首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OTOG was identified as a nonsyndrmoic hearing loss gene in 2012 in two families with nonprogressive mild-to-moderate hearing loss. However, no further literature have this gene for nonsyndromic hearing loss. Furthermore, it is still unclear whether vestibular impairment is involved or not in patients with mutations in OTOG. This study presents a validated second report for homozygous causative mutations in OTOG of mild hearing loss. Whole exome sequencing (WES) was performed in a five-year-old male proband with mild hearing loss. The analysis of WES revealed a homozygous truncating mutation (c.330C > G; p.Tyr110*) in OTOG. The identified novel mutation, p.Tyr110*, leads to a null allele based on the fact that early truncated protein contains no functional domain of otogelin. While defects in otogelin previously reported to result in hearing loss and vestibular dysfunction, p.Tyr110* only caused nonsydromic and nonprogressive hearing loss without any vestibular impairment, indicating that vestibular phenotype would be variable. Given that mild hearing loss is not easy to be detected early, mutations of OTOG may be more prevalent than reported. Therefore, genetic evaluation for OTOG should be considered in children with mild hearing loss with/without vestibular dysfunction.  相似文献   

2.
Hildebrand MS, Thorne NP, Bromhead CJ, Kahrizi K, Webster JA, Fattahi Z, Bataejad M, Kimberling WJ, Stephan D, Najmabadi H, Bahlo M, Smith RJH. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation. Myosin VIIA mutations have been associated with non‐syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non‐syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L‐1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non‐syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.  相似文献   

3.
We have previously reported on a consanguineous family where 2 siblings, a girl and a boy, presented with tall stature, long and triangular faces, prominent forehead, telecanthus, ptosis, everted lower eyelids, downslanting palpebral fissures, large ears, high arched palate, long arm span, arachnodactyly, advanced bone age, joint laxity, pectus excavatum, inguinal hernia, and myopia, suggestive of a new subtype of connective tissue disorder (Megarbane et al. AJMG, 2012; 158(A)5: 1185–1189). On clinical follow-up, both patients had multiple inguinal, crural, and abdominal herniae, intestinal occlusions, several huge diverticula throughout the gut and the bladder, and rectal prolapse. In addition, the girl had a mild hearing impairment, and the boy a left diaphragmatic hernia.Here we describe the molecular characterization of this disorder using Whole Exome Sequencing, revealing, in both siblings, a novel homozygous missense variant in the EFEMP1 gene, c.163T > C; p.(Cys55Arg) whose homozygous by descent, autosomal recessive transmission was confirmed through segregation analysis by Sanger sequencing. In addition, the girl exhibited a homozygous mutation in the MYO3A gene, c.1370_1371delGA; p.(Arg457Asnfs*25), associated with non-syndromic deafness. The siblings were also found to harbor a homozygous nonsense variant in the VCPKMT gene. We review the literature and discuss our updated clinical and molecular findings that suggest EFEMP1 to be the probable candidate gene implicated in this novel connective tissue disease.  相似文献   

4.
The study was conducted between 2018 and 2020. From a cohort of 113 hearing impaired (HI), five non-DFNB12 probands identified with heterozygous CDH23 variants were subjected to exome analysis. This resolved the etiology of hearing loss (HL) in four South Indian assortative mating families. Six variants, including three novel ones, were identified in four genes: PNPT1 p.(Ala46Gly) and p.(Asn540Ser), MYO15A p.(Leu1485Pro) and p.(Tyr1891Ter), PTPRQ p.(Gln1336Ter), and SLC12A2 p.(Pro988Ser). Compound heterozygous PNPT1 variants were associated with DFNB70 causing prelingual profound sensorineural hearing loss (SNHL), vestibular dysfunction, and unilateral progressive vision loss in one family. In the second family, MYO15A variants in the myosin motor domain, including a novel variant, causing DFNB3, were found to be associated with prelingual profound SNHL. A novel PTPRQ variant was associated with postlingual progressive sensorineural/mixed HL and vestibular dysfunction in the third family with DFNB84A. In the fourth family, the SLC12A2 novel variant was found to segregate with severe-to-profound HL causing DFNA78, across three generations. Our results suggest a high level of allelic, genotypic, and phenotypic heterogeneity of HL in these families. This study is the first to report the association of PNPT1, PTPRQ, and SLC12A2 variants with HL in the Indian population.  相似文献   

5.
Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.Subject terms: Genetic testing, Genetic testing  相似文献   

6.
Myosin XVA is an unconventional myosin which has been implicated in autosomal recessive nonsyndromic hearing impairment (ARNSHI) in humans. In Myo15A mouse models, vestibular dysfunction accompanies the autosomal recessive hearing loss. Genomewide homozygosity mapping and subsequent fine mapping in two Turkish families with ARNSHI revealed significant linkage to a critical interval harboring a known deafness gene MYO15A on chromosome 17p13.1-17q11.2. Subsequent sequencing of the MYO15A gene led to the identification of a novel missense mutation, c.5492G-->T (p.Gly1831Val) and a novel splice site mutation, c.8968-1G-->C. These mutations were not detected in additional 64 unrelated ARNSHI index patients and in 230 Turkish control chromosomes. Gly1831 is a conserved residue located in the motor domains of the different classes of myosins of different species. Molecular modeling of the motor head domain of the human myosin XVa protein suggests that the Gly1831Val mutation inhibits the powerstroke by reducing backbone flexibility and weakening the hydrophobic interactions necessary for signal transmission to the converter domain.  相似文献   

7.

Background

Implementation of whole exome sequencing has provided unique opportunity for a wide screening of causative variants in genetically heterogeneous diseases, including nonsyndromic hearing impairment. TRIOBP in the inner ear is responsible for proper structure and function of stereocilia and is necessary for sound transduction.

Methods

Whole exome sequencing followed by Sanger sequencing was conducted on patients derived from Polish hearing loss family.

Results

Based on whole exome analysis, we identified two TRIOBP pathogenic variants (c.802_805delCAGG, p.Gln268Leufs*610 and c.5014G>T, p.Gly1672*, the first of which was novel) causative of nonsyndromic, peri- to postlingual, moderate-to-severe hearing loss in three siblings from a Polish family. Typically, TRIOBP pathogenic variants lead to prelingual, severe-to-profound hearing loss, thus the onset and degree of hearing impairment in our patients represent a distinct phenotypic manifestation caused by TRIOBP variants. The pathogenic variant p.Gln268Leufs*610 disrupts the TRIOBP-4 and TRIOBP-5 isoforms (both expressed exclusively in the inner ear and retina) whereas the second pathogenic variant c.514G>T, p.Gly1672* affects only TRIOBP-5.

Conclusions

The onset and degree of hearing impairment, characteristic for our patients, represent a unique phenotypic manifestation caused by TRIOBP pathogenic variants. Although TRIOBP alterations are not a frequent cause of hearing impairment, this gene should be thoroughly analyzed especially in patients with a postlingual hearing loss. A delayed onset of hearing impairment due to TRIOBP pathogenic variants creates a potential therapeutic window for future targeted therapies.
  相似文献   

8.
9.
10.
Hearing impairment is the common human sensorineural disorder and is a genetically heterogeneous phenotype for which more than 100 genomic loci have been mapped so far. ILDR1 located on chromosome 3q13.33, encodes a putative transmembrane receptor containing an immunoglobulin-like domain. We used a combination of autozygosity mapping and candidate gene sequencing to identify a novel mutation in ILDR1, as a causative gene for autosomal-recessive non-syndromic hearing loss (arNSHL) in a consanguineous Saudi family with three affected children. Autozygosity mapping identified a shared region between the affected individuals encompassing ILDR1 on chromosome 3q13.12-3q22.1. Sequencing revealed homozygous 9 base pair duplication, resulting in an in-frame duplication of three amino acids p.(Asn109_Pro111dup). The mutation was segregating with the disease phenotype and is predicted to be pathogenic by SIFT and PROVEAN. The identified mutation is located in the immunoglobulin-type domain of the ILDR1 protein. In silico analysis using I-TASSER server and PyMOL offers the first predictions on the structural and functional consequences of this mutation. To our knowledge, this is the first ILDR1 mutation identified in a Saudi family. Identification of ILDR1 mutation in only one of 100 Saudi familial and sporadic individuals with hearing loss suggests that this mutation is unique to this family and that ILDR1 should be considered as a rare cause of congenital deafness among Saudi Arabian population. Our data also confirms the evidence for ILDR1 allelic heterogeneity and expands the number of familial arNSHL-associated ILDR1 gene mutations.  相似文献   

11.
Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset, bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss (CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other populations. None of these likely causal variants were present in more than one family, most were detected as compound heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and early intervention in this population.Subject terms: Genetics research, Medical genomics  相似文献   

12.
The usher syndromes   总被引:5,自引:0,他引:5  
Mutations in the gene (MYO7A) encoding myosin-VIIa, a member of the large superfamily of myosin motor proteins that move on cytoplasmic actin filaments, and in the USH2A gene, which encodes a novel protein resembling an extracellular matrix protein or a cell adhesion molecule, both cause Usher syndrome (USH), a clinically heterogeneous autosomal recessive disorder comprising hearing and visual impairment. Patients with USH1 have severe to profound congenital hearing impairment, vestibular dysfunction, and retinal degeneration beginning in childhood, while those with USH2 have moderate to severe hearing impairment, normal vestibular function, and later onset of retinal degeneration. USH3 is characterized by progressive hearing loss and variable age of onset of retinal degeneration. The phenotype resulting from MYO7A and USH2A mutations is variable. While most MYO7A mutations cause USH1, some cause nonsyndromic hearing impairment, and one USH3 phenotype has been described. USH2A mutations cause atypical USH as well as USH2. MYO7A is on chromosome region 11q13 and USH2A is on 1q41. Seven other USH genes have been mapped but have not yet been identified. USH1A, USH1C, USH1D, USH1E, and USH1F have been assigned to chromosome bands 14q32, 11p15.1, 10q, 21q21, and 10, respectively, while USH2B is on 5q, and USH3 is at 3q21-q25. Myosin VIIa mutations also result in the shaker-1 (sh1) mouse, providing a model for functional studies. One possibility is that myosin-VIIa is required for linking stereocilia in the sensory hair bundle; another is that it may be needed for membrane trafficking. The ongoing studies of myosin-VIIa, the USH2A protein, and the yet to be identified proteins encoded by the other USH genes will advance understanding of the Usher syndromes and contribute to the development of effective therapies. Am. J. Med. Genet. (Semin. Med. Genet.) 89:158-166, 1999.  相似文献   

13.
Intellectual disability (ID) is a neurodevelopmental disorder characterized by limitations in both intellectual and behavioral functioning. It can occur in non-syndromic and syndromic forms involving multiple organs. While the majority of genetic variants linked to ID are de novo, inherited variants are also detected in some forms. Here, we report a consanguineous Lebanese family presenting with an autosomal recessive syndromic ID characterized by neurodevelopmental delay, mild dysmorphic features, hearing impairment and endocrine dysfunction. Whole exome sequencing enabled the detection of the homozygous nonsense mutation in BOD1, p.R151X, in the proband. BOD1 is required for chromosomes biorientation during cell division. It also contributes to the regulation of cell survival and to the modulation of fatty acid metabolism. Another nonsense mutation in BOD1 was linked to ID in a consanguineous Iranian family. This is the second report of BOD1 mutations in humans and the first in a syndromic ID including gonadal dysfunction and high-frequency hearing impairment. Our findings confirm the involvement of BOD1 in cognitive functioning and expand the clinical spectrum of BOD1 deficiency.  相似文献   

14.
Identifying the genetic etiology in a person with hearing loss (HL) is challenging due to the extreme genetic heterogeneity in HL and the population‐specific variability. In this study, after excluding GJB2 variants, targeted resequencing of 180 deafness‐related genes revealed the causative variants in 11 of 19 (58%) Brazilian probands with autosomal recessive HL. Identified pathogenic variants were in MYO15A (10 families) and CLDN14 (one family). Remarkably, the MYO15A p.(Val1400Met) variant was identified in eight families from the city of Monte Santo in the northeast region of Brazil. Haplotype analysis of this variant was consistent with a single founder. No other cases with this variant were detected among 105 simplex cases from other cities of northeastern Brazil, suggesting that this variant is confined to a geographical region. This study suggests that it is feasible to develop population‐specific screening for deafness variants once causative variants are identified in different geographical groups.  相似文献   

15.

Background

Usher syndrome, a devastating recessive disorder which combines hearing loss with retinitis pigmentosa, is clinically and genetically heterogeneous. Usher syndrome type 1 (USH1) is the most severe form, characterised by profound congenital hearing loss and vestibular dysfunction.

Objective

To describe an efficient protocol which has identified the mutated gene in more than 90% of a cohort of patients currently living in France.

Results

The five genes currently known to cause USH1 (MYO7A, USH1C, CDH23, PCDH15, and USH1G) were tested for. Disease causing mutations were identified in 31 of the 34 families referred: 17 in MYO7A, 6 in CDH23, 6 in PCDH15, and 2 in USH1C. As mutations in genes other than myosin VIIA form nearly 50% of the total, this shows that a comprehensive approach to sequencing is required. Twenty nine of the 46 identified mutations were novel. In view of the complexity of the genes involved, and to minimise sequencing, a protocol for efficient testing of samples was developed. This includes a preliminary linkage and haplotype analysis to indicate which genes to target. It proved very useful and demonstrated consanguinity in several unsuspected cases. In contrast to CDH23 and PCDH15, where most of the changes are truncating mutations, myosin VIIA has both nonsense and missense mutations. Methods for deciding whether a missense mutation is pathogenic are discussed.

Conclusions

Diagnostic testing for USH1 is feasible with a high rate of detection and can be made more efficient by selecting a candidate gene by preliminary linkage and haplotype analysis.  相似文献   

16.
《Genetics in medicine》2019,21(10):2355-2363
PurposeA new syndrome with hypotonia, intellectual disability, and eye abnormalities (HIDEA) was previously described in a large consanguineous family. Linkage analysis identified the recessive disease locus, and genome sequencing yielded three candidate genes with potentially pathogenic biallelic variants: transketolase (TKT), transmembrane prolyl 4-hydroxylase (P4HTM), and ubiquitin specific peptidase 4 (USP4). However, the causative gene remained elusive.MethodsInternational collaboration and exome sequencing were used to identify new patients with HIDEA and biallelic, potentially pathogenic, P4HTM variants. Segregation analysis was performed using Sanger sequencing. P4H-TM wild-type and variant constructs without the transmembrane region were overexpressed in insect cells and analyzed using sodium dodecyl sulfate–polyacrylamide gel electrophoresis and western blot.ResultsFive different homozygous or compound heterozygous pathogenic P4HTM gene variants were identified in six new and six previously published patients presenting with HIDEA. Hypoventilation, obstructive and central sleep apnea, and dysautonomia were identified as novel features associated with the phenotype. Characterization of three of the P4H-TM variants demonstrated yielding insoluble protein products and, thus, loss-of-function.ConclusionsBiallelic loss-of-function P4HTM variants were shown to cause HIDEA syndrome. Our findings enable diagnosis of the condition, and highlight the importance oF.A.ssessing the need for noninvasive ventilatory support in patients.  相似文献   

17.
《Genetics in medicine》2019,21(4):948-954
PurposeThe aim of this study was to determine the genetic cause of autosomal dominant nonsyndromic hearing loss segregating in a multigenerational family.MethodsClinical examination, genome-wide linkage analysis, and exome sequencing were carried out on the family.ResultsAffected individuals presented with early-onset progressive mild hearing impairment with a fairly flat, gently downsloping or U-shaped audiogram configuration. Detailed clinical examination excluded any additional symptoms. Linkage analysis detected an interval on chromosome 1p21 with a logarithm of the odds (LOD) score of 8.29: designated locus DFNA37. Exome sequencing identified a novel canonical acceptor splice-site variant c.652-2A>C in the COL11A1 gene within the DFNA37 locus. Genotyping of all 48 family members confirmed segregation of this variant with the deafness phenotype in the extended family. The c.652-2A>C variant is novel, highly conserved, and confirmed in vitro to alter RNA splicing.ConclusionWe have identified COL11A1 as the gene responsible for deafness at the DFNA37 locus. Previously, COL11A1 was solely associated with Marshall and Stickler syndromes. This study expands its phenotypic spectrum to include nonsyndromic deafness. The implications of this discovery are valuable in the clinical diagnosis, prognosis, and treatment of patients with COL11A1 pathogenic variants.  相似文献   

18.
Hereditary hearing impairment is a genetically heterogeneous disorder. To date, 49 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been described, and there are more than 16 additional loci announced. In 25 of the known loci, causative genes have been identified. A genome scan and fine mapping revealed a novel locus for ARNSHI (DFNB63) on chromosome 11q13.2-q13.4 in a five-generation Turkish family (TR57). The homozygous linkage interval is flanked by the markers D11S1337 and D11S2371 and spans a 5.3-Mb interval. A maximum two-point log of odds score of 6.27 at a recombination fraction of theta = 0.0 was calculated for the marker D11S4139. DFNB63 represents the eighth ARNSHI locus mapped to chromosome 11, and about 3.33 Mb separate the DFNB63 region from MYO7A (DFNB2/DFNB11). Sequencing of coding regions and exon-intron boundaries of 13 candidate genes, namely SHANK2, CTTN, TPCN2, FGF3, FGF4, FGF19, FCHSD2, PHR1, TMEM16A, RAB6A, MYEOV, P2RY2 and KIAA0280, in genomic DNA from an affected individual of family TR57 revealed no disease-causing mutations.  相似文献   

19.
Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1–25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at =0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the –3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.E. Kalay and A.P.M. de Brouwer contributed equally to this work  相似文献   

20.
Hereditary hearing impairment affects about 1 in 1000 newborns. In most cases hearing loss is non-syndromic with no other clinical features, while in other families deafness is associated with specific clinical abnormalities. Analysis of large families with non-syndromic and syndromic deafness have been used to identify genes or gene locations that cause hearing impairment. The present report describes a large Norwegian family with autosomal dominant non-syndromic, progressive high tone hearing loss with linkage to 1q21-q23. A maximum LOD score of 7.65 (theta = 0.00) was obtained with the microsatellite marker D1S196. Analysis of recombinant individuals maps the deafness gene (DFNA7) to a 22 cM region between D1S104 and D1S466. The region contains several attractive candidate genes. This report supports the idea of extensive genetic heterogeneity in hereditary hearing impairment and represents the first localization of a deafness gene in a Norwegian family.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号