首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spinal segmental localization of preganglionic neurons which convey activity to the sympathetic nerves, i.e. vertebral nerve, right inferior cardiac nerve, sympathetic fibres in the thoracic vagus and cervical sympathetic trunk, was determined on the right side in chloralose anaesthetized cats. For that purpose the upper thoracic white rami were electrically stimulated with a single pulse, suprathreshold for B and C fibres, and the evoked responses were recorded in the sympathetic nerves. The relative preganglionic input from each segment of the spinal cord to the four sympathetic nerves was determined from the size of the evoked responses. It was found that each sympathetic nerve receives a maximum preganglionic input from one segment of the spinal cord (dominant segment) and that the preganglionic input gradually decreased from neighbouring segments. The spinal segmental preganglionic outflow to the cervical sympathetic trunk, thoracic vagus, right inferior cardiac nerve and vertebral nerve gradually shifted from the most rostral to the most caudal spinal cord segments. In some cases, a marked postganglionic component was found in the cervical sympathetic trunk. It was evoked by preganglionic input from the same spinal cord segments which transmitted activity to the vertebral nerve. These results indicate that there is a fixed relation between the spinal segmental localization of preganglionic neurons and the branch of the stellate ganglion receiving the input from these neurons.  相似文献   

2.
Control of the heart rate by sympathetic nerves in cats   总被引:1,自引:0,他引:1  
Pre- and postganglionic sympathetic nerves were electrically stimulated and heart rate was recorded in chloralose-anaesthetised cats. The vagal nerves and white rami were cut on both sides. Electrical stimulation was performed with a 15- or 30-s train of 0.2-ms pulses at a frequency of 30 Hz. The control heart rate was 150 beats/min. Heart rate was increased when the T3 white ramus on the left (52 beats/min above control) and T3, T4 white rami on the right side (100 beats/min above control) were stimulated electrically. The magnitude of the heart rate increase declined when the neighbouring thoracic white rami were stimulated. The increase of the heart rate was caused by group B preganglionic fibres. Electrical stimulation of the sympathetic fibres in the right vagus nerve and the right inferior cardiac nerve increased the heart rate by 92 beats/min and by 67 beats/min above the control level respectively. Electrical stimulation of the left inferior cardiac nerve, the left middle cardiac nerve and the sympathetic fibres in the left vagus nerve resulted in an increase of the heart rate of 43 beats/min, 30 beats/min and 49 beats/min from the control level respectively. This indicates that a majority of the preganglionic cardiac sympathetic fibres, whose activity influences the heart rate, originate from the T3 and T4 segments of the spinal cord. The majority of the postganglionic cardiac sympathetic fibres which affect the heart rate are located in the vagal nerves.  相似文献   

3.
Organization of the sympathetic postganglionic innervation of the rat heart   总被引:4,自引:0,他引:4  
The origins and organization of cardiac sympathetic postganglionic nerves in the rat were identified in the present investigation. The retrograde tracer, Diamidino Yellow, was injected into the right or left ventricles to label somata in the sympathetic chain. Analysis of all sympathetic ganglia from superior cervical ganglion through the 10th thoracic ganglion indicated that the postganglionic innervation of the rat cardiac ventricles originates bilaterally. The majority of these somata were located in the middle and inferior cervical ganglia (middle cervical-stellate ganglion complex) (approximately 92% of all labelled cells), with lesser contributions from the superior cervical and 4th through 6th thoracic ganglia. To confirm and further quantitate these findings, the middle cervical-stellate ganglion complex was removed (MC-S ganglionectomy) bilaterally or ipsilaterally from the left or right sides, and regional cardiac norepinephrine concentration (left and right atrial appendages and left and right ventricles) was analysed 7 or 28 days later. At both times after bilateral MC-S ganglionectomy, regional cardiac norepinephrine was reduced by 89% to 100%, indicating the removal of almost all cardiac noradrenergic cells of origin and possibly fibers of passage. The results of unilateral MC-S ganglionectomy experiments indicated that the atrial appendages and the left ventricle receive bilateral innervation from the middle cervical-stellate ganglion complex. However, the left middle cervical-stellate ganglion complex appears to contribute a majority of the norepinephrine to the right ventricle. Furthermore, between 7 and 28 days after contralateral MC-S ganglionectomy, atrial appendages, but not ventricles, display significant recovery of norepinephrine content. The present data demonstrate: (1) a bilateral locus of origin of cardiac sympathetic postganglionic neurons, limited longitudinally to cervical through mid-thoracic ganglia, and (2) the ability of the cardiac postganglionic innervation to regenerate after partial denervation. These results demonstrate anatomical evidence for significant bilateral integration of cardiac sympathetic activity at the level of the sympathetic ganglion in the rat.  相似文献   

4.
Myelinated and unmyelinated axons in the inferior cardiac nerve of the cat were examined to determine how many axons were (1) sensory, (2) preganglionic sympathetic, and (3) postganglionic sympathetic. In one group of cats, a segment was removed from the middle of the inferior cardiac nerve as a control, and the proximal and distal stumps of the nerve were examined one week later. In another group of cats, the control segment of nerve was removed and the first thoracic white ramus communicans and sympathetic trunk were cut proximal to the stellate ganglion, followed in one week by examination of the proximal and distal stumps of the inferior cardiac nerve. In still another group of cats, the first five thoracic spinal nerves were cut just distal to the dorsal root ganglion. The counts of myelinated and unmyelinated axons after these surgical procedures indicated that, in the cat inferior cardiac nerve, all or almost all of the approximately 30,000 unmyelinated axons and 10 percent of the myelinated axons are postganglionic sympathetic fibers, and that approximately 90 percent of the myelinated axons are sensory.  相似文献   

5.
The cell bodies of the lumbar sensory and sympathetic pre- and postganglionic neurons that project in the caudal lumbar sympathetic trunk of the cat have been labeled retrogradely with horseradish peroxidase applied to the central end of their cut axons. The application was made just proximal to the segmental ganglion that sends its gray rami to the L7 spinal nerve, and so identified the sympathetic outflow concerned primarily with the vasculature of the hindlimb and tail. The numbers, segmental distribution, location, and size of the labeled somata have been determined quantitatively. Labeled cell bodies were found ipsilaterally, but the segmental distributions of the different cell types were not matched. Afferent cell bodies lay in dorsal root ganglia L1-L5 (maximum L4), preganglionic cell bodies in spinal segments T10-L5 (maximum L2/3), and postganglionic cell bodies in ganglia L2-L5 (maximum L5). Both numbers and dimensions of labeled dorsal root ganglion cells were variable between experiments (maximum about 1,000); the majority were small relative to the entire population of sensory neurons. Labeled preganglionic cell bodies were located right across the intermediate region of the spinal cord, extending from the lateral part of the dorsolateral funiculus to the central canal. The highest density of labeled neurons lay at the border between the white and gray matter (corresponding to the intermediolateral cell column) with smaller proportions medially in L1-L2, and laterally in caudal L4-L5. Medial preganglionic neurons were generally larger than those lying in lateral positions. From the data, it is estimated that about 650 afferent, about 4,500 preganglionic, and some 2,500 postganglionic neurons project in each lumbar sympathetic trunk distal to the ganglion L5 in the cat.  相似文献   

6.
7.
The localization of the sympathetic postganglionic neurons innervating the cat heart has been investigated by using retrograde axonal transport of horseradish peroxidase (HRP). HRP was injected into the subepicardial layers of 4 different cardiac regions. The animals were sacrificed 72-96 h later and fixed by perfusion via the left ventricle. The paravertebral sympathetic ganglia from the superior cervical, middle cervical and stellate ganglia to T10 ganglia were removed and processed for HRP identification. Following injections of HRP into the apex of the heart, the sinoatrial (SA) nodal region and the ventral wall of the right ventricle, we observed that HRP-labeled sympathetic neurons were localized predominantly in the right stellate ganglia, and to a lesser extent, in the right superior and middle cervical ganglia, and left stellate ganglia. Fewer labeled cells were found in the right T4-T6. T8 and T9. After HRP injection into the dorsal wall of the left ventricle, HRP-labeled cells were present mainly in the left stellate ganglia.  相似文献   

8.
Distribution of secretoneurin-like immunoreactivity (SN-LI) was studied in the rat sympathetic ganglia/adrenal gland, enteric and sensory ganglia by immunohistochemical methods. SN-LI nerve fibers formed basket-like terminals surrounding many of the postganglionic neurons of the superior cervical, stellate, paravertebral chain ganglia, coeliac/superior mesenteric and inferior mesenteric ganglia. Postganglionic neurons of the superior cervical and other sympathetic ganglia exhibited low-to-moderate levels of SN-LI. In all these sympathetic ganglia, clusters of small diameter (<10 μm) cells, which may correspond to the small intensely fluorescent (SIF) cells, were found to be intensely labeled. Surgical sectioning or ligation of the cervical sympathetic trunk for 7–10 days resulted in a nearly total loss of SN-LI fibers in the superior cervical ganglia, whereas immunoreactivity in the postganglionic neurons and small diameter cells remained essentially unchanged. In the thoracolumbar and sacral segments of the spinal cord, SN-LI nerve fibers were detected in the superficial layers of the dorsal horn as well as in the intermediolateral cell column (ILp). Occasionally, SN-LI somata were noted in the ILp. SN-LI nerve fibers formed a delicate plexus underneath the capsule of the adrenal gland, some of which traversed the adrenal cortex and reached the adrenal medulla. While heavily invested with SN-LI nerve terminals, chromaffin cells seemed to express a low level of SN-LI. In the enteric plexus, varicose SN-LI nerve fibers and terminals formed a pericellular network around many myenteric and submucous ganglion cells; the ganglionic neurons were lightly to moderately labeled. A population of ganglion cells in the dorsal root, nodose and trigeminal ganglia exhibited moderate-to-strong SN-LI. The detection of SN-LI in nerve fibers and somata of various sympathetic ganglia, enteric plexus and adrenal medulla and in somata of the sensory ganglia implies an extensive involvement of this peptide in sympathetic, enteric and sensory signal processing.  相似文献   

9.
In 11 dogs fluorescent retrograde tracers were injected into physiologically identified left-sided sympathetic cardiopulmonary nerves. When two different ipsilateral cardiopulmonary nerves were injected, labeled cells from each injected nerve had overlapping distributions in the middle cervical and stellate ganglia. Most retrogradely labeled neurons were located in the middle cervical ganglion and cranial pole of the stellate ganglion. Following the injection of two different tracers into two different nerves, some neurons in the middle cervical ganglion were retrogradely labeled with two tracers. Double-labeled neurons were rarely found in the stellate ganglion. There were areas within the ganglia in which labeled neurons projected predominantly to one cardiopulmonary nerve. In the thoracic autonomic nervous system Fast Blue was transported most effectively. Bisbenzimide was not transported as well as Fast Blue and Nuclear Yellow was very poorly transported in cardiopulmonary nerves. The results demonstrate that some efferent postganglionic sympathetic neurons project axons into at least two different cardiopulmonary nerves and that an anatomical substrate for axo-axonal reflexes exists in the thoracic sympathetic nervous system.  相似文献   

10.
The cell bodies of the lumbar sensory and sympathetic pre- and postganglionic neurons that project to the inferior mesenteric ganglion in the lumbar splanchnic nerves of the cat have been labeled retrogradely with horseradish peroxidase applied to the central end of their cut axons near the inferior mesenteric ganglion. The numbers, segmental distribution, location, and size of these labeled somata have been determined quantitatively. After all the lumbar splanchnic nerves on one side of an animal were labeled, most labeled cell bodies were situated ipsilaterally in dorsal root ganglia, ganglia of the lumbar sympathetic trunk, and spinal cord segments L2-L5, with the maximum numbers in L3 and L4. A few labeled somata lay contralaterally or rostral to L2. After labeling of only one lumbar splanchnic nerve, the majority of cell bodies were found in the labeled segment, but a few were also present up to three segments rostral or caudal. These variations could always be attributed to extraspinal connections usually via the lumbar sympathetic trunk. Cross-sectional areas of labeled afferent somata were small relative to those of the entire population of dorsal root ganglion cells. Preganglionic cell bodies were labeled in the intermediate gray matter extending from its lateral border ventrolaterally across to the central canal. Two regions of high density were observed: one laterally just medial to the edge of the white matter and the other lateral to the central canal. The dorsolateral group lay somewhat medial and caudal to the usual limits of the intermediolateral column. Labeled preganglionic neurons were on the average larger than the unlabeled cells in the inferior mesenteric ganglion, with the group lying medially being larger than those that were laterally positioned. From the data, it is estimated that about 4,600 afferent axons, about 4,600 preganglionic axons, and about 2,800 postganglionic axons travel in the lumbar splanchnic nerves to the inferior mesenteric ganglion of the cat.  相似文献   

11.
Cardiac nerves were identified physiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labelphysiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labelphysiologically and injected with horseradish peroxidase in 38 dogs. Retrogradely labeled neurons were present in the greatest number in the middle cervical ganglion, whereas fewer labeled neurons were present in the stellate ganglion. Only occasional neurons in the superior cervical ganglion were labeled, and no labeled cells were found in the T3 to T6 paravertebral ganglia or in the ganglia contralateral to the nerve injected. following injections into specific cardiac nerves, retrograde labeling was widespread within the middle cervical ganglion, and the distributions of labeled neurons from different nerves overlapped considerably. In the middle cervical ganglion there was little or no regional grouping of cells projecting to specific cardiac nerves. within the stellate ganglion, however, te cardiac-sympathetic cells were clustered primarily at the cranial pole near toe origin of the ventral and dorsal ansae. Mediastinal ganglia and ganglia located in cardiac nerves were frequently as heavily labeled as the ipsilateral stellate ganglion. The occurrence of heavy labeling in mediastinal and cardiac nerve ganglia indicates that these hitherto unreported ganglia play a significant role in cardiac neural regulation. These data imply that the organization of sympathetic neurons controlling the heart is much more complex than has previously been considered.  相似文献   

12.
The spinal segments of origin of the sympathetic preganglionic neurones (SPNs) influencing the activity of sympathetic postganglionic neurones innervating the tail have been studied using a neurophysiological approach. Activity was recorded from the ventral collector nerve that carries 70% of the sympathetic fibres innervating targets within the tail and provides 80% of the innervation of the caudal ventral artery. When recording activity from the ventral collector nerve at the tail base, the largest responses were evoked following electrical stimulation within spinal segments lumbar (L) 1 and 2 and smaller responses from thoracic (T) 13 (n=5). Although similar responses to those recorded from the tail base were elicited from spinal segments L1 and L2, when activity was recorded from mid-tail only minimal responses were evoked from T13 (n=6). On average robust responses were never elicited following stimulation beyond these segments. Responses had latencies compatible with conduction over C-fibre axons and were absent following ganglionic blockade. It is concluded that SPNs influencing the tail circulation reside mainly in L1 and L2 spinal segments and there is also a substantial but lesser contribution arising from segment T13.  相似文献   

13.
Neurons performing the same function can be identified immunohistochemically because they often share the same neurochemistry. The distribution of calcium-binding proteins, like calbindin, has been used previously to identify functional subpopulations of neurons in many parts of the nervous system. In this study we have investigated the distribution of calbindin D28K-immunoreactivity in subpopulations of sympathetic preganglionic neurons in the intermediolateral nucleus of the rat spinal cord. The majority of calbindin D28K-immunoreactive preganglionic neurons also had co-localised nitric oxide synthase, although a population of preganglionic neurons in the mid- to low thoracic intermediolateral nucleus expressed only calbindin D28K-immunoreactivity. Retrograde-tracing studies showed that calbindin D28K-immunoreactive neurons projected to the superior cervical and stellate ganglia, with smaller numbers of cells projecting to the lumbar sympathetic chain and superior mesenteric ganglia. Very few calbindin D28K-immunoreactive neurons projected to the inferior mesenteric ganglion, and none projected to the adrenal medulla. The distribution of calbindin D28K-immunoreactive terminals and postganglionic neurons in the superior cervical and stellate ganglia was also investigated. Many postganglionic neurons were calbindin D28K-immunoreactive, and most of these lacked neuropeptide Y-immunoreactivity. Calbindin D28K-immunoreactive nerve terminals were common and formed dense pericellular baskets around many postganglionic neurons, including some of those that were calbindin D28K-immunoreactive, but only rarely formed pericellular baskets around neuropeptide Y-immunoreactive neurons. The function of some of the classes of postganglionic neurons that were the target of calbindin D28K-immunoreactive preganglionic terminals was determined by combining immunohistochemistry with retrograde-tracer injections into a range of peripheral tissues. Calbindin D28K-immunoreactive nerve terminals, with co-localised nitric oxide synthase-immunoreactivity, surrounded secretomotor neurons projecting to the submandibular salivary gland and pilomotor neurons projecting to skin, but did not surround neurons projecting to brown fat or vasomotor neurons projecting to the skin, muscle, or salivary glands. J. Comp. Neurol. 386:245–259, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Previous functional and anatomical techniques have characterized the cardiac nerves and plexuses. They cannot, however, determine the course of fibers arising from a specific ganglion. This study has found that the intraaxonal orthograde labeling of axons can be used to determine the course of postganglionic sympathetic cardiac fibers in the dog and cat. The canine left caudal cervical ganglion and the feline right stellate ganglion were exposed through appropriate thoracotomies. Each ganglion received multiple injections of tritiated leucine (500 muCi/animal). Following a 3--14-day survival period the anesthetized animals were sacrificed by vascular perfusion. The injected ganglia, extracardiac nerves and selected portions of the heart were processed for autoradiography. Autoradiographs from the dog demonstrated labeled postganglionic sympathetic nerves in the extracardiac plexus, left atrial epicardium and the epicardium beneath the coronary sulcus. Labeled nerves in the cat heart were found within the epicardial layers and associated with blood vessels in the left ventricular myocardium. Neither myelinated fibers traveling through the injection site nor intrinsic cardiac ganglion cells were labeled, although the latter were often closely approximated to heavily labeled fibers.  相似文献   

15.
The cell bodies of the sensory and sympathetic pre- and postganglionic neurons projecting into the cervical sympathetic trunk were retrogradely labeled with horseradish peroxidase in the chicken. Preganglionic neurons were located in the spinal segments T1-T6 (maximum T2), postganglionic neurons in the paravertebral ganglia T1-T3 (maximum T1) and sensory neurons in the dorsal root ganglia T1-T4 (maximum T1). Labeled preganglionic neurons were widely distributed across the intermediate gray matter and lateral funiculus, but the majority of them were located in the intermediomedial area dorsolateral to the central canal. The short and long axis diameters of labeled preganglionic neurons in this area decreased caudally. From the data of the present study, it is estimated that about 4190 preganglionic, about 450 postganglionic and about 390 sensory neurons project into the cervical sympathetic trunk cranial to the paravertebral ganglion T1 in the chicken.  相似文献   

16.
The cell bodies of the lumbar sensory and sympathetic pre- and postganglionic neurons that project to the pelvic organs in the hypogastric nerve of the cat have been labeled retrogradely with horseradish peroxidase applied to the central end of their cut axons. The numbers, segmental distribution, location, and size of these labeled somata have been determined quantitatively. Afferent and preganglionic cell bodies were located bilaterally in dorsal root ganglia and spinal cord segments L3-L5, with the maximum numbers in L4. Very few cells lay rostral to L3. Afferent cell bodies were generally very small in cross-sectional area relative to the entire population in the dorsal root ganglia. Most of the preganglionic cell bodies lay clustered just medial to the region of the intermediolateral column and extended caudally well beyond its usual limit in the upper part of L4. These neurons were, on the average, larger than the cells of the intermediolateral column itself, with the largest cells lying in the most medial positions. Most of the post-ganglionic somata were in the ipsilateral distal lobe of the inferior mesenteric ganglion, while some (usually less than 10%) lay in accessory ganglia along the lumbar splanchnic nerves and in paravertebral ganglia L3-L5. Postganglionic somata in the inferior mesenteric ganglion were larger than both labeled and unlabeled ganglion cells in the paravertebral ganglia. From the data, it is estimated that about 1,300 afferent neurons, about 1,700 preganglionic neurons, and about 17,000 postganglionic neurons project in each hypogastric nerve in the cat.  相似文献   

17.
The localization of the sympathetic postganglionic neurons innervating the cardiac coronary arteries of the cat was investigated using retrograde axonal transport with horseradish peroxidase. We found after the enzyme was applied to the main trunk of the right coronary artery, and to the main trunk and the terminal branch of the ventral descending vessels of the left coronary artery, the peroxidase-labeled sympathetic neurons were localized predominantly in the right stellate ganglia, with a few cells in the left stellate ganglia. There were very few labeled cells in the middle cervical, superior cervical, and T4-7 ganglia on both sides. After peroxidase application to the terminal branch of the dorsal descending vessels of the right coronary artery, labeled cells were mainly in the left stellate ganglia, with only a few cells in the right stellate ganglia.  相似文献   

18.
The retrograde transport of horseradish peroxidase (HRP) has been used to study the localization and the number of neurons innervating the heart in the right stellate ganglion and accessory cervical ganglion, spinal cord and dorsal root ganglia of the cat. HRP was applied to the central cuts of anastomose of the stellate ganglion with the vagal nerve, of the vagosympathetic trunk caudal to anastomose and of the inferior cardiac nerve. HRP-labelled neurons were detected in the stellate ganglion in the regions which give off nerves, whereas in the accessory cervical ganglion labelled neurons were distributed throughout the whole ganglion. HRP-stained cells were found in the anastomose. In the spinal cord labelled neurons were detected in the lateral horn of T1-T5 segments. In the dorsal root ganglion the greatest number of neurons was observed in T2-T4 segments.  相似文献   

19.
The distribution of sympathetic preganglionic neurons that project via the right stellate ganglion has been studied quantitatively in adult cats. Retrograde transport of horseradish peroxidase (HRP) injected into the ganglion or applied to transected axons of the cervical sympathetic trunk (CST) resulted in labelling of neurons in the ipsilateral spinal cord over T1–T9 and T1–T7, respectively. Their distribution and morphology in the subnuclei of the intermediate zone were determined. Neurons within the principal part of the intermediolateral column (ILp) comprised the majority of labelled cells at all levels, irrespective of the site of HRP application, while more medially located neurons projected differentially. A combination of the application procedures labelled what appeared to be a sum of the individual projections, and few ILp cells remained unlabelled in the most rostral segments. From reconstructions of different segmental levels, most of the cells in the ILp were found to lie in a column ~200 μm in diameter composed of a series of cell aggregations of 20–150 neurons at intervals of ~300 μm. Less frequently, mediolaterally aligned cells extended toward the central canal, near which small cell clusters were also detected. After selective HRP application to individual rami of T1–T3, labelled cells were restricted to one segment's length, so that neurons located more caudally must project extraspinally to the stellate ganglion. Consideration of the maximum cell numbers labelled by each procedure suggests that preganglionic collaterals (probably unmyelinated) diverging from the pathway to the preferred target of their parent neuron were not labelled by this technique.  相似文献   

20.
The pre- and postganglionic cardioacceleratory innervation is described in the pigeon. The peripheral course of the postganglionic cardiac nerves has been determined using microdissection and electrical stimulation. Using these techniques and retrograde degeneration methods, the distribution within the sympathetic ganglia of the cells of origin of these fibers has been localized to the three right caudal cervical ganglia (12, 13 and 14). It has also been shown on the basis of electrical stimulation combined with selective ablation of the right sympathetic chain that cardioaccelerator preganglionic fibers probably arise from the most caudal cervical segment of the spinal cord (14), always arise from the upper two thoracic segments (15 and 16), and occasionally arise from a mid-thoracic segment (17). The left sympathetic chain was shown to have an inconsistent influence on heart rate. On the basis of retrograde degeneration, the cells of origin of sympathetic preganglionic fibers have been localized to a welldefined cell column dorsal to the central canal (column of Terni).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号