area (VTA) injections of morphine on memory retention of a one-trial passive avoidance task have been investigated in morphine-sensitized rats. Retrieval was examined 24h after training and used as memory retention. Sensitization was obtained by subcutaneous (s.c.) injections of morphine, once daily for 3 and 5 days free of the opioid before training. Post-training administration of the both systemic (2.5, 5 and 7.5mg/kg, s.c.) and intra-VTA (5 and 7.5microg/rat) of morphine, dose-dependently decreased memory retention. The response induced by post-training administration of intra-VTA morphine (7.5microg/rat) was significantly reversed in morphine-sensitized rats. The inhibition of morphine-induced amnesia in morphine-sensitized rats was decreased by once daily injections of naloxone (0.5, 1 and 2mg/kg, s.c.), SCH 23390 (0.025, 0.05 and 0.1mg/kg, s.c.) or sulpiride (25, 50 and 100mg/kg, s.c.), during the sensitization. The results suggest that VTA has an important role in morphine-induced amnesia and morphine sensitization affects this process through opioid and dopamine receptors.  相似文献   

6.
Post-training administration of corticosterone (0.1–1 mg/kg) dose-dependently improves retention of an inhibitory avoidance response in C57BL/6 mice, whilst impairing it in the DBA/2 strain. The effects on retention performance induced by the hormone in C57BL/6 and DBA/2 mice appear to be due to an effect on memory consolidation. In fact, they were observed when the drug was given at short, but not long, periods of time after training, i.e., when the memory trace is susceptible to modulation. In the absence of pharmacological manipulations, the two strains showed a significant increase of plasma corticosterone levels 15 min after passive avoidance training that disappeared within 30 min, and similar step-through latencies on the test day. However, although no strain differences were observed for sensitivity to shock thresholds, the increase in plasma corticosterone levels elicited by passive avoidance training was more pronounced in mice of the DBA/2 strain (+ 160%) than in C57BL/6 mice (+ 52%). Moreover, DBA/2 mice were characterised by a higher number of either Type I or Type Il corticosteroid receptors in the hippocampus in comparison with C57BL/6 mice. Finally, the strain-dependent effects of an intermediate dose of corticosterone were enhanced by pretreatment with either the selective D1 or D2 dopamine (DA) receptor agonists SKF 38393 and LY 171555 and reversed by pretreatment with either selective D1 or D2 DA receptor antagonists SCH 23390 and (−)-sulpiride administered at per se non-effective doses. The present results indicate that studies in inbred strains of mice can dissect opposite effects of corticosterone on memory consolidation possibly due to its action at different steps or components of the multiphasic pathway of memory consolidation. Moreover, they suggest that some of these steps involve an interaction between the hormone and brain DA system.  相似文献   

7.
The still unknown contribution of the D4 receptors to memory consolidation was studied examining the memory effects of the dopamine D4 agonist PD168,077, the putative dopamine D4 antagonist L745,870, their mutual combination, and the combination of the D4 agonist with representative compounds acting as agonist or antagonist on the D1, D2 and the D3 receptors. Memory consolidation was assessed in C57BL/6J mice using the one-trial step-through inhibitory avoidance task, the compounds being injected immediately after training (foot-shock) and performance measured 24h later. PD168,077 (0.5-10mg/kg) dose-dependently improved memory performance and L745,870 (0.05-5mg/kg) at doses lower than 1mg/kg increased and at doses higher than 1mg/kg impaired memory performance. PD168,077 did not affect the paradoxical promnesic effect of low doses (0.1-0.5mg/kg) of L745,870, but antagonised the memory-impairing effect induced by 5mg/kg L745,870. The D1 antagonist SCH23390 (0.025-0.05 mg/kg) and the D2 antagonist eticlopride (0.01-0.05 mg/kg) antagonised the promnesic effects of PD168,077, which attenuated the decreasing effect on memory consolidation of both D1 and D2 antagonists. Accordingly, the D1 agonist SKF38393 (5-20mg/kg) and the D2 agonist quinelorane (0.1-1 mg/kg) both synergistically magnified the memory-improving effects of the D4 agonist. The dopamine D3 antagonist U99194A (2.5-10mg/kg) did not affect the promnesic effects induced by the D4 agonist, which nevertheless abolished the U99194A-induced promnesic effects. Additionally, the amnesic effects produced by the D3 agonist 7-OH-DPAT (0.01-1 microg/kg) was attenuated by PD168,077. These results suggest a potential role of dopamine D4 receptors in memory consolidation, which would be similar to that of the D1 and D2 receptors and probably opposite to that of the D3 receptors.  相似文献   

8.
The effects of extracts of Crocus sativus L. (CSE), on memory were investigated in the rat by using the object recognition and the step-through passive avoidance task. In the first study, post-training administration of CSE (30 and 60 g/kg) successfully counteracted extinction of recognition memory in the normal rat, suggesting that CSE modulates storage and/or retrieval of information. In a subsequent study, pre-training treatment with CSE (30 and 60 mg/kg) significantly antagonized the scopolamine (0.75 mg/kg)-induced performance deficits in the step-through passive avoidance test. These results support and extend prior findings about the implication of CSE in learning and memory mechanisms.  相似文献   

9.
In the present study, the effects of repeated intra nucleus accumbens (intra-NAc) injections of dopamine receptor agents on morphine-induced conditioned place preference (CPP) in rats were investigated by using an unbiased 3-days schedule of place conditioning design. The animals receiving once daily subcutaneous (s.c.) injections of morphine (0.5-7.5mg/kg) or saline (1.0 ml/kg, s.c.) showed a significant place preference in a dose-dependent manner. The maximum response was observed with 5mg/kg of the opioid. Three days intra-NAc injections of apomorphine (0.5 and 1 microg/rat) followed by 5 days free of the drug, increased or decreased, respectively CPP induced by the lower dose of morphine (0.5mg/kg, s.c.). Morphine-induced CPP was also significantly increased in the animals that had previously received the 3-days intra-NAc injections of SKF 38393 (4 and 8 microg/rat) or quinpirole (2 and 4 microg/rat, intra-NAc). The CPP induced by a higher dose of morphine (5mg/kg, s.c.) was significantly decreased in the animals that had previously received the 3-days SCH 23390 (0.005 and 0.01 microg/rat; intra-NAc). On the other hand, the CPP induced by morphine (5mg/kg, s.c.) was significantly increased in the animals that had previously received the 3-days sulpiride administration (5 microg/rat, intra-NAc). The 3-days administration of apomorphine, SKF 38393 or quinpirole, but not SCH 23390 and sulpiride reduced the locomotor activity in the test session. It is concluded that repeated injections of dopamine receptors agents followed by 5 days free of the drugs in the NAc can affect morphine reward.  相似文献   

10.
Studies have shown that intracerebral administration of ghrelin hormone affects learning and memory in different experimental models of learning. However, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) on different stages of learning has not been investigated. In this study the effect of intracerebroventricular (i.c.v) injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) was examined on acquisition and consolidation of learning in the passive avoidance task. In total, 72 male Wistar rats weighing 230–280 g were randomly distributed into 9 groups of 8 each. Animals underwent stereotaxic surgery and cannulated in their right ventricle. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.2, 2, 20 and 80 nM/5 μl; i.c.v) 10 min before, or (2, 20 and 80 nM/5 μl; i.c.v) immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. Pre-training injection of d-Lys-3-GHRP-6 decreased step-through latency (STL) and increased number of step-throughs into the dark compartment (NST) in a dose-dependent manner, but failed to be statistically significant. It also increased time spent in the dark compartment (TDC), significantly and in a dose-dependent manner. Post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased time spent in the dark compartment and number of step-throughs into the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat brain impairs memory encoding on both acquisition and consolidation stages. Further studies are required to elucidate the main brain regions affected by the antagonist.  相似文献   

11.
Nitric oxide (NO) is considered as an intracellular messenger in the brain. Its involvement in learning and memory processes has been proposed. The present study was designed to investigate the effects of the NO-releasing derivative of ferulic acid NCX 2057 on rats' recognition memory. For this purpose the object recognition task was selected. Post-training treatment with NCX 2057 (10 mg/kg, i.p.) and with the reference compound, the NO donor molsidomine (4 mg/kg, i.p.), antagonized extinction of recognition memory in the normal rat. Conversely, animals treated with the parent compound ferulic acid (1.9, 6.2 and 18.7 mg/kg, i.p.) failed to do so. In addition, NCX 2057 (3 and 10 mg/kg, i.p) reversed the scopolamine (0.2 mg/kg, s.c.)-induced performance deficits in this recognition memory task. These results indicate that this novel NO donor may modulate different aspects of recognition memory and suggest that an interaction between the nitrergic and cholinergic system is relevant to cognition.  相似文献   

12.
The effects of the D-1 agonist SKF 38393 on tonic activity of rat substantia nigra pars compacta dopamine neurons were studied using extracellular, single-unit recording techniques. Unlike nonselective D-1/D-2 dopamine agonists or the D-2 agonist quinpirole, SKF 38393 did not inhibit dopamine neuronal activity when applied iontophoretically or when administered intravenously in doses up to 20 mg/kg to chloral hydrate-anesthetized rats. Moreover, pretreatment with SKF 38393 did not alter the inhibitory response of these neurons to apomorphine or the D-2 agonist quinpirole. However, in locally anesthetized, gallamine-treated, artificially respired rats, dopamine cell activity was significantly altered by i.v. administration of SKF 38393; firing rate increases and decreases were observed. Administration of the inactive enantiomer of SKF 38393, S-SKF 38393, did not induce similar changes in parallel experiments. These results support the idea that unlike D-2 autoreceptor stimulation, D-1 receptor stimulation does not exert a direct local effect on dopamine neurons in the substantia nigra pars compacta and suggest that D-1 receptor stimulation at sites postsynaptic to the dopamine cells may indirectly affect the activity of some dopamine neurons through long-loop feedback mechanisms.  相似文献   

13.
Rats with unilateral 6-hydroxydopamine (6-OHDA) lesions exhibit behavioral sensitization following repeated treatment with dopamine agonists, a phenomenon called "priming." Priming has two distinct phases: induction and expression. Priming induction using three injections with D1/D2 agonist apomorphine (0.5 mg/kg) or D1 agonist SKF38393 (10 mg/kg) allows priming expression, robust contralateral rotational behavior and striatal Fos expression, following a challenge with the D2 agonist quinpirole (0.25 mg/kg). We examined the roles of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors on dopamine agonist priming. Administration of the NMDA antagonist (+)5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK801) (0.5 mg/kg) blocked apomorphine-priming of quinpirole-mediated responses, while MK801 dose-dependently attenuated SKF38393-priming of quinpirole-mediated striatal Fos expression and had no effect on SKF38393-priming of quinpirole-mediated rotational behavior. In contrast, administration of the AMPA antagonist 2,3-dihydroxy-6-nitro-7sulfamoyl-benzo[f]quinoxaline (NBQX) (5 or 10 mg/kg) potentiated apomorphine- and SKF38393-priming of quinpirole-mediated striatal Fos expression, but had no effect on their priming of quinpirole-mediated rotational behavior. In SKF38393-primed 6-OHDA rats, administration of MK801 (0.5 mg/kg) blocked the expression of quinpirole-mediated responses, while administration of NBQX (10 mg/kg) or the noncompetitive AMPA antagonist 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine dihydrochloride (GYKI52466) (5 or 15 mg/kg) had no effect. These results suggest that NMDA and AMPA glutamate receptors have differing roles in dopamine agonist priming-with NMDA receptors required for D1/D2 priming induction and D2-mediated priming expression, and AMPA receptors inhibiting priming induction of D2-mediated immediate early gene expression in the striatum, but not affecting priming induction of D2-mediated rotational behavior or the expression of D2-mediated responses.  相似文献   

14.
It has been proposed that distributed neuronal networks in the medial temporal lobe process different characteristics of a recognition event; the hippocampus has been associated with contextual recollection while the perirhinal cortex has been linked with familiarity. Here we show that D1 dopamine receptor activity in these two structures participates differentially in object recognition memory consolidation. The D1 receptor antagonist SCH23390 was infused bilaterally 15 min before a 5 min sample phase in either rats' perirhinal cortex or dorsal hippocampus, and they were tested 90 min for short‐term memory or 24 h later for long‐term memory. SCH23390 impaired long‐term memory when infused in the perirhinal cortex but not when infused in the hippocampus. Conversely, when the D1 receptor agonist SKF38393 was infused 10 min before a 3 min sample phase in the perirhinal cortex, long‐term memory was enhanced, however, this was not observed when the D1 agonist was infused in the hippocampus. Short‐term memory was spared when SCH23390 or SKF38393 were infused in the perirhinal cortex or the dorsal hippocampus suggesting that acquisition was unaffected. These results suggest that dopaminergic transmission in these medial temporal lobe structures have a differential involvement in object recognition memory consolidation. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Previous research has revealed a role of repeated D1 dopamine receptor stimulation in the development of behavioral sensitization to the D1/D2 agonist apomorphine. The present experiments assessed the role of repeated D1 receptor stimulation in neurochemical changes accompanying locomotor sensitization to apomorphine. To assess direct effects of D1 stimulation on dopamine synthesis, rats were injected with the D1 agonist SKF 38393 (8 mg/kg), followed by an injection with the 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor, NSD-1015. DOPA accumulation, assessed in striatal, nucleus accumbens-olfactory tubercle (NAOT), and ventral mesencephalon (VM) tissue samples, was not affected by acute SKF 38393. In the second experiment, rats were treated with 10 daily injections of vehicle, apomorphine (5 mg/kg) or the D1 agonist SKF 38393 (8 or 16 mg/kg). Daily measures of locomotor activity demonstrated a progressive increase in the apomorphine-treated rats, but not the SKF 38393-treated rats, across the 10 days. On day 11, all rats were injected with NSD-1015 for measurement of DOPA accumulation. Dopamine synthesis was enhanced in the striatum after repeated apomorphine treatment. In contrast, repeated SKF 38393 treatment resulted in either a small decrease or no change in DOPA accumulation in the different brain regions (striatum, NAOT, VM). In the third experiment, tissue levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and [3H]SCH 23390 binding to D1 receptors were measured in rats treated with 10 daily injections of vehicle, apomorphine (5 mg/kg), or SKF 38393 (16 mg/kg). In the striatum and NAOT, none of the repeated drug treatments had an effect on DOPAC or dopamine levels. In the VM, DOPAC levels were enhanced following repeated apomorphine, but not repeated SKF 38393, whereas dopamine levels were not affected by either drug treatment. D1 binding was not altered by the repeated drug treatments. Since repeated D1 stimulation by SKF 38393 did not produce the same alterations in dopamine synthesis and DOPAC levels as repeated apomorphine, the neurochemical effects accompanying locomotor sensitization to apomorphine probably are not mediated by D1 receptors. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Rats were bilaterally implanted with indwelling cannulae in the CA1 region of the dorsal hippocampus. After recovery from surgery, they were trained in a one-trial, step-down inhibitory avoidance task using a 0.5 mA foot shock. The animals received intrahippocampal infusions of either vehicle or anandamide (100 microM, 0.5 microl/side) 30 min before training. Then, either immediately post-training or 3 h later, they received infusions of saline, noradrenaline (0.5 microg/side), SKF 38393 (1.5 microg/side), oxotremorine (0.6 microg/side) or Sp-cAMPs (0.5 microg/side) also in the hippocampus. All animals were tested for retention 24-h post-training. Anandamide produced anterograde amnesia. Immediate, but not delayed, post-training treatment with Sp-cAMPs and noradrenaline reversed this effect. SKF 38393 and oxotremorine had no influence on the amnesia caused by anandamide either when given immediately or 3 h after training. The results suggest that the amnesic effect of anandamide is related to the known noradrenergic regulation of cAMP-dependent protein kinase (PKA) activity previously described in the hippocampus immediately after avoidance training, which is crucial to long-term memory (LTM) formation.  相似文献   

17.

Objective

It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson''s disease. The effects of SKF38393 (a D1 receptor agonist) and Quinpirole (a D2 receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion.

Methods

SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats.

Results

The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration ofQuinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons.

Conclusion

This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of D1 and D2 agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and D1, D2 selective antagonist.  相似文献   

18.
Recently we have reported that injections of d-amphetamine into the nucleus accumbens enhanced the number of switches to cue-directed behaviours without an effect on the number of switches to non-cue-directed behaviours in a swimming test. In the present study we investigated to what extent this effect is mediated via the dopaminergic system in the nucleus accumbens. For that purpose drugs selective for D1- and D2-receptors were studied in this swimming test. It was found that the selective D2-agonist LY 171 555 (50 ng/0.5 microliters) enhanced the number of different cue-directed behaviours. The selective D2-antagonist raclopride (50 ng/0.5 microliters) decreased it. Furthermore an ineffective dose of raclopride attenuated the effect of LY 171 555. Both the selective D1-antagonist SCH 23390 (400 ng/0.5 microliters) and the selective D1-agonist SKF 38393 (50-400 ng/0.5 microliters) decreased the number of different cue-directed behaviours. The effect induced by SCH 23390 could not be blocked by SKF 38393. Similarly the effect induced by SKF could not be attenuated by SCH 23390. These data point to a role for dopamine D2-receptors in the ability to switch to cue-directed behaviours. The present findings do not yet allow the conclusion that D1-receptors are involved.  相似文献   

19.
Summary Mice treated with reserpine (5 mg/kg IP), 24h beforehand, were completely akinetic. Fluent locomotion was reinstated with the D1-selective agonist SKF 38393 (3–30 mg/kg IP), the D2-selective agonist RU 24213 (0.5–5 mg/kg SC) and the mixed D1/D2 agonist apomorphine (0.025–0.5 mg/kg SC). Clonidine (0.03125–1 mg/kg IP) caused a dose-dependent sedation in dopamine-intact mice, but had no effect by itself on the locomotor activity of monoamine-depleted mice. In drug interaction experiments, clonidine did not modify the motor stimulant action of SKF 38393, but greatly enhanced the motor responses to RU 24213 and apomorphine. These results support the hypothesis that -adrenoceptor agonists facilitate dopamine D2 but not dopamine D1 motor responding in the reserpinetreated mouse model of Parkinson's disease.  相似文献   

20.
The dopamine receptor family consists of D1-D5 receptors (D1R-D5R), and we explored the contributions of each dopamine receptor subtype in the piriform cortex (PirC) to social interaction impairment (SII). Rats received behavioral tests or electrophysiological recording of PirC neuronal activity after injection of the D1R/D5R agonist SKF38393, the D2R/D3R/D4R agonist quinpirole, or both, with or without pretreatment with dopamine receptor antagonists, D1R or D5R antisense oligonucleotides, the cannabinoid CB1 receptor antagonist AM281, or the endocannabinoid transporter inhibitor VDM11. Systemic injection of SKF38393 and quinpirole together, but not each one alone, induced SII and increased PirC firing rate, which were blocked by D1R or D2R antagonist. Intra-PirC microinfusion of SKF38393 and quinpirole together, but not each one alone, also induced SII, which was blocked by D1R antisense oligonucleotides or D2R antagonist but not by D3R or D4R antagonist or D5R antisense oligonucleotides. SII induced by intra-PirC SKF38393/quinpirole was blocked by AM281 and enhanced by VDM11, whereas neither AM281 nor VDM11 alone affected social interaction behavior. Coadministration of SKF38393 and quinpirole produced anxiolytic effects without significant effects on locomotor activity, olfaction, and acquisition of olfactory short-term memory. These findings suggest that SII induced by coactivation of PirC D1R and D2R requires the endocannabinoid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号