首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(hydroxyethylaspartamide) (PHEA) derivatives bearing at the polyaminoacidic backbone poly(ethyleneglycol) (2000 or 5000 Da) or both poly(ethyleneglycol) and hexadecylalkylamine as pendant moieties were investigated as polymeric colloidal drug carriers. The ability of the PHEA derivatives to solubilize hydrophobic drugs was investigated using paclitaxel, amphotericin B and methotrexate. The results demonstrated that the drug solubility depends on both macromolecule composition and drug physicochemical properties. In particular, PEG/hexadecylalkylamine co-grafting increased significantly the solubilization properties of PHEA for the considered drugs while the conjugation of PEG only did not endow PHEA with drug carrier properties. A stability study carried out with paclitaxel/PHEA-PEG(5000)-hexadecylalkylamine demonstrated that the drug/carrier system is characterized by physicochemical instability, which is strictly related to the incubation pH. However, the carrier was found to partially prevent drug degradation. Investigations performed using murine myeloid leukaemia NFS-60 cell line showed that paclitaxel loaded PHEA-PEG(5000)-hexadecylalkylamine possesses high pharmacological activity with IC(50) value of 22.3 ng/ml. Pharmacokinetic studies carried out by intravenous administration of paclitaxel loaded PHEA-PEG(5000)-hexadecylalkylamine to Balb/c mice demonstrated that the carrier modifies the in vivo paclitaxel fate. In particular, PHEA-PEG(5000)-hexadecylalkylamine prolonged the drug distribution and elimination phase of 6 and 17 times, respectively; in addition, it increased the systemic availability (AUC) by about 30 times.  相似文献   

2.
Injectable polymeric formulation for paclitaxel was studied. Poly ricinoleic acid and sebacic acid were synthesized. The effect of additives on the viscosity of polymer, paclitaxel release, and polymer degradation was investigated both in vitro and in vivo. Additives that were used in this study were ricinoleic acid, phospholipid, PEG 400, and PEG 2000. Addition of 20% ricinoleic acid to P(SA:RA)3:7 liquefied the formulation and allowed injection of the formulation containing paclitaxel via a 22-G needle at room temperature with no effect on paclitaxel release rate. Addition of PEG 400, PEG 2000, and phospholipid to the formulation did not affect the paclitaxel release from the formulation. The degradation of modified formulations with paclitaxel and additives was examined in vitro and by subcutaneous injection of liquid formulations to the backspace via a 22-G needle into seven groups of four C3H mice. In vivo formulations with additives (20% ricinoleic acid and PEG or phospholipid) and 5% paclitaxel content degraded faster than the formulation with only 20% ricinoleic acid and the same paclitaxel content: 51% and 54% versus 43%. The slowest degradation (26% in 1 week) was of the formulation containing 10% paclitaxel. The release rate in vivo was affected by the paclitaxel content; the higher the content, the slower was the release. By using additives, we could adjust the physical characteristics of the surgical paste while maintaining a desirable system for sustained paclitaxel release.  相似文献   

3.
The successful clinical translation of siRNA-based therapeutics requires efficient carrier systems that can specifically deliver siRNA within the cytosol of the target cells. Although numerous polymeric nanocarriers forming ionic complexes with siRNA have been investigated for cancer therapy, their poor stability and lack of tumor targetability have impeded their in vivo applications. To surmount these limitations, we synthesized a novel type of biodegradable hyaluronic acid-graft-poly(dimethylaminoethyl methacrylate) (HPD) conjugate that can form complexes with siRNA and be chemically crosslinked via the formation of the disulfide bonds under facile conditions. The crosslinked siRNA-HPD (C-siRNA-HPD) complexes exhibited high stability in a 50% serum solution, as compared to the uncrosslinked siRNA-HPD (U-siRNA-HPD) complexes and free siRNA. Both the C-siRNA-HPD and U-siRNA-HPD complexes were efficiently taken up by the CD44-overexpressing melanoma cells (B16F10), but not by the normal fibroblast cells (NIH3T3). When the RFP-expressing B16F10 cells were treated with the complexes or free siRNA, the C-siRNA-HPD complexes showed the highest decrease in RFP expression. In vivo studies demonstrated the selective accumulation of C-siRNA-HPD complexes at the tumor site after their systemic administration into tumor-bearing mice, resulting in an efficient gene silencing effect. Overall, these results suggest that the HPD conjugate could be used as an efficient carrier for the tumor-targeted delivery of siRNA.  相似文献   

4.
Polymeric drug delivery systems are used not only to improve aqueous solubility of drug molecules but also to achieve desirable pharmacokinetics and an enhanced therapeutic index. New biodegradable polymers are needed to improve the biodistribution and targeting-ability of polymeric carriers. In this study, the synthesis and characterization of branched poly(L-glutamic acid) (PG) containing multiple PG chains centered on a poly(amidoamine) (PAMAM) dendrimer or polyethyleneimine (PEI) cores were described. The branched PG polymers were obtained by ring-opening polymerization of benzyl ester of L-glutamic acid N-carboxyanhydride using PAMAM or PEI as the initiator. These polymers were degradable in the presence of the lysosomal enzyme cathepsin B, albeit more slowly than linear PG. Unlike conventional linear PG, each branched PG possessed multiple terminal amino groups. This made it possible to attach multiple targeting moieties selectively to the termini of branched PG. Conjugation of monofunctional or heterodifunctional polyethylene glycol to the chain ends of branched PG was demonstrated in the presence of side chain carboxyl groups. Furthermore, folic acid, a model targeting moiety, and the near-infrared dye indocyanine green, a model diagnostic agent, were successfully conjugated to the terminal amino groups and the side chain carboxyl groups of branched PG, respectively. The resulting conjugate had reduced nonspecific interaction and bound selectively to tumor cells expressing folate receptors. Thus, branched PG may be useful as a polymeric carrier for targeted drug delivery.  相似文献   

5.
Bacterial ghosts as drug carrier and targeting vehicles.   总被引:2,自引:0,他引:2  
A novel system for the packaging of drugs as well as vaccines is presented. Bacterial ghosts are intact, non-denatured bacterial envelopes that are created by lysis of bacteria through the expression of cloned phage PhiX174 gene E. Inhibition of induced E-mediated lysis by MgSO(4), harvesting of cells by centrifugation, and resuspension in low-ionic-strength buffers leads to rapid, violent lysis and results in empty bacterial envelopes with large (approximately 1 microm in diameter) openings. The construction of plasmid pAV1, which encodes a streptavidin fusion protein with an N-terminal membrane anchor sequence, allows the loading of the inner side of the cytoplasmic membrane with streptavidin. The functionality and efficacy of binding of even large biotinylated compounds in such streptavidin ghosts (SA-ghosts) was assessed using the enzyme alkaline phosphatase. The successful binding of biotinylated fluorescent dextran, as well as fluorescent DNA complexed with biotinylated polylysine, was demonstrated microscopically. The display by bacterial ghosts of morphological and antigenic surface structures of their living counterparts permits their attachment to target tissues such as the mucosal surfaces of the gastrointestinal and respiratory tract, and their uptake by phagocytes and M cells. In consequence, SA-ghosts are proposed as drug carriers for site-specific drug delivery.  相似文献   

6.
Jiang HL  Kwon JT  Kim YK  Kim EM  Arote R  Jeong HJ  Nah JW  Choi YJ  Akaike T  Cho MH  Cho CS 《Gene therapy》2007,14(19):1389-1398
Chitosans have been proposed as alternative, biocompatible cationic polymers for nonviral gene delivery. However, the low transfection efficiency and low specificity of chitosan need to be addressed before clinical application. We prepared galactosylated chitosan-graft-polyethylenimine (GC-g-PEI) copolymer by an imine reaction between periodate-oxidized GC and low-molecular-weight PEI. The molecular weight and composition were characterized using gel permeation chromatography column with multi-angle laser scattering and (1)H nuclear magnetic resonance, respectively. The copolymer was complexed with plasmid DNA in various copolymer/DNA (N/P) charge ratios, and the complexes were characterized. GC-g-PEI showed good DNA-binding ability and superior protection of DNA from nuclease attack and had low cytotoxicity compared to PEI 25K. GC-g-PEI/DNA complexes showed higher transfection efficiency than PEI 25K in both HepG2 and HeLa cell lines. Transfection efficiency into HepG2, which has asialoglycoprotein receptors, was higher than that into HeLa, which does not. GC-g-PEI/DNA complexes also transfected liver cells in vivo after intraperitoneal (i.p.) administration more effectively than PEI 25K. These results suggest that GC-g-PEI can be used in gene therapy to improve transfection efficiency and hepatocyte specificity in vitro and in vivo.  相似文献   

7.
Carbon nanohorns as a novel drug carrier   总被引:1,自引:0,他引:1  
Carbon nanohorns are nanostructured spherical aggregates of graphitic tubes whose sizes are 80-100 nm in diameter. They have extensive surface area and don't need metal catalyst for their synthesis. The oxidization or acid treatment makes nano windows on their walls, through which distinct set of small molecules have been shown to infiltrate into their inner space. These unique properties of carbon nanohorns suggest the possible use of the nanomaterials as a novel carrier in drug delivery systems.  相似文献   

8.
Direct conjugation of histidine to poly(2-hydroxyethyl aspartamide) (PHEA-His) and C18-grafted PHEA (PHEA-g-C18-His) was achieved via an ester linkage using N(alpha)-Boc-L-histidine, followed by the deprotection of Boc groups. PHEA-His series would be expected as an endosomolytic synthetic polymer because of the buffering capacity at physiological and endosomal pH regulated by alpha-amine and imidazole groups in side chains. PHEA-g-C18-His series formed stable self-aggregates due to the hydrophobic interaction between grafted alkyl chains. The size, zeta potential, and micropolarity of PHEA-g-C18-His series greatly increased at pH 5.0, because aggregates swelled by a positive surface charge and the electrostatic repulsion of ionized histidine moieties in the aggregate surface. In the confocal microscopy, it was revealed that PHEA-g-C18-His was more uniformly distributed than PHEA-g-C18 in HeLa cells after 8 h of incubation and was attributed to the endosomolytic ability of conjugated histidine moieties. In doxorubicin-loaded self-aggregate systems, the histidine conjugation improved the cell cytotoxicity by a fast release of loaded doxorubicin at low pH and the endosomolytic ability of conjugated histidine, resulting in the easy nuclear access of doxorubicin.  相似文献   

9.
Bacterial ghosts are empty cell envelopes originating from Gram-negative bacteria. They have a natural outer surface make-up which provides them with the original targeting functions of the bacteria they are derived from and are thus able to bind to and/or are taken up by specific cells or tissues of animal, human or plant origin. The extended bacterial ghost system represents a platform technology for creating new qualities in non-living carriers which can be used for the specific targeting of drugs, DNA or other compounds to overcome toxic or non-desired obstacles. Freeze dried bacterial ghosts are stable without the requirement of a cold chain and can be effectively administered orally and aerogenically as drug carriers. The new system is an alternative to liposomes and may have an advantage due to its higher specificity for targeting specific tissues, its easy method of production and its versatility in entrapping and packaging various compounds in different compartments of the carriers.  相似文献   

10.
Hyaluronic acids (HA) grafted with poly(ethylene glycol) (PEG) (PEG-g-HA) were synthesized. The materials characterization, enzymatic degradability and peptide (insulin) release from solutions of the copolymers were examined. Distribution of bioactive peptides within the polymer chain is well-known for combinations of PEG and polysaccharides as aqueous polymer two-phase systems. Insulin was preferentially partitioned into the PEG phase in a PEG/HA solution system. Enzymatic degradation of the copolymers was strongly dependent on the PEG content. Thermal analysis revealed that PEG-g-HA exhibited a variation in phase-separated structures depending on the PEG content. The solution of PEG-g-HA enabled insulin to remain in the PEG moieties dispersed in the HA matrix. Leakage of insulin from the copolymers was dependent upon the PEG content. Leakage rate of insulin from copolymer containing between 7 and 39% by weight of PEG were similar. A dramatic increase in leakage rate occurred when the PEG content was increased to greater than 39% by weight. It is considered that the loaded insulin was partitioned into the PEG moieties and became entangled with the PEG chains. The conformational change of insulin was effectively prevented in PEG-g-HA solutions, although insulin was denatured in storage of both phosphate buffered solution and HA solution. Such a heterogeneous-structured polymeric solution may be advantageous as an injectable therapeutic formulation for ophthalmic or arthritis treatment.  相似文献   

11.
Polyethylenimine (PEI) has been used for the gene delivery system in vitro and in vivo since it has high transfection efficiency owing to proton buffer capacity. However, the use of PEI for gene delivery is limited due to cytotoxicity, non-specificity and unnecessary interaction with serum components. To overcome cytotoxicity and non-specificity, PEI was coupled with poly(vinyl pyrrolidone) (PVP) as the hydrophilic group to reduce cytotoxicity and lactose bearing galactose group for hepatocyte targeting. The galactosylated-PEI-graft-PVP (GPP) was complexed with DNA, and GPP/DNA complexes were characterized. GPP showed good DNA binding ability, high protection of DNA from nuclease attack. The sizes of DNA complexes show tendency to decrease with an increase of charge ratio and had a minimum value around 59 nm at the charge ratio of 40 for the GPP-1/DNA complex (PVP content: 4.1 mol%). The GPP showed low cytotoxicity. And GPP/DNA complexes were mediated by asialoglycoprotein receptors (ASGP-R)-mediated endocytosis. Also, the transfection efficiency of GPP-1/DNA complex at charge ratio of 40 in the HepG2 was higher than that of PEI/DNA one.  相似文献   

12.
13.
The objective of the present study was to prepare nanoparticles composed of poly(gamma-glutamic acid) (gamma-PGA) and l-phenylalanine ethylester (l-PAE) in order to evaluate the possibility of using these nanoparticles as protein carriers. Novel amphiphilic graft copolymers composed of gamma-PGA as the hydrophilic backbone and l-PAE as the hydrophobic segment were successfully synthesized by grafting l-PAE to gamma-PGA using water-soluble carbodiimide (WSC). Due to their amphiphilic properties, the gamma-PGA-graft-l-PAE copolymers were able to form nanoparticles. The size of the gamma-PGA nanoparticles was measured by photon correlation spectroscopy (PCS) and showed a monodispersed size distribution with a mean diameter ranging from 150 to 200 nm. The solvents selected to prepare the gamma-PGA nanoparticles by a precipitation and dialysis method affected the particle size distribution. To evaluate the feasibility of vehicles for these proteins, we prepared protein-loaded gamma-PGA nanoparticles by surface immobilization and encapsulation methods. Ovalbumin (OVA) was used as a model protein and was immobilized onto the gamma-PGA nanoparticles or encapsulated into the inner core of these nanoparticles. Moreover, these OVA-encapsulated gamma-PGA nanoparticles could be preserved by freeze-drying process. The results of cytotoxicity tests showed that the gamma-PGA and gamma-PGA nanoparticles did not cause any relevant cell damage. It is expected that biodegradable gamma-PGA nanoparticles can immobilize proteins, peptides, plasmid DNA and drugs onto their surfaces and/or into the nanoparticles. These nanoparticles are potentially useful in pharmaceutical and biomedical applications.  相似文献   

14.
The purpose of the present work was to produce and characterize poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles (size lower than 300 nm) containing a high loading of plasmid DNA in a free form or co-encapsulated with either poly(vinyl alcohol) (PVA) or poly(vinylpyrrolidone) (PVP). The plasmid alone or with PVA or PVP was encapsulated by two different techniques: an optimized w/o/w emulsion-solvent evaporation technique as well as by a new w/o emulsion-solvent diffusion technique. Particle size, zeta potential, plasmid DNA loading and in vitro release were determined for the three plasmid-loaded formulations. The influence of the initial plasmid loadings (5, 10, 20 microg plasmid DNA/mg PLA-PEG) on those parameters was also investigated. The plasmid loaded into the nanoparticles and released in vitro was quantified by fluorimetry and the different molecular forms were identified by gel electrophoresis. PLA-PEG nanoparticles containing plasmid DNA in a free form or co-encapsulated with PVA or PVP were obtained in the range size of 150-300 nm and with a negative zeta potential, both parameters being affected by the preparation technique. Encapsulation efficiencies were high irrespective of the presence of PVA or PVP (60-90%) and were slightly affected by the preparation technique and by the initial loading. The final plasmid DNA loading in the nanoparticles was up to 10-12 microg plasmid DNA/mg polymer. Plasmid DNA release kinetics varied depending on the plasmid incorporation technique: nanoparticles prepared by the w/o diffusion technique released their content rapidly whereas those obtained by the w/o/w showed an initial burst followed by a slow release for at least 28 days. No significant influence of the plasmid DNA loading and of the co-encapsulation of PVP or PVA on the in vitro release rate was observed. In all cases the conversion of the supercoiled form to the open circular and linear forms was detected. In conclusion, plasmid DNA can be very efficiently encapsulated, either in a free form or in combination with PVP and PVA, into PLA-PEG nanoparticles. Additionally, depending on the processing conditions, these nanoparticles release plasmid DNA either very rapidly or in a controlled manner.  相似文献   

15.
Lactobionic acid bearing galactose group was coupled with chitosan for liver specificity, and poly(ethylene glycol) (PEG) was grafted to galactosylated chitosan (GC) for stability in water and enhanced cell permeability. Complex formation of galactosylated chitosan-graft-PEG (GCP)/DNA complexes was confirmed by agarose gel electrophoresis. Compared to GC/DNA complex, the stability of GCP/DNA complex could be enhanced. Particle sizes of GCP/DNA complexes decreased as the charge ratio of GCP to DNA increased and had a minimum value around 27 nm at the charge ratio of 5. Conformational change of DNA did not occur after complex formation with GCP compared to conformation of DNA itself. GCP/DNA complexes were only transfected into Hep G2 having asialoglycoprotein receptors (ASGR), indicative of specific interaction of ASGR on cells and galactose ligands on GCP.  相似文献   

16.
Chitosan-graft-polyethylenimine as a gene carrier.   总被引:16,自引:0,他引:16  
Chitosans have been proposed as biocompatible alternative cationic polymers that are suitable for non-viral delivery. However, the transfection efficiency of chitosan-DNA nanoparticles is still very low. To improve transfection efficiency, we prepared chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer by an imine reaction between periodate-oxidized chitosan and polyethylenimine (PEI). The molecular weight and composition of the CHI-g-PEI copolymer were characterized, using multi-angle laser scattering (GPC-MALS) and (1)H nuclear magnetic resonance ((1)H NMR), respectively. The copolymer was complexed with plasmid DNA (pDNA) in various copolymer/DNA (N/P) charge ratios, and the complex was characterized. CHI-g-PEI showed good DNA binding ability and high protection of DNA from nuclease attack. Also, with an increase in charge ratio, the sizes of the CHI-g-PEI/DNA complex showed a tendency to decrease, whereas the zeta potential of the complex showed an increase. The CHI-g-PEI copolymer had low cytotoxicity, compared to PEI 25K from cytotoxicity assays. At high N/P ratios, the CHI-g-PEI/DNA complex showed higher transfection efficiency than PEI 25K in HeLa, 293T and HepG2 cell lines. Our results indicate that the CHI-g-PEI copolymer has potential as a gene carrier in vitro.  相似文献   

17.
We investigated the interaction of liposomes surface-modified with soybean-derived sterylglucoside (SG) (SG-liposomes) with HepG2 cells in the point of involvement of asialoglycoprotein receptor (ASGP-R) mediated endocytosis and examined the efficiency of SG-liposomes as drug carriers using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) as a maker of liposome, carboxylated polystyrene microspheres (Fluoresbrite) as a model drug not taken up in cells and doxorubicin (DXR). SG-liposomes were composed of dipalmitoylphosphatidylcholine (DPPC), cholesterol (Ch) and SG (DPPC/Ch/SG=6:3:1, molar ratio) and DiI, Fluoresbrite and DXR were entrapped in SG-liposomes, respectively. Each SG-liposome was incubated with HepG2 cells at 4 or 37 degrees C, and co-incubated with asialofetuin (AF) as a competitor of ASGP-R. The association of DiI, Fluoresbrite or DXR entrapped in SG-liposomes with HepG2 cells at 37 degrees C was significantly higher than that in liposomes containing no SG. That of DiI and Fluoresbrite was reduced significantly by the incubation with AF, but that of DXR was not affected. These findings suggest that Fluoresbrite behaves like the lipid component of SG-liposomes, but DXR in SG-liposomes does not behave similar to the lipid component of SG-liposomes, thus, its drug behavior released from liposomes may be due to its physicochemical properties. SG-liposomes are potentially useful drug carriers to the liver, because the glucose residue may work as a kind of ligand for ASGP-R.  相似文献   

18.
In spite of good research in drug delivery, bone targeting remains largely unexplored. Even some of the bone diseases are seldom cured just because of poor distribution of drug at the bone site. Zoledronate (ZOL) having strong affinity towards bone and its utility in bone metastasis management makes it perfect ligand for bone targeting. Recent studies revealed that ZOL in combination with docetaxel showed significant synergism in the management of bone metastasis. From the results, it is clear that ZOL-conjugated PLGA nanoparticles (NPs) showed more cellular uptake than pegylated PLGA NPs with change in cellular uptake route. In vitro studies on MCF-7 and BO2 cell line revealed that ZOL anchored PLGA-PEG NPs showed enhanced cell cytotoxicity, increase in cell cycle arrest and more apoptotic activity. PLGA-PEG-ZOL NPs found to block mevalonate pathway and increase accumulation of apoptotic metabolites such as ApppI. In vivo animal studies using technetium-99m radiolabeling showed prolong blood circulation half-life, reduced liver uptake and significantly higher retention of ZOL tagged NPs at the bone site with enhanced tumor retention. Here, we can conclude that the targeting ability of ZOL enhanced by strong affinity to bone, enhanced endocytosis of ZOL anchored PLGA-PEG NPs.  相似文献   

19.
New derivatives of polyglutamic acid as drug carrier systems.   总被引:8,自引:0,他引:8  
PEG-grafted dextran and PHEG derivatives were synthetized to be used as drug carriers. The PEG-containing copolymers showed potential tensioactive properties. Dynamic light-scattering measurements and surface tension measurements indicated that phase separation of dextran/PHEG and PEG occurs on a molecular level in the conjugates and results in the formation of aggregates with a PEG core in which free PEG can be trapped. Blood clearance and body distribution studies were performed on female BALB/c mice. PEG-modified polymers with a high hydrodynamic volume stay longer in the blood stream compared with the non-modified polymers. These high molecular weight conjugates stay in the blood for several hours. Conjugates with a molecular weight below the renal threshold barrier are cleared much faster from the blood and excreted from the body. Concerning the body distribution, the PEG conjugates are not excreted very fast and are not taken up by any organ in particular. It is notable that PEG substitution prevents dextran from liver uptake. Furthermore, a method was developed to link an oligopeptide spacer-drug model and PEG to the same polymer. It was shown that PEG substitution has only little influence on the enzymatic release of the model drug. The above-mentioned results showed that the PEG-grafted polymers were promising candidates for drug carriers.  相似文献   

20.
The aim of the present study was to evaluate the tumor accumulation of radiolabeled long-circulating poly(ethylene glycol) (PEG)-coated hexadecylcyanoacrylate nanospheres and non-PEG-coated hexadecylcyanoacrylate nanospheres (used as control), after intravenous injection in Fischer rats bearing intracerebrally well established 9L gliosarcoma. Both types of nanospheres showed an accumulation with a retention effect in the 9L tumor. However, long-circulating nanospheres concentrated 3.1 times higher in the gliosarcoma, compared with non-PEG-coated nanospheres. The tumor-to-brain ratio of pegylated nanospheres was found to be 11, which was in accordance with the ratios reported for other carriers tested for brain tumor targeting such as long-circulating liposomes or labels for magnetic resonance imaging. In addition, a 4- to 8-fold higher accumulation of the PEG-coated carriers was observed in normal brain regions, when compared with control nanospheres. Using a simplified pharmacokinetic model, two different mechanisms were proposed to explain this higher concentration of PEG-coated nanospheres in a tumoral brain. 1) in the 9L tumor, the preferential accumulation of pegylated nanospheres was attributable to their slower plasma clearance, relative to control nanospheres. Diffusion/convection was the proposed mechanism for extravasation of the nanospheres in the 9L interstitium, across the altered blood-brain barrier. 2) In addition, PEG-coated nanospheres displayed an affinity with the brain endothelial cells (normal brain region), which may not be considered as the result of a simple diffusion/convection process. The exact underlying mechanism of such affinity deserves further investigation, since it was observed to be as important as specific interactions described for immunoliposomes with the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号