首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 研究S-腺苷甲硫氨酸(SAM)对β-淀粉样肽(Aβ)抑制谷胱甘肽(GSH)生成的影响.方法 培养人神经母细胞瘤细胞(SH-SY5Y)和人胶质瘤细胞系(U87),分为对照组、SAM处理组、Aβ处理组、Aβ+SAM组,用Western blot方法检测谷酰胺-半胱氨酸连接酶催化亚基(GCLC)、谷酰胺-半胱氨酸连接酶调节亚基(GCLM)和谷胱甘肽合成酶(GS)的蛋白表达量,实时定量PCR方法检测GCLC和GCLM mRNA表达量,用GSH试剂盒检测细胞GSH的含量.结果 SH-SY5Y细胞和U87细胞经Aβ1-42处理后,GSH含量降低,合成过程中的催化酶GCLC、GCLM和GS的mRNA和相应蛋白表达量均下降,SAM干预后,GSH含量增加,GCLC、GCLM和GS的mRNA和相应蛋白表达量增高.结论 SAM可通过增加GCLC、GCLM及GS的表达,提高GSH的含量,抑制Aβ诱导的氧化应激损伤,发挥保护作用.  相似文献   

2.
Background: STOP/MAP6 null (KO) mice recapitulate behavioral abnormalities related to positive and negative symptoms and cognitive deficits of schizophrenia. Here, we investigated whether decreased expression of STOP/MAP6 proteins in heterozygous mice (only one allele expressed) would result in abnormal behavior related to those displayed by STOP null mice. Methods: Using a comprehensive test battery, we investigated the behavioral phenotype of STOP heterozygous (Het) mice compared with STOP KO and wild type (WT) mice on animals raised either in standard conditions (controls) or submitted to maternal deprivation. Results: Control Het mice displayed prominent deficits in social interaction and learning, resembling KO mice. In contrast, they exhibited short-lasting locomotor hyperreactivity to acute mild stress and no impaired locomotor response to amphetamine, much like WT mice. Additionally, perinatal stress deteriorated Het mouse phenotype by exacerbating alterations related to positive symptoms such as their locomotor reactivity to acute mild stress and psychostimulant challenge. Conclusion: Results show that the dosage of susceptibility genes modulates their putative phenotypic contribution and that STOP expression has a high penetrance on cognitive abilities. Hence, STOP Het mice might be useful to investigate cognitive defects related to those observed in mental diseases and ultimately might be a valuable experimental model to evaluate preventive treatments.Key words: schizophrenia, animal model, microtubule, neurodevelopment, behavioral phenotype, gene x environment interaction  相似文献   

3.
The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.  相似文献   

4.
Neuroinflammation has been implicated in cognitive deficits in neurological and neurodegenerative diseases. Lipopolysaccharide (LPS)-induced neuroinflammation and the breakdown of the blood–brain barrier can be attenuated in mice with equilibrative nucleoside transporter-2 (ENT2/Ent2) deletion. The present study was aimed to investigate the role of ENT2 in cognitive and neuronal functions under physiological and inflammatory conditions, in terms of behavioral performance and synaptic plasticity in saline- and LPS-treated Ent2 knockout (KO) mice and their wild-type (WT) littermate controls. Repeated administrations of LPS significantly impaired spatial memory formation in Morris water maze and hippocampal-dependent long-term potentiation (LTP) in WT mice. The LPS-treated WT mice exhibited significant synaptic and neuronal damage in the hippocampus. Notably, the LPS-induced impairment in spatial memory and LTP performance were attenuated in Ent2 KO mice, along with the preservation of neuronal survival. The beneficial effects were accompanied by the normalization of excessive extracellular glutamate and aberrant downstream signaling of glutamate receptor activation, including the upregulation of phosphorylated p38 mitogen-activated protein kinase and the downregulation of phosphorylated cyclic adenosine monophosphate-response element-binding protein. There was no significant difference in behavioral outcome and all tested parameters between these two genotypes under physiological condition. These results suggest that ENT2 plays an important role in regulating inflammation-associated cognitive decline and neuronal damage.  相似文献   

5.
Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as “Spice” or “K2” to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of “Spice/K2”, including JWH‐081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH‐081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH‐081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long‐term potentiation (LTP), hippocampal‐dependent learning and memory tasks using CB1 receptor wild‐type (WT) and knockout (KO) mice. Acute administration of JWH‐081 impaired CaMKIV phosphorylation in a dose‐dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH‐081 (1.25 mg/kg). JWH‐081 at higher dose impaired CaMKIV and CREB phosphorylation in a time‐dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH‐081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH‐081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y‐maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH‐081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female.  相似文献   

7.
Sensorimotor gating, measured by prepulse inhibition (PPI), is a fundamental form of information processing that is deficient in schizophrenia patients and mice lacking the gene for metabotropic glutamate receptor 5 (mGluR5). Both breeding strategies and mothering behaviors are capable of influencing the behavioral phenotype of knockout (KO) mice. Previous studies found a PPI deficit and increased startle magnitudes in mGluR5 KO mice derived from homozygous matings. Here we compared the PPI of mGluR5 wildtype (WT) and KO mice derived from heterozygous matings to that seen in mice derived from homozygous matings. Possible influences of postnatal mothering behaviors were examined using two different methods of cross-fostering. The potential developmental nature of the PPI deficit of the mGluR5 KO mice was also addressed via acute administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP)to C57BL/6J mice. The mGluR5 KO mice exhibited reduced PPI independently of breeding strategy or postnatal mothering behavior. Startle magnitude, however, varied with breeding strategy. The PPI deficit seen in the mGluR5 KO mice is not mimicked by acute administration of an mGluR5 antagonist, and is therefore most likely due to compensatory alterations in neuronal circuitry occurring during development independent of maternal behaviors in the postnatal environment.  相似文献   

8.
Attentional dysfunction in schizophrenia (SZ) is a core deficit that contributes to multiple cognitive deficits and the resulting functional disability. However, developing procognitive therapeutics for neuropsychiatric disorders have been limited by a ‘translational gap''—a lack of cognitive paradigms having cross-species translational validity and relevance. The present study was designed to perform an initial validation of the cross-species homology of the 5-choice Continuous Performance Test (5C-CPT) in healthy nonpsychiatric comparison subjects (NCS), SZ patients and mice under pharmacologic challenge. The 5C-CPT performance in SZ patients (n=20) was compared with age-matched NCS (n=23). The effects of the general muscarinic receptor antagonist scopolamine on mice (n=21) performing the 5C-CPT were also assessed. SZ subjects exhibited significantly impaired attention in the 5C-CPT, driven by reduced target detection over time and nonsignificantly increased impulsive responding. Similarly, scopolamine significantly impaired attention in mice, driven by reduced target detection and nonsignificantly increased impulsive responding. Scopolamine also negatively affected accuracy and speed of responding in mice, although these measures failed to differentiate SZ vs NCS. Thus, mice treated with scopolamine exhibited similar impairments in vigilance as seen in SZ, although the differences between the behavioral profiles warrant further study. The availability of rodent and human versions of this paradigm provides an opportunity to: (1) investigate the neuroanatomic, neurochemical and genomic architecture of abnormalities in attention observed in clinical populations such as SZ; (2) develop and refine animal models of cognitive impairments; and (3) improve cross-species translational testing for the development of treatments for these impairments.  相似文献   

9.
In the present study, we used a new training paradigm in the intelliCage automatic behavioral assessment system to investigate cognitive functions of the transgenic mice harboring London mutation of the human amyloid precursor protein (APP.V717I). Three groups of animals: 5-, 12- and 18-24-month old were subjected to both Water Maze training and the IntelliCage-based appetitive conditioning. The spatial memory deficit was observed in all three groups of transgenic mice in both behavioral paradigms. However, the APP mice were capable to learn normally when co-housed with the wild-type (WT) littermates, in contrast to clearly impaired learning observed when the transgenic mice were housed alone. Furthermore, in the transgenic mice kept in the Intellicage alone, the cognitive deficit of the young animals was modulated by the circadian rhythm, namely was prominent only during the active phase of the day. The novel approach to study the transgenic mice cognitive abilities presented in this paper offers new insight into cognitive dysfunctions of the Alzheimer's disease mouse model.  相似文献   

10.
Li W  Dai S  An J  Xiong R  Li P  Chen X  Zhao Y  Liu P  Wang H  Zhu P  Chen J  Zhou Y 《Experimental neurology》2009,215(1):69-76
The inactivation of the A2A receptor (A2AR) has been shown to neuroprotect against brain injury in several animal models of neurological disorders including stroke and Parkinson's disease. However, despite marked elevation of adenosine level, the role of the A2A in traumatic brain injury (TBI) remains unclear. In the present study, we investigated the effects of genetic inactivation of A2ARs in the acute stage. The A2AR knock-out (KO) mice and their wild-type (WT) littermates were subjected to cortical impact injury by a dropping weight. The control group was only craniotomized without TBI. At 24 h post-TBI, the neurological deficit scores of the KO mice were significantly lower than that of WT littermates. Consistent with the behavioral changes, the brain water contents as well as histological changes and the TUNEL-positive cells of the injured cortex of the KO mice were significantly lower than that of WT littermates. Furthermore, the glutamate level in the cerebral spinal fluid (CSF) of the KO mice was also significantly lower than that of WT littermates. In addition, we found that at 12 h post-TBI the mRNA and protein levels of TNF-α and IL-1β were higher in the KO mice than that in the WT littermates. However, at 24 h post-TBI, the level of TNF-α and IL-1β continually increased in the WT mice but largely declined in the KO mice. These results suggest that the genetic inactivation of A2AR protects against TBI, which is mainly associated with the suppression of glutamate level.  相似文献   

11.
Mannose binding lectin (MBL) initiates complement activation and exacerbates tissue damage after systemic ischemia/reperfusion. We tested the hypothesis that MBL activates complement and worsens outcome using two levels of controlled cortical impact (CCI) in mice. After moderate CCI (0.6 mm depth), MBL immunostaining was detected on injured endothelial cells of wild-type (WT) mice and C3d was detected in MBL KO (deficient in MBL A/C) and WT mice, suggesting that MBL is dispensable for terminal complement activation after CCI. Brain neutrophils, edema, blood-brain barrier permeability, gross histopathology, and motor dysfunction were similar in injured MBL KO and WT mice. In mice subjected to mild CCI (0.2 mm), MBL KO mice had almost two-fold increased acute CA3 cell degeneration at 6 h (P<0.01 versus WT). Naive MBL KO mice had decreased brain volume but performed similar to WT mice in two distinct Morris water maze (MWM) paradigms. However, injured MBL KO mice had impaired performance in cued platform trials (P<0.05 versus WT), suggesting a transient nonspatial learning deficit in injured MBL KO mice. The data suggest that MBL deficiency increases susceptibility to CCI through C3-independent mechanisms and that MBL-deficient patients may be at increased risk of poor outcome after traumatic brain injury.  相似文献   

12.
In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.  相似文献   

13.
The melanin-concentrating hormone (MCH) system is anatomically and functionally interlaced with the mesocorticolimbic dopamine system. Therefore, we investigated whether MCH(1) receptor knockout (KO) mice are more susceptible than wild-type (WT) mice to psychostimulant-induced locomotor stimulation and sensitization, dopamine receptor-mediated phosphorylation events and c-fos expression within the frontal cortex and ventral striatum. MCH(1) receptor KO mice have 20% higher basal locomotor activity, are hypersensitive to the locomotor activating effects of d-amphetamine (1 mg/kg), and develop behavioral sensitization to a regimen of repeated d-amphetamine administration that does not induce sensitization in WT mice. In addition, d-amphetamine-mediated regulation of p44-mitogen activated protein kinase (MAPK) phosphorylation within the frontal cortex was significantly enhanced in MCH(1) receptor KO mice, when compared with WT mice. No significant genotype difference in the effects of d-amphetamine on MAPK phosphorylation events within the ventral striatum, phosphorylation at Ser(897) of the NR1 subunit of the NMDA receptor or Ca(2+) and cyclic AMP response-element binding-protein (CREB) at Ser(133) in the frontal cortex was detected. d-Amphetamine (3 mg/kg) increased c-fos expression within the frontal cortex in MCH(1) receptor KO mice, but not WT mice. There were no d-amphetamine-induced changes in c-fos expression within the ventromedial striatum in KO or WT mice. Overall, MCH(1) receptor KO mice are hypersensitive to the behavioral and molecular effects of the dopaminergic psychostimulant d-amphetamine. Increased frontal cortical MAPK phosphorylation and c-fos expression in MCH(1) receptor KO mice indicates that the MCH(1) receptor may be an important target for treating neuropsychiatric disorders characterized by frontal cortex dysfunction, including depression, attention deficit hyperactivity disorder (ADHD) and schizophrenia.  相似文献   

14.
Facial nerve axotomy is a well-described injury paradigm for peripheral nerve regeneration and facial motoneuron (FMN) survival. We have previously shown that CD4+ T helper (Th) 1 and 2 effector subsets develop in the draining cervical lymph node, and that the IL-4/STAT-6 pathway of Th2 development is critical for FMN survival after transection axotomy. In addition, delayed behavioral recovery time in immunodeficient mice may be due to the absence of T and B cells. This study utilized a crush axotomy paradigm to evaluate FMN survival and functional recovery in WT, STAT-6 KO (impaired Th2 response), T-Bet KO (impaired Th1 response), and RAG-2 KO (lacking mature T and B cells) mice to elucidate the contributions of specific CD4+ T cell subsets in motoneuron survival and recovery mechanisms. STAT-6 KO and RAG-2 KO mice exhibited decreased FMN survival after crush axotomy compared to WT, supporting a critical role for the Th2 effector cell in motoneuron survival before target reconnection. Long term FMN survival was sustained through 10 wpo after crush axotomy in both WT and RAG-2 KO mice, indicating that target derived neurotrophic support maintains FMN survival after target reconnection. In addition, RAG-2 KO mice exhibited delayed functional recovery compared to WT mice. Both STAT-6 and T-Bet KO mice exhibited partially delayed functional recovery compared to WT, though not to the extent of RAG-2 KO mice. Collectively, our findings indicate that both pro- and anti-inflammatory CD4+ T cell responses contribute to optimal functional recovery from axotomy-induced facial paralysis, while FMN survival is supported by the anti-inflammatory Th2 response alone.  相似文献   

15.
Although critical for transducing seasonal information, melatonin has also been implicated in several physiological systems, as well as the regulation of behavioral and cognitive processes. Therefore, we investigated the neurobehavioral effects of mice missing the type 1 melatonin receptor (MT1). Male and female MT1 knockout (MT1-/-) and wild-type (WT) mice were tested in the acoustic startle/prepulse inhibition (PPI), open field and Porsolt forced swim tests. Male and female MT1-/- mice displayed dramatically impaired prepulse inhibition in the acoustic startle response. Female WT mice were more active in the open field than WT males. However, male and female MT1-/- mice did not differ in total locomotor activity. WT animals spent significantly more time in the center of the arena (a behavioral outcome associated with reduced anxiety-like behavior) than MT1-/- mice. Also, the sex difference between male and female WT mice in the amount of time spent in the center versus periphery was not observed among MT1-/- mice. Both male and female MT1-/- mice significantly increased the time spent immobile in the forced swim test, an indication of depressed-like behavior. The lifetime lack of MT1 signaling contributes to behavioral abnormalities including impairments in sensorimotor gating and increases in depressive-like behaviors. Taken together, MT1 receptor signaling may be important for normal brain and behavioral function.  相似文献   

16.
BACKGROUND: Knockout (KO) mice invalidated for the dopamine transporter (DAT) constitute a powerful animal model of neurobiological alterations associated with hyperdopaminergia relevant to schizophrenia and attention-deficit/hyperactivity disorder (ADHD). METHODS: Because of continuously increasing evidence for a neuromodulatory role of endocannabinoids in dopamine-related pathophysiological responses, we assessed endocannabinoid signaling in DAT KO mice and evaluated the ability of endocannabinoid ligands to normalize behavioral deficits, namely spontaneous hyperlocomotion in these mice. RESULTS: In DAT KO mice, we found markedly reduced anandamide levels, specifically in striatum, the dopamine nerve terminal region. Furthermore, three distinct indirect endocannabinoid agonists, the selective anandamide reuptake inhibitors AM404 and VDM11 and the fatty acid amidohydrolase inhibitor AA5HT, attenuated spontaneous hyperlocomotion in DAT KO mice. The hypolocomotor effects of AM404, VDM11, and AA5HT were significantly attenuated by co-administration of the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine but not the selective cannabinoid type 1 (CB1)receptor antagonist AM251. Interestingly, TRPV1 binding was increased in the striatum of DAT KO mice, while CB1 receptor binding was unaffected. CONCLUSIONS: These data indicate a dysregulated striatal endocannabinoid neurotransmission associated with hyperdopaminergic state. Restoring endocannabinoid homeostasis in active synapses might constitute an alternative therapeutic strategy for disorders associated with hyperdopaminergia. In this process, TRPV1 receptors seem to play a key role and represent a novel promising pharmacological target.  相似文献   

17.
Schizophrenia (SZ) is a severe psychiatric illness associated with an elevated risk for developing Alzheimer’s disease (AD). Both SZ and AD have white matter abnormalities and cognitive deficits as core disease features. We hypothesized that aging in SZ patients may be associated with the development of cerebral white matter deficit patterns similar to those observed in AD. We identified and replicated aging-related increases in the similarity between white matter deficit patterns in patients with SZ and AD. The white matter “regional vulnerability index” (RVI) for AD was significantly higher in SZ patients compared with healthy controls in both the independent discovery (Cohen’s d = 0.44, P = 1·10–5, N = 173 patients/230 control) and replication (Cohen’s d = 0.78, P = 9·10–7, N = 122 patients/64 controls) samples. The degree of overlap with the AD deficit pattern was significantly correlated with age in patients (r = .21 and .29, P < .01 in discovery and replication cohorts, respectively) but not in controls. Elevated RVI-AD was significantly associated with cognitive measures in both SZ and AD. Disease and cognitive specificities were also tested in patients with mild cognitive impairment and showed intermediate overlap. SZ and AD have diverse etiologies and clinical courses; our findings suggest that white matter deficits may represent a key intersecting point for these 2 otherwise distinct diseases. Identifying mechanisms underlying this white matter deficit pattern may yield preventative and treatment targets for cognitive deficits in both SZ and AD patients.  相似文献   

18.
HPC-1/syntaxin1A (STX1A) is considered to regulate exocytosis in neurones and endocrine cells. Previously, we reported that STX1A null mutant (STX1A KO) mice unexpectedly showed normal glutamatergic and GABAergic fast synaptic transmission but exhibited disturbances in monoaminergic transmission, such as serotonin, 5-hydroxytryptamine (5-HT), which may induce attenuation of latent inhibition. These results suggest that STX1A may contribute to dense-core vesicle exocytosis in vivo. Thus, we hypothesised that the lack of STX1A might affect the secretion of several hormones, as also mediated by dense-core vesicles exocytosis. In the present study, we focused on the hypothalamic-pituitary-adrenal (HPA) axis, which is a neuroendocrine system that regulates responses to stress stimuli and is considered to be associated with neuropsychiatric disorders. Specifically, we examined whether the HPA axis is impaired in STX1A KO mice. Interestingly, plasma concentrations of both corticosterone (CORT) and adrenocorticotrophin hormone (ACTH) during the resting condition decreased in STX1A KO mice compared to WT mice. Additionally, elevated plasma CORT, ACTH and corticotrophin-releasing hormone (CRH) which were usually observed after acute restraint stress, were also reduced in STX1A KO mice. We also observed the suppression of 5-HT-induced CRH release in STX1A KO mice in vitro. Furthermore, an in vivo microdialysis study revealed that the elevation of extracellular 5-HT in the hypothalamus, which was induced by the selective serotonin reuptake inhibitor, fluoxetine, was significantly reduced in STX1A KO mice compared to WT mice. 5-HT elevation in the hypothalamus, which was induced by acute restraint stress, was also reduced in STX1A KO mice. Finally, STX1A KO mice showed abnormal behavioural responses after mild restraint stress. These results indicate that the lack of STX1A could induce dysfunction of the HPA axis, and the deficit may result in abnormal behavioural properties, such as unusual responses to stress stimuli.  相似文献   

19.
Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long‐term memory formation in Drosophila. To understand motopsin’s function in the mammalian brain, motopsin knockout (KO) mice were generated. Motopsin KO mice did not have significant deficits in memory formation, as tested using the Morris water maze, passive avoidance and Y‐maze tests. A social recognition test showed that the motopsin KO mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin KO mice spent a longer time investigating a familiar mouse than wild‐type (WT) mice did. In a resident–intruder test, motopsin KO mice showed prolonged social interaction as compared with WT mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin KO mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP‐responsive element‐binding protein (CREB) in hippocampal neurons of WT mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons.  相似文献   

20.
Background In the current study, we have investigated whether low density lipoprotein receptor knockout mice (LDLR‐KO), moderate oxidative stress model and cholesteremia burden display gastroparesis and if so whether nitrergic system is involved in this setting. In addition, we have investigated if sepiapterin (SEP) supplementation attenuated impaired nitrergic system and delayed gastric emptying. Methods Gastric emptying and nitrergic relaxation were measured in overnight fasting mice. nNOSα dimerization, anti‐oxidant markers such as Nrf2, GCLM, GCLC, HO‐1, catalase (CAT), and superoxide dismutase (SOD1) were measured using standard methods. Biopterin levels and intestinal transit time were measured using HPLC and dye migration assay, respectively. Wild type (WT) and LDLR‐KO were supplemented with SEP. Key Results In LDLR null stomachs: (i) significant reduction in rate of gastric emptying, gastric pyloric and fundus nitrergic relaxation and nNOSα dimerization, (ii) elevated oxidized biopterins and reduced ratio of BH4/BH2 + B, (iii) reduced Nrf2 and GCLC protein expression and no change in GCLM, HO‐1, CAT, SOD1, and (iv) accelerated small intestinal motility were noticed. Supplementation of SEP restored delayed gastric emptying, impaired pyloric and fundus nitrergic relaxation with restoration of nNOS dimerization and nNOS expression. Conclusions & Inferences This novel data suggests that hyperlipidemia and/or suppression of selective antioxidants may be a potential cause of developing gastroparesis in diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号