首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The distribution of dopamine D2 receptors in the rat brain was determined by quantitative autoradiography of the binding of [125I]epidepride and the effects of chronic drug administration on regulation of receptors in striatal and extrastriatal brain regions were characterized. [125I]Epidepride (2200 Ci/mmol) bound with high affinity to coronal tissue sections from the rat brain (Kd = 78 pM), and specific binding was detected in a number of discrete layers, nuclei or regions of the hippocampus, thalamus, cerebellum and other extrastriatal sites. Pharmacological analysis of radioligand binding to hippocampal and cerebellar membranes indicated binding to dopamine D2 receptors, and approximately 10% of the binding appeared to represent low affinity idazoxan-displaceable binding to alpha-2 adrenoceptors. The binding to extrastriatal regions resembled previously reported radioligand binding to dopamine D2 receptors in striatal and cortical membranes. Chronic (14 day) administration of two dopamine D2 receptor antagonists, either the typical neuroleptic haloperidol (1.5 mg/kg i.p.) or the atypical neuroleptic clozapine (30 mg/kg i.p.), caused a significant increase in the density of [125I]epidepride binding sites in the medial prefrontal cortex and parietal cortex. Only haloperidol caused a significant increase in the density of [3H]spiperone and [125I]epidepride binding sites in the striatum and a slight increase in [125I]epidepride binding sites in the hippocampus. Similar administration of amphetamine (5 mg/kg i.p.) had no significant effect on the density of dopamine D2 receptors in any brain region examined. In addition, no drug-induced changes in the characteristics of dopamine D2 receptors in discrete areas of the cerebellum were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The triazolopyridazine (TPZ) drugs, typified by CL218,872 (CL), have a relatively higher affinity for a subpopulation of benzodiazepine (BZ) receptors. The binding of radiolabeled CL to membranes from rat cerebellum, a region enriched in the TPZ-preferring ("Type 1") BZ receptor, was characterized and compared with that of [3H]flunitrazepam ([3H]FLU) in the same preparation. [3H]CL had clonazepam displaceable binding which was saturable. The Kd was approximately 21 nM and the Bmax was approximately 600 fmol/mg of protein. [3H]CL binding was similar to that for [3H]FLU in that exogenous gamma-aminobutyric acid (GABA) enhanced the binding; however, [3H]CL binding differed from that for [3H]FLU in that anions, cartazolate and pentobarbital did not enhance [3H]CL binding. These data suggest that [3H]CL binds to the Type 1 BZ receptor in a manner different from that of a BZ drug such as FLU. Inasmuch as GABA enhances [3H]CL binding, but anions, cartazolate and pentobarbital do not, [3H]CL may bind to the Type 1 BZ receptor in such a way that it interacts with the GABA site, but perhaps not directly with the ionophore or the postulated pyrazolopyridine-barbiturate site. Thus, TPZ drugs may affect the GABA receptor complex in a different or perhaps less extensive way than the BZs. This, in addition to the regional localization of the Type 1 receptor, may be an important part of the mechanism of action of the TPZs.  相似文献   

3.
The hypothesis that a novel drug binding site linked to a gamma-aminobutyric acid (GABA)-regulated chloride ionophore mediates the excitatory effects of the atypical benzodiazepine (BZ) Ro5 4864 is further evaluated in the present study. Dose-dependent inhibition of [3H]flunitrazepam to the central BZ receptor in rat cerebral cortex by the cage convulsant t-butylbicyclophosphorotionate (TBPS) is modulated by Ro5 4864 and the isoquinoline PK 11195 in a manner consistent with their reported pro/anticonvulsant effects. The ability of Ro5 4864 to enhance the binding of [35S]TBPS to a GABA-regulated chloride ionophore in rat cortex is unchanged after the irreversible labeling of the central BZ receptor by the photoaffinity label Ro15 4513. Together, these observations further suggest that 1) the effect of Ro5 4864 on [35S]TBPS is not mediated by the central BZ receptor and 2) the Ro5 4864 binding site is allosterically coupled to the GABA/BZ receptor-chloride ionophore complex in rat cerebral cortex. Anatomical localization of Ro5 4864-stimulated [35S]TBPS binding in rat brain by autoradiography reveals a distribution of chloride ionophore-coupled Ro5 4864 sites which is in many instances similar to that of the GABA/BZ receptor-chloride ionophore complex. These studies lend additional support to the postulate that this drug binding site represents an additional locus for the regulation of GABAergic neurotransmission in the central nervous system.  相似文献   

4.
Inasmuch as the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [3H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to "create" further GABA enhancement. Binding also was compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in benzodiazepine binding due to GABA was a result of a change in the affinity rather than number of receptors present. These experiments have been compared to the binding of the imidazodiazepine, [3H] Ro15-1788. We also show that the treatments affect endogenous GABA and not the receptors themselves. This suggests strongly that, when using a single nonsaturating concentration of radiolabeled benzodiazepine antagonist, autoradiographic studies to date may have been subject to erroneous interpretation due to the differential effects of endogenous GABA on benzodiazepine binding (increased affinity).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Steroids that enhance gamma-aminobutyric acid (GABA)A receptor function in the central nervous system allosterically modulate the binding of the convulsant chloride channel ligand [35S]-t-butyl bicyclophosphorothionate. When assayed in membrane homogenates and in tissue sections by autoradiography, concentration-dependence curves vary with respect to both brain region and the nature of the steroid. Alphaxalone and endogenous steroid hormone metabolites inhibit the binding of [35S]-t-butyl bicyclophosphorothionate in some regions, enhance it in others and give biphasic concentration-dependence in others, apparently the result of algebraic summation of two effects involving regional-dependent enhancement or inhibition. The alphaxalone effect is additive with that produced by adding GABA to the binding assays in some regions, but synergistic in other areas. Likewise, the effect of GABA is inhibited completely by saturating concentrations of the antagonist bicuculline methochloride in some areas but only partially in others, and completely or partially reversed by the convulsant benzodiazepine Ro5-4864, depending on region. The granule cell and molecular layers of cerebellum are particularly different in these allosteric interactions. The heterogeneity of binding behavior is consistent with the presence of multiple GABAA receptor subtypes in the brain. Regional variation in subunit gene expression apparently produces a family of hetero-oligomeric GABAA receptors with different biological and pharmacological properties, including qualitative and quantitative differences in modulation by neuroactive steroids.  相似文献   

6.
The imidazobenzodiazepinone Ro 15-4513 has been shown previously to bind to central benzodiazepine receptors as well as to a second, uncharacterized class of sites that do not bind diazepam, differentiating them from the normal benzodiazepine-binding site on the gamma-aminobutyric acid (GABA)-A (GABAA) receptor. This study describes the characterization of these unique diazepam-insensitive (DZ-IS) sites. Ro 15-4513 binding to DZ-IS sites was abundant in cerebellum from cow, rat and human and detectable in cortex, hippocampus and striatum by autoradiography on rat brain sections. These sites represented approximately 20% of the total binding in bovine cerebellar membranes, but only 2 to 3% of the total in cortex. Ro 15-4513 binds with the same affinity (Kd approximately 4.5 nM) to both diazepam-sensitive and DZ-IS sites in the cerebellum. A number of compounds which bind to the classical benzodiazepine receptors also bind to the DZ-IS sites. These compounds include: the pyrazoloquinoline CGS 8216, the beta-carbolines methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, ZK 95962, ZK 94326 and ZK 93126, as well as the classical benzodiazepine receptor antagonist, Ro 15-1788. Besides binding diazepam poorly, the DZ-IS sites demonstrate a very low affinity for other benzodiazepines. Ligands which bind to the various drug receptor sites on the GABA receptor complex do not directly modulate the binding of Ro 15-4513 to DZ-IS sites nor does ethanol. However, antagonism of Ro 15-4513 binding to the DZ-IS sites by methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate and by CGS 8216 is modulated by the presence of GABA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Clinically used benzodiazepine and nonbenzodiazepine sedative-hypnotic agents for the treatment of insomnia produce their therapeutic effects through allosteric enhancement of the effects of the inhibitory neurotransmitter GABA at the GABA(A) receptor. Indiplon is a novel pyrazolopyrimidine sedative-hypnotic agent, currently in development for insomnia. Using radioligand binding studies, indiplon inhibited the binding of [(3)H]Ro 15-1788 (flumazenil) to rat cerebellar and cerebral cortex membranes with high affinity (K(i) values of 0.55 and 0.45 nM, respectively). [(3)H]Indiplon binding to rat cerebellar and cerebral cortex membranes was reversible and of high affinity, with K(D) values of 1.01 and 0.45 nM, respectively, with a pharmacological specificity consistent with preferential labeling of GABA(A) receptors containing alpha1 subunits. In "GABA shift" experiments and in measurements of GABA-induced chloride conductance in rat cortical neurons in culture, indiplon behaved as an efficacious potentiator of GABA(A) receptor function. In both the radioligand binding and electrophysiological experiments, indiplon had a higher affinity than zolpidem or zaleplon. These in vitro properties are consistent with the in vivo properties of indiplon as an effective sedative-hypnotic acting through allosteric potentiation of the GABA(A) receptor.  相似文献   

8.
The stereospecific binding sites of [3H]spiroperidol in frontal cortical regions of the rat brain have a higher affinity for serotonin than they do for dopamine, although the reverse relative affinity is observed in the caudate nucleus and in mesolimbic regions. The antipsychotic butyrophenones haloperidol and butaclamol compete with comparably high affinities for [3H]spiroperidol binding sites in all of the above brain regions. Both butyrophenones accelerated dopamine turnover in these three brain regions without altering serotonin turnover. A chronic treatment regimen with fluphenazine which induced tolerance to the metabolic effects of haloperidol in all three brain regions also induced tolerance to its behavioral effects. The number of binding sites of [3H]spiroperidol were increased in the caudate nucleus and mesolimbic regions but not in the frontal cortex of tolerant animals. These results are consistent with the hypothesis that [3H]spiroperidol interacts with a serotonergic site in the frontal cortex. However, the in vitro interaction of antipsychotic drugs with this receptor does not seem to be related to their acute or chronic effects on neurotransmitter function in the frontal cortex in vivo.  相似文献   

9.
The 5-HT2 (serotonin) receptor has traditionally been labeled with antagonist radioligands such as [3H]ketanserin and [3H]spiperone, which label both agonist high-affinity (guanyl nucleotide-sensitive) and agonist low-affinity (guanyl nucleotide-insensitive) states of this receptor. The hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) is an agonist which labels the high-affinity guanyl nucleotide-sensitive state of brain 5-HT2 receptors selectively. In the present study, conditions for autoradiographic visualization of (+/-)-[125I]DOI-labeled 5-HT2 receptors were optimized and binding to slide-mounted sections was characterized with respect to pharmacology, guanyl nucleotide sensitivity and anatomical distribution. In slide-mounted rat brain sections (+/-)-[125I]DOI binding was saturable, of high affinity (KD approximately 4 nM) and displayed a pharmacologic profile typical of 5-HT2 receptors. Consistent with coupling of 5-HT2 receptors in the high-affinity state to a guanyl nucleotide regulatory protein, [125I]DOI binding was inhibited by guanyl nucleotides but not by adenosine triphosphate. Patterns of autoradiographic distribution of [125I]DOI binding to 5-HT2 receptors were similar to those seen with [3H]ketanserin- and [125I]-lysergic acid diethylamide-labeled 5-HT2 receptors. However, the density of 5-HT2 receptors labeled by the agonist [125I]DOI was markedly lower (30-50%) than that labeled by the antagonist [3H]ketanserin. High densities of [125I]DOI labeling were present in olfactory bulb, anterior regions of cerebral cortex (layer IV), claustrum, caudate putamen, globus pallidus, ventral pallidum, islands of Calleja, mammillary nuclei and inferior olive. Binding in hippocampus, thalamus and hypothalamus was generally sparse. Of note, choroid plexus, a site rich in 5-HT1c receptors had a high density of [125I]DOI binding sites but [3H]ketanserin binding in this region was low. Studies in which [125I]DOI binding to 5-HT2 receptors was blocked with spiperone revealed persisting robust [125I]DOI binding in choroid plexus, which was guanyl nucleotide-sensitive and displayed a pharmacologic profile consistent with its binding to 5-HT1c receptors. These studies suggest that [125I]DOI may be useful as a radiolabel for visualizing the agonist high-affinity state of 5-HT2 receptors and for visualizing 5-HT1c receptors.  相似文献   

10.
Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.  相似文献   

11.
The present work demonstrates quantitative autoradiography by using positron emission tomography tracers and storage phosphorimaging plates. The uptake and association of [(11)C]N-methyl-4-piperidylbenzilate was measured in rat brain tissue cryosections of various thicknesses. The signal increased with increasing section thickness, but only in 10-micrometer-thick sections did the binding reach the steady state during a 50-min observation time. This violation of the equilibrium condition, potentially combined with perfusion limitations, leads to erroneous increased binding-site density and decreased affinity in the 25- and 50-micrometer-thick sections. For better imaging of receptor distribution it is reasonable to use thicker sections. For quantitative analysis of receptor-binding parameters, the specific properties of ligands at different thicknesses of cryosections need to be considered. Evidence is provided that the nonselective muscarinic antagonist N-methyl-4-piperidylbenzilate binds preferentially to the M(4) subtype of muscarinic acetylcholine receptors.  相似文献   

12.
GABAA-benzodiazepine receptors and epilepsy. gamma-Aminobutyric acid (GABA) is quantitatively one of the most important neurotransmitters in the central nervous system. Since the predominant action of GABA on neurons is inhibitory, activation of GABA receptors, and especially of GABAA receptors, causes an anticonvulsive effect. GABAA receptors can be activated either directly by GABA or GABA-agonists, or indirectly by allosteric modulation of these receptors. For instance, benzodiazepines enhance the postsynaptic actions of GABA by binding to benzodiazepine receptors which are allosteric modulatory binding sites on GABAA receptors. Conversely, there are compounds which bind to the same benzodiazepine receptors, but reduce the postsynaptic actions of GABA. These compounds cause convulsions and are called "inverse agonists" of the benzodiazepine receptors. Recent evidence indicates the existence of several different benzodiazepine receptor (and, thus, GABAA receptor) subtypes. Since these receptor subtypes exhibit a different regional distribution in the central nervous system, the development of subtype-selective GABAA receptor agonists or benzodiazepine receptor agonists should result in anticonvulsants with less side effects.  相似文献   

13.
Repeated swim stress alters brain benzodiazepine receptors measured in vivo   总被引:1,自引:0,他引:1  
The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [3H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.  相似文献   

14.
Light microscopic autoradiography was used to visualize the neuroanatomical distribution of rat brain delta opioid receptors. Slide-mounted sections of rat brain were labeled with [3H]-[2-D-penicillamine, 5-D-penicillamine]enkephalin([3H]DPDPE), a highly selective delta opioid agonist. Saturation isotherms of [3H]DPDPE binding to thaw-mounted brain slices gave a maximal number of binding sites of 79.9 fmol/mg of protein and an apparent dissociation constant (Kd) of 6.3 nM. DPDPE and met-enkephalin inhibited [3H]DPDPE binding with high affinity (lC50 values of 6.3 and 13.8 nM, respectively). Putative mu opioid receptor selective ligands such as morphine sulfate, Tyr-D-Ala-Gly-NMePhe-Gyl-ol and [N-MePhe3, D-Pro4]morphiceptin (PL017) were less potent inhibitors of [3H]DPDPE binding. The rat brain areas containing the highest densities of receptors were the claustrum, basolateral amygdaloid nucleus, the caudate-putamen and nucleus accumbens, the external plexiform layer of the olfactory bulb and the olfactory tubercle. Moderate receptor density was characteristic of the hippocampal formation in which grains were seen over the molecular layer of the dentate gyrus and stratum oriens (CA1), and of the different layers of cerebral cortex. Generally, low density of binding was found over the thalamus and the septal nuclei. Low specific binding was also seen in the cerebellum, medulla oblongata and in the dorsal horn of the spinal cord. There was little specific [3H]DPDPE binding over the white matter areas.  相似文献   

15.
The effects of a single convulsive dose of pentylenetetrazol (PTZ, 45 mg/kg i.p.) on rat brain gamma-aminobutyric acid type A (GABAA) receptors were studied. Selected GABAA receptor subunit mRNAs were measured by Northern blot analysis (with beta-actin mRNA as a standard). Four hours after PTZ, the GABAA receptor gamma2-mRNA was decreased in hippocampus, cerebral cortex, and cerebellum; alpha1-mRNA was decreased in cerebellum; and beta2 subunit mRNA was decreased in cortex and cerebellum. The alpha5 subunit mRNA level was not altered. Those mRNAs that had been reduced were increased in some brain regions at the 24-h time point, and these changes reverted to control levels by 48 h. PTZ effect on GABAA receptors was also studied by autoradiographic binding assay with the benzodiazepine agonist [3H]flunitrazepam (FNP), the GABAA agonist [3H]muscimol, and the benzodiazepine antagonist [3H]flumazenil. There was an overall decrease in [3H]FNP binding 12 but not 24 h after PTZ treatment. In contrast, [3H]muscimol binding was minimally affected, and [3H]flumazenil binding was unchanged after PTZ treatment. Additional binding studies were performed with well-washed cerebral cortical homogenates to minimize the amount of endogenous GABA. There was no PTZ effect on specific [3H]FNP binding. However, there was a significant reduction in the stimulation of [3H]FNP binding by GABA. The results showed that an acute injection of PTZ caused transient changes in GABAA receptor mRNA levels without altering receptor number but affected the coupling mechanism between the GABA and benzodiazepine sites of the GABAA receptor.  相似文献   

16.
Abecarnil (isopropyl 6-benzyloxy-4-methoxymethyl-beta-carboline-3-carboxylate) is a novel ligand for central benzodiazepine (BZ) receptors, possessing anxiolytic and anticonvulsant properties, but with considerably reduced muscle relaxant effects in comparison to diazepam (DZP). In vitro, abecarnil inhibited the binding of the BZ [3H]lormetazepam to rat cerebral cortex membranes with an IC50 value of 0.82 nM in comparison to 56 nM for DZP. The ability of abecarnil to displace [3H]lormetazepam was enhanced 1.24-fold in the presence of 30 microM gamma-aminobutyric acid; the corresponding value for DZP was 2.8-fold. DZP and abecarnil were equally effective in enhancing the binding of t-[35S]butylbicyclophosphorothionate to rat cortical membranes. In vivo, abecarnil exhibited a 3- to 6-fold higher affinity to forebrain BZ receptors than DZP. Abecarnil was from 2 to 10 times more potent than DZP in most rodent tests of anxiolytic activity, and in reducing locomotor activity in mice and rats thoroughly habituated to the test chamber. However, in rats newly exposed to a novel cage, abecarnil was less potent than DZP in reducing locomotor activity. In tests of motor coordination, abecarnil, in contrast to DZP, showed no or only weak activity, and in potentiating the effects of ethanol and hexobarbital on motor performance abecarnil was 4 to 25 times less potent than DZP. Abecarnil antagonized the effects of BZs in the chimney and loss of righting reflex tests, but not in the rotarod test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The distribution of subtypes of the muscarinic receptor in homogenates of the rat brain was investigated by measuring the competitive inhibition of the binding [3H]N-methylscopolamine by pirenzepine and AF-DX 116 (11[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one). In most brain regions, the competitive binding curves for AF-DX 116 and pirenzepine were consistent with a two-site model. The dissociation constant of pirenzepine for its high-affinity site (M1 receptor) was approximately 10(-8) M, whereas the dissociation constant of AF-DX 116 for its high affinity site (M2 receptor) was approximately 10(-7) M. In many regions, particularly those in the forebrain, the sum of the densities of the M1 and M2 binding sites was substantially less than 100% of the total sites, indicating the existence of a third population of sites lacking high affinity for both pirenzepine and AF-DX 116. We have designated these latter sites as non-M1, non-M2 muscarinic receptors. In general, the densities of the M1 and non-M1, non-M2 binding sites were highest in cerebral cortex, corpus striatum and hippocampus, intermediate in thalamus and hypothalamus, and lowest in midbrain, medulla-pons and cerebellum, whereas the M2 binding site had a relatively low, uniform density throughout the brain. The binding capacity of [3H]N-methylquinuclidinyl benzilate was estimated to be 20 to 30% lower than that of [3H]quinuclidinyl benzilate in various regions of the forebrain, but not in more caudal regions of the brain where the two radioligands had approximately the same binding capacities. Treatment of homogenates of the cerebral cortex with benzilylcholine mustard caused a selective loss of the majority of the [3H]N-methylscopolamine binding sites but spared 25% of the sites labeled by [3H]quinuclidinyl benzilate The results of pirenzepine/[3H]quinuclinyl benzilate competitive binding experiments on cerebral cortex treated with benzilylcholine mustard showed that the residual binding sites for [3H] quinuclidinyl benzilate were enriched in M1 muscarinic receptors.  相似文献   

18.
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain. Prolonged occupancy of these receptors by ligands leads to regulatory changes often resulting in reduction of receptor function. The mechanism of these changes is still unknown. In this study, stably transfected human embryonic kidney (HEK) 293 cells were used as a model to study the effects of prolonged flumazenil (antagonist of benzodiazepine binding sites at GABA(A) receptors) exposure on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, the most common type of GABA(A) receptors found in the brain. Exposure (48 h) of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM), enhanced the maximum number (B(max)) without affecting the affinity (K(d)) of [(3)H]TBOB labeled binding sites for convulsants. Diazepam (1 nM-1 mM) in the presence of GABA (1 microM) modulated [(3)H]TBOB binding to control and flumazenil pretreated cells according to a two-site model. No significant differences between the groups were observed in either the potency or efficacy of diazepam to modulate [(3)H]TBOB binding, as evidenced by a lack of significant changes between their IC(50) and I(max) values. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors to flumazenil up-regulates the binding sites for convulsants, but it does not appear to affect the functional coupling between these sites and benzodiazepine binding sites. Along with our recent data, these results suggest that chronic treatment with flumazenil enhances the number of GABA(A) receptors.  相似文献   

19.
The primate cingulate cortex is structurally and functionally complex. Although no studies have investigated the regional densities of multiple neurotransmitter receptor systems, such information would be useful for assessing its functions and disease vulnerabilities. We quantified nine different receptors in five transmitter systems by in vitro autoradiographic mapping of the cingulate cortex of macaque monkeys with the aim to link cytoarchitectonic regions and functional specialization. Receptor mapping substantiated the subdivision of the cingulate cortex into anterior versus posterior regions. In anterior cingulate cortex (ACC) AMPA glutamatergic receptors and GABA(A) inhibitory receptors were present in significantly higher concentrations than the modulatory alpha-adrenergic and muscarinic receptors. These differences were absent in the posterior cingulate cortex (PCC). By contrast, NMDA receptor densities were significantly higher than AMPA receptor densities in PCC, but not in ACC. The midcingulate area 24' shared more features with ACC than PCC. This area was characterized by the highest ratios of NMDA receptors to alpha-adrenergic, muscarinic and 5-HT2 receptors among all cingulate regions. Compared to rostrocaudal divisions, the differences between dorsoventral subdivisions a-c were small in all regions of cingulate cortex, and only muscarinic and alpha-adrenergic receptor densities followed the degree of cytoarchitectonic differentiation. We conclude that multiple receptor mapping reveals a highly differentiated classification of cingulate cortex with a characteristic predominance of fast ionotropic excitatory and inhibitory receptors in ACC, but a strong and varied complement of NMDA and metabotropic receptors in PCC.  相似文献   

20.
Twenty-five avermectin analogs were assessed in a mouse seizure model. The ED(50) against pentylenetetrazole-induced tonic seizures ranged from 0.48 mg/kg (L-676,893) to >160 mg/kg (L-685,869) cf. 0. 26 mg/kg for diazepam. Although avermectins are without acute toxic effects, they have been historically shown to have relative low LD(50) values in mammals. The mechanisms involved in the anticonvulsant effect and the toxicity were investigated. A series of avermectin analogs displaced [(3)H]ivermectin binding to rat brain membranes and recombinant GABA(A) receptors (alpha1beta3gamma2-subtype) with the same affinities, strongly suggesting that [(3)H]ivermectin labels the GABA(A) receptor in rodent brain. Avermectins, which were anticonvulsant, were also potent inhibitors of [(3)H]ivermectin binding in rat brain. However, the rank order for anticonvulsant activity did not parallel the rank order for affinity at the [(3)H]ivermectin site and it was reasoned that avermectins may have differential affinity or efficacy at subtypes of the GABA(A) receptor. All the active compounds tested potentiated the effects of GABA at recombinant GABA(A) receptors in oocytes and at native cortical GABA(A) receptors and the efficacy of avermectins at the GABA(A) receptor correlated best with their anticonvulsant potency. Although avermectins weakly inhibited [(3)H]strychnine binding in rat spinal cord, and inhibited glycine responses on primary cultured cortical neurons, activity at glycine receptors did not correlate with either anticonvulsant activity or toxicity. Because both anticonvulsant activity and toxicity correlated best with activity at GABA(A) receptors, it is unlikely that these effects can be separated, which may contraindicate the potential use of avermectins as anticonvulsants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号