首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study tested whether air-conducted sound and bone-conducted vibration activated primary vestibular afferent neurons and whether, at low levels, such stimuli are specific to particular vestibular sense organs. In response to 500 Hz bone-conducted vibration or 500 Hz air-conducted sound, primary vestibular afferent neurons in the guinea pig fall into one of two categories--some neurons show no measurable change in firing up to 2 g peak-to-peak or 140 dB SPL. These are semicircular canal neurons (regular or irregular) and regular otolith neurons. In sharp contrast, otolith irregular neurons show high sensitivity: a steep increase in firing as stimulus intensity is increased. These sensitive neurons typically, but not invariably, were activated by both bone-conducted vibration and air-conducted sound, they originate from both the utricular and saccular maculae, and their sensitivity underpins new clinical tests of otolith function.  相似文献   

2.
The temporal processing in the encoding of head rotation was investigated by comparing the dynamics of vestibular nuclei neurons with those of the regularly and irregularly firing semicircular canal afferents in alert rhesus monkeys. During earth-vertical axis rotations, neurons without eye movement sensitivity differed in their response dynamics from both regularly and irregularly firing semicircular canal afferents. At high frequencies, central responses increased in sensitivity and maintained phase leads of nearly 30° relative to head velocity. These persistent high-frequency phase leads resembled those of irregularly firing (but not regularly firing) semicircular canal afferents. However, at low frequencies, central responses exhibited significantly smaller phase leads than those of irregularly firing semicircular canal afferents, and dynamics resembled more those of the regularly firing afferents. The response dynamics of central non-eye movement cells were significantly different from those of position-vestibular-pause and eye-head neurons (collectively referred to as eye movement cells). In contrast to the persistent phase leads of non-eye movement neurons, all eye movement cells modulated closely in phase with head velocity at all frequencies down to 0.05 Hz during visual suppression tasks. Vertical canal non-eye movement neurons that were insensitive to both translations and static head tilts led head velocity by approximately 5–30° during high-frequency earth-horizontal axis rotations. Unlike the earth-vertical axis responses that led head velocity at low frequencies by as much as 20–40°, vertical canal neurons only slightly led or even lagged behind head velocity during low-frequency earth-horizontal axis rotations. Posterior canal central non-eye movement cells lagged behind head velocity significantly more than anterior canal neurons. These frequency dependencies of central vestibular neurons in comparison with those of the afferents suggest that both low- and high-pass filtering might be necessary to convert primary semicircular canal afferent response dynamics to central neuron ones.  相似文献   

3.
1. We have studied, in decerebrate cats, the responses of neurons in the lateral and descending vestibular nuclei to whole-body rotations in vertical planes that activated vertical semicircular canal and utricular receptors. Some neurons were identified as vestibulospinal by antidromic stimulation with floating electrodes placed in C4. 2. The direction of tilt that caused maximal excitation (response vector orientation) of each neuron was determined. Neuron dynamics were then studied with sinusoidal stimuli closely aligned with the response vector orientation, in the range 0.02-1 Hz. A few cells, for which we could not identify a response vector, probably had spatial-temporal convergence. 3. On the basis of dynamics, neurons were classified as receiving their input primarily from vertical semicircular canals, primarily from the otolith organs, or from canal+otolith convergence. 4. Response vector orientations of canal-driven neurons were often near +45 degrees or -45 degrees with respect to the transverse (roll) plane, suggesting these neurons received excitatory input from the ipsilateral anterior or posterior canal, respectively. Some neurons had canal-related dynamics but vector orientations near roll, presumably because they received convergent input from the ipsilateral anterior and posterior canals. Few neurons had their vectors near pitch. 5. In the lateral vestibular nucleus, neurons with otolith organ input (pure otolith or otolith+canal) tended to have vector orientations closer to roll than to pitch. In the descending nucleus the responses were evenly divided between the roll and pitch quadrants. 6. We conclude that most of our neurons have dynamics and response vector orientations that make them good candidates to participate in vestibulospinal reflexes acting on the limbs, but not those acting on the neck.  相似文献   

4.
Angular and translational accelerations excite the semicircular canals and otolith organs, respectively. While canal afferents approximately encode head angular velocity due to the biomechanical integration performed by the canals, otolith signals have been found to approximate head translational acceleration. Because central vestibular pathways require velocity and position signals for their operation, the question has been raised as to how the integration of the otolith signals is accomplished. We recorded responses from 62 vestibular-only neurons in the vestibular nucleus of two monkeys to position transients in the naso-occipital and interaural orientations and varying directions in between. Responses to the transients were directionally asymmetric; one direction elicited a response that approximated the integral of the acceleration of the stimulus. In the opposite direction, the cells simply encoded the acceleration of the motion. We present a model that suggests that a neural integrator is not needed. Instead a neuron with a long membrane time constant and an excitatory postsynaptic potential duration that increases with the firing rate of the presynaptic cell can emulate the observed behavior.  相似文献   

5.
In this review, based primarily on work from our laboratory, but related to previous studies, we summarize what is known about the convergence of vestibular afferent inputs onto single vestibular neurons activated by selective stimulation of individual vestibular nerve branches. Horizontal semicircular canal (HC), anterior semicircular canal (AC), posterior semicircular canal (PC), utricular (UT), and saccular (SAC) nerves were selectively stimulated in decerebrate cats. All recorded neurons were classified as either projection neurons, which consisted of vestibulospinal (VS), vestibulo-oculospinal (VOS), vestibulo-ocular (VO) neurons, or non-projection neurons, which we simply term vestibular (V) neurons. The first three types could be successfully activated antidromically from oculomotor/trochlear nuclei and/or spinal cord, and the last type could not be activated antidromically from either site. A total of 1228 neurons were activated by stimulation of various nerve pair combinations. Convergent neurons were located in the caudoventral part of the lateral, the rostral part of the descending, and the medial vestibular nuclei. Otolith-activated vestibular neurons in the superior vestibular nucleus were extremely rare. A high percentage of neurons received excitatory inputs from two nerve pairs, a small percentage received reciprocal convergent inputs and even fewer received inhibitory inputs from both nerves. More than 30% of vestibular neurons received convergent inputs from vertical semicircular canal/otolith nerve pairs. In contrast, only half as many received convergent inputs from HC/otolith-nerve pairs, implying that convergent input from vertical semicircular canal and otolith-nerve pairs may play a more important role than that played by inputs from horizontal semicircular canal and otolith-nerve pairs. Convergent VS neurons projected through the ipsilateral lateral vestibulospinal tract (i-LVST) and the medial vestibulospinal tract (MVST). Almost all the VOS neurons projected through the MVST. Convergent neurons projecting to the oculomotor/trochlear nuclei were much fewer in number than those projecting to the spinal cord. Some of the convergent neurons that receive both canal and otolith input may contribute to the short-latency pathway of the vestibulocollic reflex. The functional significance of these convergences is discussed.  相似文献   

6.
Previous studies have shown that the vestibular short-latency-evoked potential (VsEP) in response to the brief head acceleration stimulus is a compound action potential of neurons innervating the otolith organs. However, due to the lack of direct evidence, it is currently unclear whether the VsEP is primarily generated by the activity of utricular or saccular afferent neurons, or some mixture of the two. Here, we investigated the origin of the VsEP evoked by brief bone-conducted vibration pulses in guinea pigs, using selective destruction of the cochlea, semicircular canals (SCCs), saccule, or utricle, along with neural blockade with tetrodotoxin (TTX) application, and mechanical displacements of the surgically exposed utricular macula. To access each end organ, either a dorsal or a ventral surgical approach was used. TTX application abolished the VsEP, supporting the neurogenic origin of the response. Selective cochlear, SCCs, or saccular destruction had no significant effect on VsEP amplitude, whereas utricular destruction abolished the VsEP completely. Displacement of the utricular membrane changed the VsEP amplitude in a non-monotonic fashion. These results suggest that the VsEP evoked by BCV in guinea pigs represents almost entirely a utricular response. Furthermore, it suggests that displacements of the utricular macula may alter its response to bone-conduction stimuli.  相似文献   

7.
Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles (cervical VEMP, or cVEMP). Since the cVEMP offers simplicity and the ability to stimulate each labyrinth separately, its values as a test of human vestibular function are widely recognized. Currently, the cVEMP is interpreted as a test of saccule function based on the assumption that clicks primarily activate the saccule. However, sound activation of vestibular end organs other than the saccule has been reported. To provide the neural basis for interpreting clinical VEMP testing, we employed the broadband clicks used in clinical VEMP testing to examine the sound-evoked responses in a large sample of vestibular afferents in Sprague-Dawley rats. Recordings were made from 924 vestibular afferents from 106 rats: 255 from the anterior canal (AC), 202 from the horizontal canal (HC), 177 from the posterior canal (PC), 207 from the superior vestibular nerve otolith (SO), and 83 from the inferior nerve otolith (IO). Sound sensitivity of each afferent was quantified by computing the cumulative probability of evoking a spike (CPE). We found that clicks activated irregular afferents (normalized coefficient of variation of interspike intervals >0.2) from both the otoliths (81%) and the canals (43%). The order of end organ sound sensitivity was SO = IO > AC > HC > PC. Since the sternocleidomastoid motoneurons receive inputs from both the otoliths and the canals, these results provide evidence of a possible contribution from both of them to the click-evoked cVEMP.  相似文献   

8.
The convergence between the anterior semicircular canal (AC) and utricular (UT) inputs, as well as the convergence between the AC and saccular (SAC) inputs in single vestibular neurons of decerebrated cats were investigated. Postsynaptic potentials were recorded intracellularly after selective stimulation of each pair of vestibular nerves AC/UT or AC/SAC. Neurons were recorded from the central parts of the vestibular nuclei, where the otolith afferents mainly terminate. Of a total of 105 neurons that were activated after stimulation of the AC and UT nerves, 42 received convergent inputs. Thirty-eight of these neurons received excitatory inputs from both afferents. Convergent neurons were further classified into vestibulospinal (n=28) and vestibulooculospinal (n=6) neurons by antidromic activation from the border between the C1 and C2 spinal cord and the oculomotor or trochlear nucleus. Eight neurons that were not antidromically activated from either site were classified as vestibular neurons. Forty three percent of the convergent vestibulospinal neurons and most of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Of a total of 118 neurons that were activated after stimulation of the AC and/or SAC nerves, 51 received convergent inputs (27 vestibulospinal, 4 vestibulooculospinal, 5 vestibuloocular and 15 vestibular neurons). Forty-two of the convergent neurons received excitatory inputs from both afferents. Thirty seven percent of the convergent vestibulospinal neurons and all of the convergent vestibulooculospinal neurons projected to the spinal cord through the medial vestibulospinal tract. The remaining vestibulospinal and vestibulooculospinal neurons descended through the ipsilateral lateral vestibulospinal tract. Electronic Publication  相似文献   

9.
1. The electrical activity of single trochlear motoneurons (TMns) and axons of second order vestibular neurons presumably terminating on these motoneurons were studied during natural stimulation of semicircular canals and otolith organs in cats anesthetized with Ketamine. 2. Null point analysis showed that TMns received an excitatory canal input from the contralateral posterior canal, and labyrinthine lesion experiments suggested that the functionally synergistic, ipsilateral anterior canal provides an inhibitory input. A small number of motoneurons showed orthogonal canal convergence. 3. In addition to the canal projections most TMns received an otolithic input. Firing rate was proportional to lateral head tilt and was of the beta type. Most units also responded to pitch with an increase and decrease in firing rate on nose-up and nose-down positioning, respectively. Lesion experiments indicated that the otolith responses are the results of reciprocal innervation of TMns by contralateral (excitatory) and ipsilateral (inhibitory) otolith projections. 4. During sinusoidal rotation in yaw (canal only stimulation) the mean phase lag re acceleration of the response of TMns increased from 60 degrees at 0.025 Hz to 126 degrees at 1.0 Hz. In roll (canal plus otolith stimulation) the phase lag of TMn responses measured 180 degrees and 130 degrees at 0.025 and 1.0 Hz, respectively. Phase-lags measured in Vi and Vc axons were less by ca. 15 degrees. 5. The otolith contribution to TMn responses in roll was calculated by vectorial subtraction of the yaw from the roll responses: A phase lag of 10 (0.025 Hz) to 90 degrees (0.5 Hz) re. displacement was noted and gain was constant over the same range. Similar lag dynamics were revealed in TMns when studied during ramp displacement of the head. 6. The possible functional role of central canal-otolith convergence and the differences between the response of primary vestibular afferents and secondary vestibular neurons and TMns will be discussed.  相似文献   

10.
Galvanic vestibular stimulation (GVS) in animals modulates the firing of otolith and semicircular canal afferents alike. Here, we look for postural responses evoked by GVS from the otolith organs and semicircular canals. To minimise the modifying effects of somatosensory input on the response, low-intensity (0.3–0.5 mA) GVS was applied for 8 s while subjects stood on foam rubber with the feet together and strapped to the floor. The response had three phases: (i) a rapid movement during the first second, (ii) a slower movement that persisted throughout the stimulus, and (iii) a rapid partial return movement after GVS stopped. The three movement velocities were significantly different. The GVS response therefore appears to be the sum of a step response that returns to the starting point when the stimulus stops, and a constant-velocity ramp response for the duration of the stimulus without a return movement. Subjects' responses differed in size and profile, some with the step or ramp responses almost exclusively but most with a combination of both. The 'step-plus-ramp' model was tested by comparing the three velocities. If the responses add, the initial velocity should not be different from the sum of the velocities during the ramp-only period and the step-only period at offset. ANOVA and pairwise comparisons confirmed this. It is concluded that postural responses to GVS arise through stimulation of both otolith and canal afferents.  相似文献   

11.
Recent imaging studies have reported the projection of semicircular canal signals onto wide regions of the cerebral cortex but little is known about otolith projections onto the cerebral cortex. We used functional magnetic resonance imaging (fMRI) to investigate the activation of the cortex by loud clicks that selectively stimulate the sacculus. Twelve normal volunteers were presented with auditory stimuli via an earphone containing a piezo electric element. High-intensity [maximum volume of 120 dB (SPL)] or low-intensity [maximum volume of 110 dB (SPL)] clicks were delivered at a frequency of 1 Hz and lasted 1 ms. We first checked that the high-intensity, but not low-intensity, clicks stimulated the sacculus by determining the vestibular evoked myogenic potentials. We then analyzed two task conditions (high- and low-intensity clicks) in a boxcar paradigm. We obtained gradient echo echo-planar images by using a 1.5 T MRI system. We analyzed the fMRI time series data with SPM2. High-intensity clicks activated wide areas of the cortex, namely, the frontal lobe (prefrontal cortex, premotor cortex, and frontal eye fields), parietal lobe (the region around the intraparietal sulcus, temporo-parietal junction, and paracentral lobule), and cingulate cortex. These areas are similar to those reported in previous imaging studies that analyzed the cortical responses to the activation of the semicircular canals. Thus, semicircular canal and otolith/saccular signals may be processed in similar regions of the human cortex.  相似文献   

12.
Otolith and canal reflexes in human standing   总被引:5,自引:3,他引:5  
We used galvanic vestibular stimulation (GVS) to identify human balance reflexes of the semicircular canals and otolith organs. The experiment used a model of vestibular signals arising from GVS modulation of the net signal from vestibular afferents. With the head upright, the model predicts that the GVS-evoked canal signal indicates lateral head rotation while the otolith signal indicates lateral tilt or acceleration. Both signify body sway transverse to the head. With the head bent forward, the model predicts that the canal signal indicates body spin about a vertical axis but the otolith signal still signifies lateral body motion. Thus, we compared electromyograms (EMG) in the leg muscles and body sway evoked by GVS when subjects stood with the head upright or bent forward. With the head upright, GVS evoked a large sway in the direction of the anodal electrode. This response was abolished with the head bent forward leaving only small, oppositely directed, transient responses at the start and end of the stimulus. With the head upright, GVS evoked short-latency (60–70 ms), followed by medium-latency (120 ms) EMG responses, of opposite polarity. Bending the head forward abolished the medium-latency but preserved the short-latency response. This is compatible with GVS evoking separate otolithic and canal reflexes, indicating that balance is controlled by independent canal and otolith reflexes, probably through different pathways. We propose that the short-latency reflex and small transient sway are driven by the otolith organs and the medium-latency response and the large sway are driven by the semicircular canals.  相似文献   

13.
Second-order vestibular neurons (2 degrees VN) were identified in the isolated frog brain by the presence of monosynaptic excitatory postsynaptic potentials (EPSPs) after separate electrical stimulation of individual vestibular nerve branches. Combinations of one macular and the three semicircular canal nerve branches or combinations of two macular nerve branches were stimulated separately in different sets of experiments. Monosynaptic EPSPs evoked from the utricle or from the lagena converged with monosynaptic EPSPs from one of the three semicircular canal organs in ~30% of 2 degrees VN. Utricular afferent signals converged predominantly with horizontal canal afferent signals (74%), and lagenar afferent signals converged with anterior vertical (63%) or posterior vertical (37%) but not with horizontal canal afferent signals. This convergence pattern correlates with the coactivation of particular combinations of canal and otolith organs during natural head movements. A convergence of afferent saccular and canal signals was restricted to very few 2 degrees VN (3%). In contrast to the considerable number of 2 degrees VN that received an afferent input from the utricle or the lagena as well as from one of the three canal nerves (~30%), smaller numbers of 2 degrees VN (14% of each type of 2 degrees otolith or 2 degrees canal neuron) received an afferent input from only one particular otolith organ or from only one particular semicircular canal organ. Even fewer 2 degrees VN received an afferent input from more than one semicircular canal or from more than one otolith nerve (~7% each). Among 2 degrees VN with afferent inputs from more than one otolith nerve, an afferent saccular nerve input was particularly rare (4-5%). The restricted convergence of afferent saccular inputs with other afferent otolith or canal inputs as well as the termination pattern of saccular afferent fibers are compatible with a substrate vibration sensitivity of this otolith organ in frog. The ascending and/or descending projections of identified 2 degrees VN were determined by the presence of antidromic spikes. 2 degrees VN mediating afferent utricular and/or semicircular canal nerve signals had ascending and/or descending axons. 2 degrees VN mediating afferent lagenar or saccular nerve signals had descending but no ascending axons. The latter result is consistent with the absence of short-latency macular signals on extraocular motoneurons during vertical linear acceleration. Comparison of data from frog and cat demonstrated the presence of a similar organization pattern of maculo- and canal-ocular reflexes in both species.  相似文献   

14.
To determine the contribution of the otoliths as well as the horizontal and vertical semicircular canals to the response of "vestibular only" neurons in the rostral fastigial nucleus of the alert monkey, we applied natural sinusoidal vestibular stimuli (0.6 Hz; +/-15 deg) around different axes. During the experiment the monkey sat erect in a primate chair with the head immobile. Semicircular canal responses were investigated during tilted yaw stimulation around an earth vertical axis. The tilt angle was varied by 30 deg and included the optimal plane for horizontal canal stimulation (15 deg nose down from the stereotactic plane). The otoliths and mainly the vertical canals made contributions during stimulation around an earth-fixed horizontal axis (vertical stimulation). Head orientation was also slowly altered (2-3 deg/s) over a range of 180 deg under both stimulus conditions (tilted yaw and vertical stimulation). Neuronal data for each paradigm were fitted by a least squares best-sine function. Computation of the hypothetical contributions made by all three pairs of semicircular canals and the otoliths to these responses showed that 74% of the 46 neurons investigated received an otolith input; in most instances it was combined with a canal input. Neurons most often received input from the horizontal and vertical canals as well as the otoliths. Only a minority of neurons received a purely otolith (13%), vertical canal (13%), or horizontal canal (4%) input. Conventional criteria (head position-related activity, spatiotemporal convergence, STC) failed to detect an otolith contribution in several such instances. Thus, canal-otolith convergence is the general rule at this central stage of vestibular information processing in the fastigial nucleus. The large variety of response types allows these neurons to participate in multiple tasks of vestibulospinal movement control.  相似文献   

15.
Rotational head motion in vertebrates is detected by the three semicircular canals of the vestibular system whose innervating primary afferent fibers encode movement information in specific head planes. In order to further investigate the nature of vestibular central processing of rotational motion in rhesus monkeys, it was first necessary to quantify afferent information coding in this species. Extracellular recordings were performed to determine the spatial and dynamic properties of semicircular canal afferents to rotational motion in awake rhesus monkeys. We found that the afferents innervating specific semicircular canals had maximum sensitivity vectors that were mutually orthogonal. Similar to other species, afferent response dynamics varied, with regular firing afferents having increased long time constants (t 1), decreased cupula velocity time constants (t v), and decreased fractional order dynamic operator values (s k) as compared to irregular firing afferents.  相似文献   

16.
1. The activity of cat semicircular canal and otolith afferents was studied during yaw and roll rotations, respectively, to examine their dynamic behavior. 2. A sinusoidal analysis of the canal afferent activities showed that their dynamic characteristics are similar to those of second order vestibular neurons, except for a two to three-fold lower absolute gain. This agrees with earlier studies using angular acceleration steps. 3. Both divisions of the eighth nerve were sampled so as to examine afferents from both the utriculus and sacculus. Within the range of inputs used (+/- 25 degrees lateral tilt), the presumed sacular afferents (inferior division) showed either a gamma- or beta-response. However, the gain of their response was generally much less than for the afferents of the superior division (mostly utricular). This behavior is to be expected on the basis of receptor orientations and the components of gravity acting upon the macular receptors. 4. In response to ramp changes in angular position, some otolith units showed a phasic-tonic response pattern, i.e., an overshoot followed by an adaptation to a new steady state level of activity. The majority of units showed predominantly tonic responses proportional to displacement. 5. During sinusoidal rotations the predominantly tonic units showed small phase leads of 0 to 15 degrees at 0.025 Hz which remained constant or decreased to 0 to -15 degrees at 1.0 Hz. The gains were flat or increased by up to 2 fold. The phasic-tonic units showed greater phase leads, 10 to 50 degrees, and gains which increased from 2 to 8 fold. 6. This behavior of otolith afferents suggests that they can provide information about both the magnitude and the rate of change of linear acceleration stimuli.  相似文献   

17.
Activation maps of pre- and postsynaptic field potential components evoked by separate electrical stimulation of utricular, lagenar, and saccular nerve branches in the isolated frog hindbrain were recorded within a stereotactic outline of the vestibular nuclei. Utricular and lagenar nerve-evoked activation maps overlapped strongly in the lateral and descending vestibular nuclei, whereas lagenar amplitudes were greater in the superior vestibular nucleus. In contrast, the saccular nerve-evoked activation map coincided largely with the dorsal nucleus and the adjacent dorsal part of the lateral vestibular nucleus, corroborating a major auditory and lesser vestibular function of the frog saccule. The stereotactic position of individual second-order otolith neurons matched the distribution of the corresponding otolith nerve-evoked activation maps. Furthermore, particular types of second-order utricular and lagenar neurons were clustered with particular types of second-order canal neurons in a topology that anatomically mirrored the preferred convergence pattern of afferent otolith and canal signals in second-order vestibular neurons. Similarities in the spatial organization of functionally equivalent types of second-order otolith and canal neurons between frog and other vertebrates indicated conservation of a common topographical organization principle. However, the absence of a precise afferent sensory topography combined with the presence of spatially segregated groups of particular second-order vestibular neurons suggests that the vestibular circuitry is organized as a premotor map rather than an organotypical sensory map. Moreover, the conserved segmental location of individual vestibular neuronal phenotypes shows linkage of individual components of vestibulomotor pathways with the underlying genetically specified rhombomeric framework.  相似文献   

18.
Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.  相似文献   

19.
1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Out of 326 fibres in the horizontal semicircular canal branch of the goldfish vestibular nerve, 7 fibres could be identified as efferents. They showed irregular spontaneous activity and responded to rotatory stimuli with double frequency. Additionally in the central stump of the dissected nerve, efferent fibres were found, the spontaneous and stimulus modulated activity of which could not be differentiated from afferents.Efferents could be driven by a number of stimuli (vestibular, visual, somatosensory). Disruption of the efferent influence upon the receptors by dissection of the nerve or by pharmacological means (Gallamine) led to an increase of spontaneous afferent activity by 50%, showing that there is tonic efferent inhibition. Transfer functions of afferents were not changed after release from efferent influence. Electrical stimulation of efferents in 41% of the fibres led to an increase of afferent activity instead of the expected inhibition, which was seen in another 32%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号