首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Image-guided radiation therapy using implanted fiducial markers is a common solution for prostate localization to improve targeting accuracy. However, fiducials that are typically used for conventional photon radiotherapy cause large dose perturbations in patients who receive proton radiotherapy. A proposed solution has been to use fiducials of lower atomic number (Z) materials to minimize this effect in tissue, but the effects of these fiducials on dose distributions have not been quantified. The objective of this study was to analyze the magnitude of the dose perturbations caused by select lower-Z fiducials (a carbon-coated zirconium dioxide fiducial and a plastic-coated stainless steel fiducial) and compare them to perturbations caused by conventional gold fiducials. Sets of phantoms were used to assess select components of the effects on dose. First, the fiducials were assessed for radiographic visibility using both conventional computed tomography (CT) and an on-board kilovoltage imaging device at our proton therapy center. CT streak artifacts from the fiducials were also measured in a separate phantom. Second, dose perturbations were measured downstream of the fiducials using radiochromic film. The magnitude of dose perturbation was characterized as a function of marker material, implantation depth and orientation with respect to the beam axis. The radiographic visibility of the markers was deemed to be acceptable for clinical use. The dose measurements showed that the perpendicularly oriented zirconium dioxide and stainless steel fiducials located near the center of modulation of the proton beam perturbed the dose by less than 10%, but that the same fiducials in a parallel orientation near the end of the range of the beam could perturb the dose by as much as 38%. This suggests that carbon-coated and stainless steel fiducials could be used in proton therapy if they are located far from the end of the range of the beam and if they are oriented perpendicular to the beam axis.  相似文献   

2.
This paper describes dosimetry measurements performed prior to departments entering patients into the START Trial, a breast fractionation trial. Absolute and relative doses were measured in semi-anatomical breast and chest wall phantoms, as part of a quality assurance programme visit. Doses were measured using an ionization chamber and the resulting distributions were compared with those calculated by the department. The mean ratio of measured to calculated dose at the START reference point was found to be 0.981 for the breast phantom and 0.978 for the chest wall phantom. This average measured dose was significantly less than the prescribed dose (p < 0.001). Differences were found between 2D and 3D planning systems and for departments using cobalt 60 beams. A number of departments had deviations of greater than 4%, which was the tolerance applied for this trial. It is essential for dose measurements of this type to be performed for randomized clinical trials involving radiotherapy, particularly where dose fractionation regimes are being compared.  相似文献   

3.
4.
Tsai JS  Rivard MJ  Engler MJ 《Medical physics》2000,27(10):2215-2225
The electro-mechanical, multivane intensity modulated collimator ("MIMiC") slit collimator with 40 vanes has been applied in the delivery of inversely planned sequential tomotherapy to over 4,000 patients. The collimator is binary in that each vane switches between fully open or closed status. Resulting beamlet patterns provide the intensity distributions imparting dose to the patient. The bouncing and damping of vanes at the two ends of their travel cause transient dose perturbations near and at the borders of the treatment field. These perturbations are not explicitly modeled by the planning system. Clinical beamlet profiles and output factors may then differ from those in the planning system and as a function of the vane switch period. A mechanical model of vane switching was developed to describe this dependency. Dose output and distribution of seven simple vane patterns with different switch times were measured with ionization chambers and radiographic films in polystyrene and anthropomorphic phantoms. Linac output dependence on switch time relative to vane open time was determined for four intensity modulated radiotherapy (IMRT) patients from measurements of an ionization chamber embedded in a cylindrical polystyrene phantom. Results demonstrate output dependence on switch time and, accordingly, on the servo mechanism for monitor units, arc length, dose rate, and gantry speed. In conclusion, the output dependence borders on clinical significance-improvements to collimator, dose calculation, commissioning, and quality assurance (QA) are suggested.  相似文献   

5.
Many clinical studies have demonstrated that implanted radiopaque fiducial markers improve targeting accuracy in external-beam radiotherapy, but little is known about the dose perturbations these markers may cause in patients receiving proton radiotherapy. The objective of this study was to determine what types of implantable markers are visible in setup radiographs and, at the same time, perturb the therapeutic proton dose to the prostate by less than 10%. The radiographic visibility of the markers was assessed by visual inspection of lateral setup radiographs of a pelvic phantom using a kilovoltage x-ray imaging system. The fiducial-induced perturbations in the proton dose were estimated with Monte Carlo simulations. The influence of marker material, size, placement depth and orientation within the pelvis was examined. The radiographic tests confirmed that gold and stainless steel markers were clearly visible and that titanium markers were not. The Monte Carlo simulations revealed that titanium and stainless steel markers minimally perturbed the proton beam, but gold markers cast unacceptably large dose shadows. A 0.9 mm diameter, 3.1 mm long cylindrical stainless steel marker provides good radiographic visibility yet perturbs the proton dose distribution in the prostate by less than 8% when using a parallel opposed lateral beam arrangement.  相似文献   

6.
This work is devoted to studying the influence of chamber response functions on the standard IMRT verification for the different detector technologies available on commercial devices. We have tested three of the most used 2D detector arrays for radiotherapy dosimetry verification, based on air-ionization chambers and diode detectors. The response function has been carefully simulated using the Monte Carlo method and measured through slit and pinhole collimators. Although the response function of air-ionization detectors is considerably different with respect to that of standard diodes, the impact on a verification based in the gamma function with tolerances 3 mm and 3% is quite limited. The results show that the standard air-ionization detector arrays perform in a similar way whenever the tolerances for the gamma function are not lowered below 1.5 mm and 1.5%. Additionally, the sensitivity of these devices to fluence perturbations was measured by intentionally modifying some leaf positions in the multileaf collimator. The wider response function of air-ionization chamber arrays made them slightly more sensitive to random fluence perturbations, although silicon diode arrays are more accurate to describe the dose distribution in a point by point basis.  相似文献   

7.
Intensity modulated neutron radiotherapy (IMNRT) is currently being investigated as a mechanism to improve dose conformality in neutron radiotherapy, thereby minimizing normal tissue toxicity. This study investigates the applicability of two different dose calculation algorithms for IMNRT, a commercial system which utilizes a finite size pencil beam (FSPB) model, and an in-house planning system which uses a differential scatter air ratio (DSAR) method. Calculated dose distributions were compared with measured profiles for validation purposes. The beam-profiles matched to within +/-3% in the central region of the field. The 80-20% penumbra width as measured using an ionization chamber varied as 0.6 cm and 1.0 cm for 3 x 3 and 10 x 10 cm2 profile at a depth of 2.5 cm. The FSPB model fitted the data to a penumbra width of 0.1 cm for both 3 x 3 and 10 x 10 cm2 profiles. These results indicate that the commercial system needs further investigation. However, the in-house planning system has been validated for small irregular fields for IMNRT to an accuracy of +/-5%. Absolute dose measurements agreed with the calculated doses to within +/-3%.  相似文献   

8.
A number of relocatable head fixation systems have become commercially available or developed in-house to perform fractionated stereotactic radiotherapy (SRT) treatment. The uncertainty usually quoted for the target repositioning in SRT is over 2 mm, more than twice that of stereotactic radiosurgery (SRS) systems. This setup uncertainty is usually accounted for at treatment planning by outlining extra target margins to form the planning target volume (PTV). It was, however, shown by Lo et al. [Int. J. Radiat. Oncol., Biol., Phys. 34, 1113-1119 (1996)] that these extra margins partly offset the radiobiological advantages of SRT. The present paper considers dose calculations in SRT and shows that the dose predictions could be made at least as accurate as in SRS with no extra margins required. It is shown that the dose distribution from SRT can be calculated using the same algorithms as in SRS, with the measured off-axis ratios (OARs) replaced by "effective" OARs. These are obtained by convolving the probability density distribution of the isocenter positions (assumed to be normal) and the original OARs. An additional output correction factor has also been introduced accounting for the isocenter dose reduction (2.4% for a 7 mm collimator) due to the OARs "blurring." Another correction factor accommodates for the reduced (by 1% for 6 MV beam) dose rate at the isocenter due to x-ray absorption in the relocatable mask. Mean dose profiles and the standard deviations of the dose (STD) were obtained through simulating SRT treatment by a combination of normally distributed isocenters. These dose distributions were compared with those calculated using the convolution approach. Agreement of the dose distributions was within 1%. Since standard deviation reduces with the number of fractions, N, as STD/square root(N), the planning predictions in fractionated stereotactic radiotherapy can be made more accurate than in SRS by increasing N and using "effective" OARs along with corrected dose output.  相似文献   

9.
10.
目的:介绍一种乳腺癌适形放疗中新的射野衔接技术,以保证乳腺癌患者放疗时锁骨上区域与胸壁区域靶区剂量均匀衔接,并降低治疗计划设计与实施中的操作复杂度。方法:选取一例乳腺癌胸锁联合照射病人,锁骨上靶区采用半野照射技术,胸壁靶区采用非共面切线野照射技术,使上下两组照射野在射野衔接处相切。使用直线加速器6MV-X射线照射靶区,处方剂量设置为50Gy包绕95%靶区体积,使用治疗计划系统计算三维剂量分布。结果:半野照射技术结合非共面照射技术应用于乳腺癌胸锁联合照射时,在治疗计划系统上显示处方剂量在射野衔接处均匀衔接,50Gy处方剂量等剂量线平滑,剂量线未见明显的凹陷和突出现象,无剂量冷热点出现。结论:半野照射技术联合非共面照射技术用于乳腺癌胸锁联合照射。在TPS上演示显示使用该方法能够使相邻射野剂量均匀衔接,适用于胸壁部分靶区头脚方向长度大于20cm的患者放射治疗需求,且使用方法较传统方法更加简单易行,值得推广,临床实际使用中建议使用验证手段来保障该技术的可靠性。  相似文献   

11.
目的:比较调强放射治疗(IMRT)与三维适形放疗(3D-CRT)治疗中下段食管癌的心脏和冠状动脉的受量。方法:回顾性分析从2011年1月至2012年5月收治的12例中下段食管癌患者,采用Monaco治疗计划系统,所有患者分别制作五野调强放射治疗计划及三野3D-CRT计划,处方剂量均为PTV:60 Gy/30 f。比较五野IMRT和三野3D-CRT计划的DVH、靶区适形度(CI)、心脏,右冠状动脉,左冠状动脉的受量。结果:调强放射治疗计划与3D-CRT计划相比,明显降低了心脏平均剂量(23.01 Gy与28.3 Gy)和V30(24.4%与61.0%),右冠状动脉平均剂量也有显著的降低(平均剂量23.8Gy与35.5 Gy),而左冠状动脉平均剂量没有表现出显着改善(平均剂量11.2Gy与9.2Gy)(p〉0.05)。调强放疗显著改善了适形指数。结论:IMRT治疗与3D-CRT相比明显改善了心脏的平均剂量及V30。调强放疗计划与3D-CRT治疗计划相比使心脏V30减少了约40%,同时降低了右冠状动脉受量,这表明调强放射治疗可显着改善放疗诱发的心脏及冠状动脉疾病的风险。调强放疗具有更好的适形度。这将是长期的研究以确定放疗将如何影响冠状动脉心脏疾病的发展和其他心脏并发症。  相似文献   

12.
The dosimetric accuracy of a 3D treatment planning system (TPS) for conformal radiotherapy with a computer-assisted dynamic multileaf collimator (DMLC) was evaluated. The DMLC and the TPS have been developed for clinical applications where dynamic fields not greater than 10 x 10 cm2 and multiple non-coplanar arcs are required. Dosimetric verifications were performed by simulating conformal treatments of irregularly shaped targets using several arcs of irradiation with 6 MV x-rays and a spherical-shaped, tissue-simulating phantom. The accuracy of the delivered dose at the isocentre was verified using an ionization chamber placed in the centre of the phantom. Isodose distributions in the axial and sagittal planes passing through the centre of the phantom were measured using double-layer radiochromic films. Measured dose at the isocentre as well as isodose distributions were compared to those calculated by the TPS. The maximum percentage difference between measured and prescribed dose was less than 2.5% for all the simulated treatment plans. The mean (+/-SD) displacement between measured and calculated isodoses was, in the axial planes, 1.0 +/- 0.6 mm, 1.2 +/- 0.7 mm and 1.5 +/- 1.1 mm for 80%, 50% and 20% isodose curves, respectively, whereas in the sagittal planes it was 2.0 +/- 1.2 mm and 2.2 +/- 2 mm for 80% and 50% isodose curves, respectively. The results indicate that the accuracy of the 3D treatment planning system used with the DMLC is reasonably acceptable in clinical applications which require treatments with several non-coplanar arcs and small dynamic fields.  相似文献   

13.
目的:调强放射治疗的剂量学质量保证是一项较为繁琐的工作.本文主要探讨二维阵列实施螺旋断层凋强计划的剂量学特性,并对其在日常旋转调强放疗质量保证中的地位进行评估及分析.方法:采用Sun Nuclear公司MapCHECK~(TM)二维半导体探测器阵列及其相配套MapPHAN等效固体水模体对10例螺旋断层计划实施其剂量学验证.笔者将MapCHECKrM置于MapPHAN模体中,冠状及矢状位摆放分别测量获取模体中阵列的冠状和矢状面剂量分布.束流照射后将二维阵列剂量测量平面分布与计划系统模体计划中计算平面结果实现比较,定量评估其绝对剂量验证情况.探讨其不同位置摆放来实现其测量方法的可行性.结果:通过利用MapCHECKrM二维半导体阵列采用两种摆位方式对10例特定患者的螺旋断层放疗计划进行剂量学验证,软件定量分析所测量与计算绝对剂量分布的结果均显示出了较为理想的一致性.MapCHECK~(TM)阵列测量剂量分布与螺旋断层治疗计划系统模体计划中计算剂量相比较,采用Gamma法(3mm/3%、4mm/4%)进行评估,γ≤1的冠状和矢状位探测器平均通过率分别为96.8%/99.38%、96.99%/99.49%.建立了3%/3mm(通过率为90%)的Gamma分析推荐标准.结论:MapCHECK~(TM)二维阵列可成功地实现螺旋断层调强计划的剂量学验证,提供了一套精确而快捷的旋转剂量学验证工具.  相似文献   

14.
A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ.  相似文献   

15.
A convolution dose calculation for megavoltage photon beams is described and the compromise between speed and accuracy examined. The algorithm is suitable for treatment planning optimization, where the need is for a fast, flexible method requiring minimal beam data but providing an accurate result. The algorithm uses a simple tabular beam model, together with a discrete scatter kernel. These beam parameters are fitted either to a measured dose distribution, or to a dose distribution calculated using a more accurate dose calculation algorithm. The calculation is then applied to pelvic and thoracic conformal plans, and the results compared with those provided by a commercial radiotherapy treatment planning system (Pinnacle3, Philips Radiation Oncology Systems, Milpitas, CA), which has been verified against measurements. The calculation takes around 4 s to compute a 100 x 100 mm field, and agreement of the dose-volume histograms with the commercial treatment planning system is to within 5% dose or 8% volume. Use of a grid resolution coarser than 5 x 5 x 5 mm is found to be inaccurate, whereas calculating primary dose on a coarse grid and interpolating is found to increase speed without significantly reducing accuracy. Kernel resolution influences the speed and accuracy, but using 12 discrete points provides a fast result with a limited error. Thus, the algorithm is suitable for optimization applications.  相似文献   

16.
Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (+/-1 standard deviation) in the total physical reference dose was +/-8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas.  相似文献   

17.
By the end of 2002, 33 398 patients worldwide had been treated with proton radiotherapy, 10 829 for eye diseases. The dose prediction algorithms used today for ocular proton therapy treatment planning rely on parameterizations of measured proton dose distributions, i.e., broad-beam and pencil-beam techniques, whose predictive capabilities are inherently limited by severe approximations and simplifications in modelling the radiation transport physics. In contrast, the Monte Carlo radiation transport technique can, in principle, provide accurate predictions of the proton treatment beams by taking into account all the physical processes involved, including coulombic energy loss, energy straggling, multiple Coulomb scattering, elastic and nonelastic nuclear interactions, and the transport of secondary particles. It has not been shown, however, whether it is possible to commission a proton treatment planning system by using data exclusively from Monte Carlo simulations of the treatment apparatus and a phantom. In this work, we made benchmark comparisons between Monte Carlo predictions and measurements of an ocular proton treatment beamline. The maximum differences between absorbed dose profiles from simulations and measurements were 6% and 0.6 mm, while typical differences were less than 2% and 0.2 mm. The computation time for the entire virtual commissioning process is less than one day. The study revealed that, after a significant development effort, a Monte Carlo model of a proton therapy apparatus is sufficiently accurate and fast for commissioning a treatment planning system.  相似文献   

18.
Modern radiotherapy techniques have developed to a point where the ability to conform to a particular tumour shape is limited by organ motion and set-up variations. The result is that dose distributions displayed by treatment planning systems based on static beam modelling are not representative of the dose received by the patient during a fractionated course of radiotherapy. The convolution-based method to account for these variations in radiation treatment planning systems has been suggested in previous work. The validity of the convolution method is tested by comparing the dose distribution obtained from this convolution method with the dose distribution obtained by summing the contribution to the total dose from each fraction of a fractionated treatment (for increasing numbers of fractions) and simulating random target position variations between fractions. For larger numbers of fractions (approximately or > 15) which are the norm for radical treatment schemes, it is clear that incorporation of movement by a convolution method could potentially produce a more accurate dose distribution. There are some limitations that have been identified, however, especially in relation to the heterogeneous nature of patient tissues, which require further investigation before the technique could be applied clinically.  相似文献   

19.
The objective of this study is to use Monte Carlo simulations to assess the sensitivity of implant planning methods to seed misplacement. A model of seed misplacement is first developed. It is based upon data gathered after a study on source migration performed on 30 patients treated with I-125 transperineal implants. It consists of applying elementary transformations to every needle in a loading plan to produce a distorted implant mimicking the effect of migration. After being validated, the model has been used to tune the inverse planning system in use at our institution. The new planning system is now used clinically and actual results are compared with those predicted by simulations. Simulations were also used to compare our planning method with others. The new planning system increased the average postimplant dose-volume histogram DVH(160) from 82% to 93%, which is the value predicted by the simulations. This improvement is due to an increased dose margin providing coverage even in the presence of migration. At the same time, the dose to the urethra remained at 267 Gy because of a special protection feature included in the planning system. Some other implant planning methods are not as robust [average DVH(160) ranging from 76% to 85%] and deliver a higher dose to the urethra (close to 400 Gy). To conclude, a simple model of source migration can provide realistic feedback about sensitivity to migration of planning methods. It allowed a significant clinical improvement at our institution. The improved inverse planning system provided better coverage with fewer seeds (but equal total activity) than a manual method. Hence, a properly tuned inverse planning system has the potential to deliver the less sensitive plans. The model also helped demonstrate that planning methods are not equally robust to migration and that they should not be evaluated solely by the plans they produce, but also by their clinical (or simulated) results.  相似文献   

20.
This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号