首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform.  相似文献   

2.
We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.  相似文献   

3.
spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and an in-house analysis pipeline determines the spa types. Due to national surveillance, all MRSA isolates are sent to Statens Serum Institut, where the spa type is determined by PCR and Sanger sequencing. The purpose of this study was to evaluate the reliability of the spa types obtained by 150-bp paired-end Illumina WGS. MRSA isolates from new MRSA patients in 2013 (n = 699) in the capital region of Denmark were included. We found a 97% agreement between spa types obtained by the two methods. All isolates achieved a spa type by both methods. Nineteen isolates differed in spa types by the two methods, in most cases due to the lack of 24-bp repeats in the whole-genome-sequenced isolates. These related but incorrect spa types should have no consequence in outbreak investigations, since all epidemiologically linked isolates, regardless of spa type, will be included in the single nucleotide polymorphism (SNP) analysis. This will reveal the close relatedness of the spa types. In conclusion, our data show that WGS is a reliable method to determine the spa type of MRSA.  相似文献   

4.
5.
6.
Staphylococcus aureus is a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed an in silico typing scheme for the software SeqSphere+ (Ridom GmbH, Münster, Germany). The implemented target genes (n = 182) correspond to those queried by the Identibac S. aureus Genotyping DNA microarray (Alere Technologies, Jena, Germany). The in silico scheme was evaluated by comparing the typing results of microarray and of WGS for 154 human S. aureus isolates. A total of 96.8% (n = 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosome mec element types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences.  相似文献   

7.
Nosocomial infections pose a significant threat to patient health; however, the gold standard laboratory method for determining bacterial relatedness (pulsed-field gel electrophoresis [PFGE]) remains essentially unchanged 20 years after its introduction. Here, we explored bacterial whole-genome sequencing (WGS) as an alternative approach for molecular strain typing. We compared WGS to PFGE for investigating presumptive outbreaks involving three important pathogens: vancomycin-resistant Enterococcus faecium (n = 19), methicillin-resistant Staphylococcus aureus (n = 17), and Acinetobacter baumannii (n = 15). WGS was highly reproducible (average ≤ 0.39 differences between technical replicates), which enabled a functional, quantitative definition for determining clonality. Strain relatedness data determined by PFGE and WGS roughly correlated, but the resolution of WGS was superior (P = 5.6 × 10−8 to 0.016). Several discordant results were noted between the methods. A total of 28.9% of isolates which were indistinguishable by PFGE were nonclonal by WGS. For A. baumannii, a species known to undergo rapid horizontal gene transfer, 16.2% of isolate pairs considered nonidentical by PFGE were clonal by WGS. Sequencing whole bacterial genomes with single-nucleotide resolution demonstrates that PFGE is prone to false-positive and false-negative results and suggests the need for a new gold standard approach for molecular epidemiological strain typing.  相似文献   

8.
Culturing before DNA extraction represents a major time-consuming step in whole-genome sequencing of slow-growing bacteria, such as Mycobacterium tuberculosis. We report a workflow to extract DNA from frozen isolates without reculturing. Prepared libraries and sequence data were comparable with results from recultured aliquots of the same stocks.  相似文献   

9.
Whole-genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples, this could further reduce diagnostic times and thereby improve control and treatment. A major bottleneck is the availability of fast and reliable bioinformatic tools. This study was conducted to evaluate the applicability of WGS directly on clinical samples and to develop easy-to-use bioinformatic tools for the analysis of sequencing data. Thirty-five random urine samples from patients with suspected urinary tract infections were examined using conventional microbiology, WGS of isolated bacteria, and direct sequencing on pellets from the urine samples. A rapid method for analyzing the sequence data was developed. Bacteria were cultivated from 19 samples but in pure cultures from only 17 samples. WGS improved the identification of the cultivated bacteria, and almost complete agreement was observed between phenotypic and predicted antimicrobial susceptibilities. Complete agreement was observed between species identification, multilocus sequence typing, and phylogenetic relationships for Escherichia coli and Enterococcus faecalis isolates when the results of WGS of cultured isolates and urine samples were directly compared. Sequencing directly from the urine enabled bacterial identification in polymicrobial samples. Additional putative pathogenic strains were observed in some culture-negative samples. WGS directly on clinical samples can provide clinically relevant information and drastically reduce diagnostic times. This may prove very useful, but the need for data analysis is still a hurdle to clinical implementation. To overcome this problem, a publicly available bioinformatic tool was developed in this study.  相似文献   

10.
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a major challenge in health care, yet the limited heterogeneity within this group hinders molecular investigations of related outbreaks. Pulsed-field gel electrophoresis (PFGE) has been the gold standard approach but is impractical for many clinical laboratories and is often replaced with PCR-based methods. Regardless, both approaches can prove problematic for identifying subclonal outbreaks. Here, we explore the use of whole-genome sequencing for clinical laboratory investigations of MRSA molecular epidemiology. We examine the relationships of 44 MRSA isolates collected over a period of 3 years by using whole-genome sequencing and two PCR-based methods, multilocus variable-number tandem-repeat analysis (MLVA) and spa typing. We find that MLVA offers higher resolution than spa typing, as it resolved 17 versus 12 discrete isolate groups, respectively. In contrast, whole-genome sequencing reproducibly cataloged genomic variants (131,424 different single nucleotide polymorphisms and indels across the strain collection) that uniquely identified each MRSA clone, recapitulating those groups but enabling higher-resolution phylogenetic inferences of the epidemiological relationships. Importantly, whole-genome sequencing detected a significant number of variants, thereby distinguishing between groups that were considered identical by both spa typing (minimum, 1,124 polymorphisms) and MLVA (minimum, 193 polymorphisms); this suggests that these more conventional approaches can lead to false-positive identification of outbreaks due to inappropriate grouping of genetically distinct strains. An analysis of the distribution of variants across the MRSA genome reveals 47 mutational hot spots (comprising ∼2.5% of the genome) that account for 23.5% of the observed polymorphisms, and the use of this selected data set successfully recapitulates most epidemiological relationships in this pathogen group.  相似文献   

11.
12.
Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance of Listeria monocytogenes has the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423 L. monocytogenes isolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferred in silico from the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97 L. monocytogenes isolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospective L. monocytogenes surveillance and investigated for other pathogens relevant to public health.  相似文献   

13.
The treatment of drug-resistant tuberculosis cases is challenging, as drug options are limited, and the existing diagnostics are inadequate. Whole-genome sequencing (WGS) has been used in a clinical setting to investigate six cases of suspected extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) encountered at a London teaching hospital between 2008 and 2014. Sixteen isolates from six suspected XDR-TB cases were sequenced; five cases were analyzed in a clinically relevant time frame, with one case sequenced retrospectively. WGS identified mutations in the M. tuberculosis genes associated with antibiotic resistance that are likely to be responsible for the phenotypic resistance. Thus, an evidence base was developed to inform the clinical decisions made around antibiotic treatment over prolonged periods. All strains in this study belonged to the East Asian (Beijing) lineage, and the strain relatedness was consistent with the expectations from the case histories, confirming one contact transmission event. We demonstrate that WGS data can be produced in a clinically relevant time scale some weeks before drug sensitivity testing (DST) data are available, and they actively help clinical decision-making through the assessment of whether an isolate (i) has a particular resistance mutation where there are absent or contradictory DST results, (ii) has no further resistance markers and therefore is unlikely to be XDR, or (iii) is identical to an isolate of known resistance (i.e., a likely transmission event). A small number of discrepancies between the genotypic predictions and phenotypic DST results are discussed in the wider context of the interpretation and reporting of WGS results.  相似文献   

14.
No study to date has compared multilocus variable-number tandem-repeat analysis (MLVA) and whole-genome sequencing (WGS) in an investigation of the transmission of Clostridium difficile infection. Isolates from 61 adults with ongoing and/or recurrent C. difficile infections and 17 asymptomatic carriage episodes in children (201 samples), as well as from 61 suspected outbreaks affecting 2 to 41 patients in 31 hospitals in the United Kingdom (300 samples), underwent 7-locus MLVA and WGS in parallel. When the first and last samples from the same individual taken for a median (interquartile range [IQR]) of 63 days (43 to 105 days) apart were compared, the estimated rates of the evolution of single nucleotide variants (SNVs), summed tandem-repeat differences (STRDs), and locus variants (LVs) were 0.79 (95% confidence interval [CI], 0.00 to 1.75), 1.63 (95% CI, 0.00 to 3.59), and 1.21 (95% CI, 0.00 to 2.67)/called genome/year, respectively. Differences of >2 SNVs and >10 STRDs have been used to exclude direct case-to-case transmission. With the first serial sample per individual being used to assess discriminatory power, across all pairs of samples sharing a PCR ribotype, 192/283 (68%) differed by >10 STRDs and 217/283 (77%) by >2 SNVs. Among all pairs of cases from the same suspected outbreak, 1,190/1,488 (80%) pairs had concordant results using >2 SNVs and >10 STRDs to exclude transmission. For the discordant pairs, 229 (15%) had ≥2 SNVs but ≤10 STRDs, and 69 (5%) had ≤2 SNVs but ≥10 STRDs. Discordant pairs had higher numbers of LVs than concordant pairs, supporting the more diverse measure in each type of discordant pair. Conclusions on whether the potential outbreaks were confirmed were concordant in 58/61 (95%) investigations. Overall findings using MLVA and WGS were very similar despite the fact that they analyzed different parts of the bacterial genome. With improvements in WGS technology, it is likely that MLVA locus data will be available from WGS in the near future.  相似文献   

15.
The Gram-negative bacteria Klebsiella pneumoniae is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant K. pneumoniae that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on K. pneumoniae isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmission routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.  相似文献   

16.
Acinetobacter baumannii frequently causes nosocomial infections and outbreaks. Whole-genome sequencing (WGS) is a promising technique for strain typing and outbreak investigations. We compared the performance of conventional methods with WGS for strain typing clinical Acinetobacter isolates and analyzing a carbapenem-resistant A. baumannii (CRAB) outbreak. We performed two band-based typing techniques (pulsed-field gel electrophoresis and repetitive extragenic palindromic-PCR), multilocus sequence type (MLST) analysis, and WGS on 148 Acinetobacter calcoaceticus-A. baumannii complex bloodstream isolates collected from a single hospital from 2005 to 2012. Phylogenetic trees inferred from core-genome single nucleotide polymorphisms (SNPs) confirmed three Acinetobacter species within this collection. Four major A. baumannii clonal lineages (as defined by MLST) circulated during the study, three of which are globally distributed and one of which is novel. WGS indicated that a threshold of 2,500 core SNPs accurately distinguished A. baumannii isolates from different clonal lineages. The band-based techniques performed poorly in assigning isolates to clonal lineages and exhibited little agreement with sequence-based techniques. After applying WGS to a CRAB outbreak that occurred during the study, we identified a threshold of 2.5 core SNPs that distinguished nonoutbreak from outbreak strains. WGS was more discriminatory than the band-based techniques and was used to construct a more accurate transmission map that resolved many of the plausible transmission routes suggested by epidemiologic links. Our study demonstrates that WGS is superior to conventional techniques for A. baumannii strain typing and outbreak analysis. These findings support the incorporation of WGS into health care infection prevention efforts.  相似文献   

17.
18.
The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.  相似文献   

19.
Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens.  相似文献   

20.
Perirectal surveillance cultures and a stool culture grew Aeromonas species from three patients over a 6-week period and were without epidemiological links. Detection of the blaKPC-2 gene in one isolate prompted inclusion of non-Enterobacteriaceae in our surveillance culture workup. Whole-genome sequencing confirmed that the isolates were unrelated and provided data for Aeromonas reference genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号