首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
In the present study, we used the fetal organ culture (FTOC) technique in order to study a putative effect of epidermal growth factor (EGF) on the thymus ontogeny. Functional EGF receptors and more recently the EGF molecule itself, respectively, on the membrane of epithelial components of thymic stroma and on a few thymocytes in adult thymus, had been reported in the literature. We could observe a dose-dependent decrease in cellularity and a progressive retention of thymocytes in the double-negative (CD4-/CD8-) stage of differentiation when exogenous EGF was added. Epidermal growth factor interfered with both fetal stroma growth and thymocyte development at a precise moment, that is, in the passage from double-negative to the double-positive (CD4+/CD8+) stage. After a 7-day FTOC in the presence of EGF, most cells recovered were Thy-1.2+, c-kit+, TSA1-/int, CD3-, and one of CD44high/CD25int, CD44-/CD25int, or CD44-/CD25-. Some developed into γδTCR+ cells with a mature (CD3+) phenotype, but not into αβTCR+ thymocytes. It seems that EGF addition makes the cultures "nonpermissible" for αβTCR+ thymocyte generation. We report here the presence of a high Mr "EGF-like" molecule on the membrane of fetal thymocytes, which role in the observed effects is under investigation. Further biochemical characterization of this molecule is still required, because its presence was only evidenced on the basis of its antigenicity.  相似文献   

3.
TNF, lymphotoxin (LT) and their receptors are expressed constitutively in the thymus. It remains unclear whether these cytokines play a role in normal thymic structure or function. We have investigated thymocyte differentiation, selection and thymic organogenesis in gene targeted mice lacking LTα, TNF, or both (TNF/LTα-/-). The thymus was normal in TNF/LTα-/- mice with regard to cell yields and stromal architecture. Detailed analysis of αβ and γδ T cell-lineage thymocyte subsets revealed no abnormalities, implying that neither TNF nor LT play an essential role in T cell differentiation or positive selection. The number and distribution of thymic CD11c+ dendritic cells was also normal in the absence of both TNF and LTα. A three-fold increase in B cell numbers was observed consistently in the TNF/LTα-/- thymus. This phenotype was due entirely to the LTα deficiency and associated with changes in the hemopoietic compartment, rather than the thymic stromal compartment of LTα-/- mice. Finally, specific Vβ8+ T cell deletion within the thymus following intrathymic injection of staphylococcal enterotoxin B (SEB) was TNF/LT independent. Thus, despite the presence of these cytokines and their receptors in the normal thymus, there appears no essential role for either TNF or LT in development of organ structure or for those processes associated with T cell repertoire selection.  相似文献   

4.
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S. typhimurium). Significant death of CD4+ CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+ CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon-γ (IFN-γ), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifnγ−/− mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN-γ and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifnγ−/− mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifnγ−/− mice. Importantly, the number of CD4+ CD8+ thymocytes is significantly higher in Ifnγ−/− mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN-γ-mediated pathways are parallel but synergize in an additive manner to induce death of CD4+ CD8+ thymocytes during S. typhimurium infection. The implications of this study for host responses during infection are discussed.  相似文献   

5.
The effects of monoclonal antibodies (mAbs) to cell-surface molecules, divalent cations, and various cell-signaling and metabolic inhibitors on the binding of thymocytes to rat thymic dendritic cells (TDC) were studied using a rosette assay. It was found that TDC/thymocyte adhesion was stronger and faster at 37°C than at 4°C. Flow cytometric analysis demonstrated that bound thymocytes were predominantly CD4+CD8+ and CD4+CD8-, but in comparison to the phenotype of whole thymocytes, they were enriched in the mature TCRαβhi subset. The binding of thymocytes to TDC at 37°C was almost completely dependent on Ca2+ and Mg2+ and partly on an intact cytoskeleton and calmodulin-dependent protein kinase. The adhesion was independent of new protein synthesis and the activities of protein kinases A and C, tyrosine kinases, as well as phosphotyrosine protein phosphatases. The TDC/thymocyte adhesion at 37°C was partly blocked by anti-LFA-1 (WT.1), anti-CD18 (WT.3), and anti-ICAM-1 (1A29) mAb. MAbs to class II MHC (OX-3 and OX-6), CD4 (W3/25), CD8 (OX-8), and αβTCR (R73) stimulated the adhesion via an LFA-1-dependent pathway, whereas an anti-CD45 mAb (G3C5) stimulated the rosette formation independently of LFA-1. MAbs to CD2 (OX-34), CD11b (ED7), CD11b/c (OX-42), and class I MHC (OX-18) were without significant effects on the adhesion process.  相似文献   

6.
7.
The production of T cell receptor αβ+ (TCRαβ+) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination. Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage. This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4+CD8+ double-positive (DP) thymocytes. Interestingly, these cells are actively rearranging their TCR-α chain genes. To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation. p53-dependent radio-sensitivity was already found to be high in immature CD4CD8 (double-negative, DN) cKit+CD25+ thymocytes, where TCR-β gene rearrangement is initiated. However, TCR-αβCD8+ immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent. Within the DP population, TCR-αβ+ thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ progenitors. Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis.  相似文献   

8.
Extracellular signal-regulated kinase 3 (ERK3 )is an atypical member of the mitogen-activated protein kinase (MAPK) family. We have previously shown that ERK3 is expressed during thymocyte differentiation and that its expression is induced in mature peripheral T cells following activation of ERK1/2 by T-cell receptor (TCR) signalling. Herein, we have investigated whether ERK3 expression is required for proper T-cell selection. Using a knock-in mouse model in which the coding sequence of ERK3 is replaced by the gene encoding for the β-galactosidase reporter, we show that ERK3 is expressed by double-positive (DP) thymocytes undergoing positive selection. In ERK3-deficient mice with a polyclonal TCR repertoire, we observe a decrease in positive selection. This reduction in positive selection was also observed when ERK3-deficient mice were backcrossed to class I- and class II-restricted TCR transgenic mice. Furthermore, the response of DP thymocytes to in vitro TCR stimulation was strongly reduced in ERK3-deficient mice. Together, these results show that ERK3 expression following TCR signalling is critical for proper thymic positive selection.  相似文献   

9.
The architecture of the thymus of mice that congenitally fail to express the αβ T-cell receptor (TCRαβ) has been examined by immunohistology. In these mice, a defined mutation was introduced into the TCRc gene by homologous recombination. By using antibodies specific for cortical or medullary epithelium and for major histocompatibility complex antigens, the network of cortical epithelium in these mice was shown to be essentially unaltered in comparison with that of normal mice. In contrast, the thymic medulla was considerably reduced in size. This analysis shows that expression of the αβ TCR but not the γδ TCR is obligatory for establishing the thymic medulla and suggests that the growth of medullary epithelial cells may require contact with TCRαβ-expressing cells.  相似文献   

10.
Spleen and peritoneal macrophages obtained from innately resistant A/J mice released low levels of interleukin 18 (IL-18) upon infection with Salmonella typhimurium C5 RP4. Incubating the cells with recombinant gamma interferon (rIFN-γ) enhanced IL-18 production. A/J mice treated in vivo with anti-IL-18 antibodies showed impaired resistance to infection, with increased bacterial loads in the liver and spleen. Administration of rIL-18 could protect A/J mice from challenge with a lethal dose of virulent salmonellae, with a dramatic reduction in bacterial numbers in the tissues. rIL-18 administration did not ameliorate the disease in IFN-γ-R−/− mice. IL-18 proved to be required for IFN-γ production by mouse splenocytes from conventional, scid, and rag-1−/− mice; in vivo IL-18 neutralization caused a decrease in circulating IFN-γ levels. Thus, IL-18 is a key factor in early host resistance to Salmonella and probably acts via IFN-γ.  相似文献   

11.
Among the milestones that occur during T-cell development in the thymus is the expression of T-cell receptor-β (TCR-β) and the formation of the pre-TCR complex. Signals emanating from the pre-TCR trigger survival, proliferation and differentiation of T-cell precursors. Although the pre-TCR is essential for these cell outcomes, other receptors, such as Notch and CXCR4, also contribute. Whether interleukin-7 (IL-7) participates in promoting the survival or proliferation of pre-TCR-expressing cells is controversial. We used in vitro and in vivo models of T-cell development to examine the function of IL-7 in TCR-β-expressing thymocytes. Culturing TCR-β-expressing CD4 CD8 double-negative thymocytes in an in vitro model of T-cell development revealed that IL-7 reduced the frequency of CD4+ CD8+ double-positive thymocytes at the time of harvest. The mechanism for this change in the percentage of double-positive cells was that IL-7 promoted the survival of thymocytes that had not yet differentiated. By preserving the double-negative population, IL-7 reduced the frequency of double-positive thymocytes. Interleukin-7 was not required for proliferation in the in vitro system. To follow this observation, we examined mice lacking CD127 (IL-7Rα). In addition to the known effect of CD127 deficiency on T-cell development before TCR-β expression, CD127 deficiency also impaired the development of TCR-β-expressing double-negative thymocytes. Specifically, we found that Bcl-2 expression and cell cycle progression were reduced in TCR-β-expressing double-negative thymocytes in mice lacking CD127. We conclude that IL-7 continues to function after TCR-β is expressed by promoting the survival of TCR-β-expressing double-negative thymocytes.  相似文献   

12.
 Expression of c-Met, a gene for the hepatocyte growth factor/scatter factor (HGF/SF) receptor, is known to be associated with tumour development in several human carcinomas. The expression of c-Met was examined using immunohistochemistry in 82 cases of primary laryngeal carcinoma to evaluate the tissue distribution of c-Met and the clinicopathological significance of c-Met expression. In normal larynx, c-Met expression was observed only in some minor salivary glands. Positive reaction for c-Met in neoplastic epithelium was noted in 45 out of 82 (54.9%) cases. In 44 cases, structures adjacent to the carcinoma (noncancerous squamous epithelium, some stromal fibroblastic cells, and endothelial cells) showed positive reaction for c-Met. c-Met expression in cancerous epithelium was significantly correlated with lymph node status (P<0.04) and proliferating activity expressed by the Ki-67 labelling index (P<0.02). There was no correlation between c-Met expression and age, sex, histological type, T category, distant metastasis or clinical stage. The data suggest that overexpression of c-Met in laryngeal carcinomas represents a growth advantage for cancer cells, which may be conferred by the mitogenic effect of HGF/SF. Simultaneous c-Met expression in noncancerous components of the larynx may represent a paracrine modification of c-Met. Received: 7 October 1997 / Accepted: 4 November 1997  相似文献   

13.
A role of β2 integrins and one of their ligands, ICAM-1, in thymic macrophage (TMF)/thymocyte interactions was studied. TMF were isolated as adherent cells from 4-day old culture of thymic-cell suspensions either from normal or hydrocortisone-treated rats. Adherent cells were 94-98% positive with ED1 (a pan-macrophage marker). The majority of them (75-95%) expressed the CD11b and CD18 molecules, and 60-70% expressed CD54 (ICAM-1). A low proportion of TMF (10-20%) expressed CDlla (LFA-1). The expression of all these antigens was upregulated by IFN-α and TNF-α. The effect of these mAbs on TMF/thymocyte binding was studied using a simple rosette assay by incubating unstimulated or IFN-γ or TNF-α stimulated TMF, grown on microscopic slides with resting or ConA +IL-2 activated thymocytes. It was found that LFA-1/CD18 and ICAM-1 play a significant role in the TMF/thymocyte adhesion. In addition, a LFA-l-dependent/ICAM- 1-independent adhesion pathway was observed, suggesting that LFA-1 might use another ligand. The inhibitory effect of anti-CD18 mAb (WT-3) was higher than the effect of anti-LFA-1 mAb (WT-1) and was a consequence of blocking the CD18 chain both on thymocytes and TMF. No significant difference in the expression and function of adhesion molecules was found between TMF obtained from normal or hydrocortisone-treated rats. The involvement of CD1 1b in these processes was of lesser importance than the role of the CD11a molecule. By using mAbs to different epitopes of the CD11b molecule, such as OX-42 (anti-CD11b/CD11c), ED7, and ED8 (anti-CD11b), it was found that they were either slightly or moderately inhibitory under certain experimental conditions or did not significantly modulate TMF/thymocyte binding. Oχ-42 was slightly stimulatory in some experiments. Cumulatively, these results show that 2 integrins play a significant role in TMF/thymocyte interactions and probably contribute to T-cell development in vivo.  相似文献   

14.
Lipopolysaccharide (LPS) causes apoptotic deletion of CD4+ CD8+ thymocytes, a phenomenon that has been linked to immune dysfunction and poor survival during sepsis. Given the abundance of thromboxane-prostanoid (TP) receptors in CD4+ CD8+ thymocytes and in vitro evidence that thromboxane A2 (TXA2) causes apoptosis of these cells, we tested whether enhanced generation of TXA2 plays a role in LPS-induced thymocyte apoptosis. Mice injected with 50 μg of LPS intraperitoneally displayed a marked increase in generation of TXA2 and prostaglandin E2 in the thymus as well as apoptotic deletion of CD4+ CD8+ thymocytes. Administration of indomethacin or rofecoxib inhibited prostanoid synthesis but did not affect thymocyte death. In contrast, thymocyte apoptosis in response to LPS was significantly attenuated in TP-deficient mice. These studies indicate that TXA2 mediates a portion of apoptotic thymocyte death caused by LPS. The absence of an effect of global inhibition of prostanoid synthesis suggests a complex role for prostanoids in this model.  相似文献   

15.
Although different experimental approaches have suggested certain regulation of the mammalian immune system by the neuroendocrine system, the precise factors involved in the process are largely unknown. In previous reports, we demonstrated important changes in the thymic development of chickens deprived of the major neuroendocrine centers by the removal of embryonic prosencephalon at 33-38 hr of incubation (DCx embryos) (Herradón et al., 1991; Moreno et al., 1995). In these embryos, there was a stopping of T-cell maturation that resulted in an accumulation of the most immature T-cell subsets (CD4-CD8- cells and CD4-CD81o cells) and, accordingly, in decreased numbers of DP (CD4+CD8+) thymocytes and mature CD3+TcRαβ + cells, but not CD3+TcRγδ lymphocytes. In the present work, we restore the thymic histology as well as the percentage of distinct T-cell subsets of DCx embryos by supplying recombinant chicken prolactin, grafting of embryonic pituitary gland, or making cephalic chick-quail chimeras. The recovery was not, however, whole and the percentage of CD3+TcRαβ thymocytes did not reach the normal values observed in 17-day-old control Sham-DCx embryos. The results are discussed on the basis of a key role for prolactin in chicken T-cell maturation. This hormone could regulate the transition of DN (CD4-CD8-) thymocytes to the DP (CD4+CD8+) cell compartment through its capacity for inducing IL-2 receptor expression on the former.  相似文献   

16.
We have used in situ hybridization to investigate the expression of TNF-α genes by thymic cells during fetal development in mice. In 14-day-old fetal thymuses, very scarce cells produce TNF-α mRNA. A second phase of cytokine gene expression starts on day 16. The density of positive cells progressively increases up to day 20. Thymuses at 15 days of gestation and after birth do not express detectable cytokine mRNA. In an attempt to identify the nature of the TNF-α mRNA-producing cells, acid phosphatase activity, which is characteristic of the macrophage lineage, was studied in the same thymuses. Acid phosphatase-positive cells only appear on day 15. Their frequency increases up to birth. However, no correlation can be established between acid phosphatase—and TNFα mRNA— positive cells. The results indicate that a small subset of thymic cells is responsible for TNF-α mRNA production during ontogeny: These cells are not yet identified. The possible role of TNF-α in thymic ontogeny is discussed.  相似文献   

17.
The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection.  相似文献   

18.
In previous papers, we have described the ontogenetical development of thymic stromal-cell components (epithelium, macrophages, dendritic cells) of Wistar rats. Here, we correlate those results with the maturation of rat T-cell precursors along the fetal and postnatal life. First T-cell precursors, which colonize the thymus anlage around days 13-14 of gestation, largely express CD45, CD43, CD53, and Thy 1 cell markers, and in a lesser proportion the OX22 antigen. Rat CD3-CD4-CD8- thymocytes present in the earliest stages of gestation could be subdivided in three major cell subpopulations according to the CD44 and CD25 expression: CD44-/+CD25- → CD44+CD25+ → CD44+CD25- On fetal days 17-18, a certain proportion of CD4-CD8-cells weakly,express the TcRβ chain, in correlation with the appearance of the first immature CD4-CD8+ thymocytes. This cell subpopulation, in progress to the CD4+CD8+ stage, upregulates CD8α before the CD8β chain, expresses the CD53 antigen, and exhibits a high proliferative rate. First mature thymocytes arising from the DP (CD4+CD8+) cells appear on fetal days 20-21. Then, the CD4+:CD8+ cell ratio is ≤1 changing to adult values (2-3) just after birth. Also, the percentage of VβTcR repertoire covered in adult thymus is reached during the postnatal period, being lower during the fetal life. Finally, in correlation with the beginning of thymocyte emigration to the periphery a new wave of T-cell maturation apparently occurs in the perinatal rat thymus.  相似文献   

19.
Involution of the thymus and alterations in the development of thymocytes are the most prominent features of age-related immune senescence. We have carried out a comparative analysis of thymocyte and stroma in rapid thymic involution DBA/2 (D2) strain of mice compared with slow involution C57BL/6 (B6) strain of mice. Analysis of mice at 15 months of age suggested an age-related decrease in the thymocyte cell count, a block in the development of T cells and cortical involution in D2 mice compared with 3-month-old mice. TUNEL (terminal-deoxynucleotidyl-transferase-mediated dUTP-digoxigenin nick end labelling) staining and fluorescence-activated cell sorter (FACS) analysis showed that there was a significant increase in apoptotic cells in the cortex region of thymus in 15-month-old D2 mice compared with the same aged B6 mice. The thymocyte proliferation rate, as assessed by bromodeoxyuridine (BrdU) staining and [3H]-thymidine incorporation assay, was lower in 3-month-old D2 mice compared with the same age B6 mice. Immunohistochemical staining showed that the arrangement of MTS (mouse thymus stromal)-10+ epithelial cells and MTS-16+ connective tissue staining pattern had become disorganized in 15-month-old D2 mice but remained intact in B6 mice of the same age. These results suggest that, in D2 mice, both the thymocytes and stromal cells exhibit age-related defects, and that the genetic background of mice plays an important role in determining age-related alterations in thymic involution.  相似文献   

20.
Age associated thymic atrophy has been shown to be linked to problems with rearrangement of the β chain of the T cell receptor (TCR) in male mice during the early phases of the intrathymic T cell developmental pathway. In this study, thymic atrophy in female mice was found to occur at a different rate than in male mice. At 9 months of age there was a significantly greater number of cells in the thymus of female mice compared with male mice, with the major difference found in the CD4+CD8+ populations. The thymii of female mice at 9 months of age contained double the number of these cells compared with male mice. Analysis of the CD4+CD8+ cells at 9 months of age demonstrated increased numbers of cells expressing higher levels of CD3 in females compared with males indicating that in females more of these cells were producing successful αβTCR pairings. In F5 transgenic mice comparison of the CD4+CD8+ population revealed no significant difference in their absolute numbers at 9 months of age. These results indicate that the gender differences at this time point were due to fewer permitted divisions prior to the expression of a selectable TCR α chain within the CD4+CD8+ populations in male compared with female mice. This gender difference was not due to the action of testosterone and unlikely to be due to differences in the level of oestrogen. The potential mechanisms of this difference may be related to a regulatory feedback of peripheral T cells on the developing thymocyte populations. Such age related changes in the numbers of cells within distinct thymic subpopulations leads to the possibility that the potential repertoire in females is greater than in males later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号