首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Point mutations in human GLI3 cause Greig syndrome   总被引:3,自引:0,他引:3  
Greig cephalopolysyndactyly syndrome (GCPS, MIM 175700) is a rare autosomal dominant developmental disorder characterized by craniofacial abnormalities and post-axial and pre-axial polydactyly as well as syndactyly of hands and feet. Human GLI3, located on chromosome 7p13, is a candidate gene for the syndrome because it is interrupted by translocation breakpoints associated with GCPS. Since hemizygosity of 7p13 resulting in complete loss of one copy of GLI3 causes GCPS as well, haploinsufficiency of this gene was implicated as a mechanism to cause this developmental malformation. To determine if point mutations within GLI3 could be responsible for GCPS we describe the genomic sequences at the boundaries of the 15 exons and primer pair sequences for mutation analysis with polymerase chain reaction-based assays of the entire GLI3 coding sequences. In two GCPS cases, both of which did not exhibit obvious cytogenetic rearrangements, point mutations were identified in different domains of the protein, showing for the first time that Greig syndrome can be caused by GLI3 point mutations. In one case a nonsense mutation in exon X generates a stop codon truncating the protein in the C-H link of the first zinc finger. In the second case a missense mutation in exon XIV causes a Pro-->Ser replacement at a position that is conserved among GLI genes from several species altering a potential phosphorylation site.   相似文献   

2.
Greig cephalopolysyndactyly syndrome (GCPS) is caused by haploinsufficiency of GLI3 on 7p13. Features of GCPS include polydactyly, macrocephaly, and hypertelorism, and may be associated with cognitive deficits and abnormalities of the corpus callosum. GLI3 mutations in GCPS patients include point, frameshift, translocation, and gross deletion mutations. FISH and STRP analyses were applied to 34 patients with characteristics of GCPS. Deletions were identified in 11 patients and the extent of their deletion was determined. Nine patients with deletions had mental retardation (MR) or developmental delay (DD) and were classified as severe GCPS. These severe GCPS patients have manifestations that overlap with the acrocallosal syndrome (ACLS). The deletion breakpoints were analyzed in six patients whose deletions ranged in size from 151 kb to 10.6 Mb. Junction fragments were found to be distinct with no common sequences flanking the breakpoints. We conclude that patients with GCPS caused by large deletions that include GLI3 are likely to have cognitive deficits, and we hypothesize that this severe GCPS phenotype is caused by deletion of contiguous genes.  相似文献   

3.
4.
5.
6.
Contiguous gene syndromes cause disorders via haploinsufficiency for adjacent genes. Some contiguous gene syndromes (CGS) have stereotypical breakpoints, but others have variable breakpoints. In CGS that have variable breakpoints, the extent of the deletions may be correlated with severity. The Greig cephalopolysyndactyly contiguous gene syndrome (GCPS-CGS) is a multiple malformation syndrome caused by haploinsufficiency of GLI3 and adjacent genes. In addition, non-CGS GCPS can be caused by deletions or duplications in GLI3. Although fluorescence in situ hybridisation (FISH) can identify large deletion mutations in patients with GCPS or GCPS-CGS, it is not practical for identification of small intragenic deletions or insertions, and it is difficult to accurately characterise the extent of the large deletions using this technique. We have designed a custom comparative genomic hybridisation (CGH) array that allows identification of deletions and duplications at kilobase resolution in the vicinity of GLI3. The array averages one probe every 730 bp for a total of about 14,000 probes over 10 Mb. We have analysed 16 individuals with known or suspected deletions or duplications. In 15 of 16 individuals (14 deletions and 1 duplication), the array confirmed the prior results. In the remaining patient, the normal CGH array result was correct, and the prior assessment was a false positive quantitative polymerase chain reaction result. We conclude that high-density CGH array analysis is more sensitive than FISH analysis for detecting deletions and provides clinically useful results on the extent of the deletion. We suggest that high-density CGH array analysis should replace FISH analysis for assessment of deletions and duplications in patients with contiguous gene syndromes caused by variable deletions.  相似文献   

7.
A male had several features of Greig cephalopolysyndactyly syndrome (GCPS) and significant developmental delay. He was found to have a de novo chromosomal deletion of chromosome no. 7 involving p13; this resulted in loss of the zinc finger gene, GLI3, which is the candidate gene in this syndrome. Modification of the CGPS phenotype in a sporadic case emphasizes the importance of searching for a chromosomal origin of this autosomal dominant disorder. Detection of a chromosomal deletion in these patients may be associated with a poor prognosis from the standpoint of cognitive development, and the potential for other structural abnormalities not normally associated with GCPS.  相似文献   

8.
The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.  相似文献   

9.
10.
Greig cephalopolysyndactyly syndrome (GCPS) is a rare multiple congenital anomaly syndrome that is inherited in an autosomal dominant pattern and is caused by haploinsufficiency of the GLI3 gene. The syndrome typically includes preaxial or mixed pre- and postaxial polydactyly and cutaneous syndactyly, ocular hypertelorism, and macrocephaly in its typical forms, but sometimes includes hydrocephalus, seizures, mental retardation, and developmental delay in more severe cases. Patients with milder forms of GCPS can have subtle craniofacial dysmorphic features that are difficult to distinguish from normal variation. This article presents the spectrum of dysmorphic findings in GCPS highlighting some of its key presenting features to familiarize clinicians with the variable expressivity of the condition.  相似文献   

11.
12.
13.
GATA3 abnormalities and the phenotypic spectrum of HDR syndrome   总被引:1,自引:0,他引:1       下载免费PDF全文
We report on GATA3 analysis and the phenotypic spectrum in nine Japanese families with the HDR syndrome (hypoparathyroidism, sensorineural deafness, and renal dysplasia) (MIM 146255). Fluorescence in situ hybridisation and microsatellite analyses showed heterozygous gross deletions including GATA3 in four families. Sequence analysis showed heterozygous novel mutations in three families: a missense mutation within the first zinc finger domain at exon 4 (T823A, W275R), an unusual mutation at exon 4 (900insAA plus 901insCCT or C901AACCCT) resulting in a premature stop at codon 357 with loss of the second zinc finger domain, and a nonsense mutation at exon 6 (C1099T, R367X). No GATA3 abnormalities were identified in the remaining two families. The triad of HDR syndrome was variably manifested by patients with GATA3 abnormalities. The results suggest that HDR syndrome is primarily caused by GATA3 haploinsufficiency and is associated with a wide phenotypic spectrum.


Keywords: GATA3; HDR syndrome; phenotypic spectrum; mutation analysis  相似文献   

14.
15.
Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.  相似文献   

16.
17.
18.
Mutations in the androgen receptor (AR) gene result in androgen insensitivity syndrome (AIS). We have identified five novel mutations that result in a complete loss in AR function and are associated with complete AIS. The mutations span all three AR major functional domains. In two cases, the loss of AR function could be explained on the basis of the current knowledge of AR molecular structure and function. N-terminal mutation c.256C>T (p.Gln86X) leads to an early stop codon and abolishes all DNA and ligand binding. The DNA-binding domain mutation c.1685G>A (p.Cys562Tyr) is located in the N-terminal part of the first zinc finger; a mutation in this position is likely to impair the association of the mutated AR with the androgen response element of target genes. The splice site mutation at intron 2/exon 3 junction (c.1766-1G>A) is shown to lead to c.1765_1766 ins69 (p.[Gly589_Lys590ins23;Gly589Glu]). The two novel ligand-binding domain mutations identified were recreated by site-directed mutagenesis. Both mutations c.2171G>T (p.Gly724Val) and c.2435T>C (p.Leu812Pro) abolished AR ligand binding and severely impaired AR mediated transactivation. Residue p.Gly724 is located in the ligand binding domain, between helices 3 and 4. This region is known to be involved not only in ligand binding but also in AR N/C-terminal interactions. The mutation p.Leu812Pro is located in the C-terminal end of helix 8. This domain is highly conserved and critical for ligand binding. This study extends current understanding of AR mutations associated with CAIS.  相似文献   

19.
20.
Evaluation of NSD2 and NSD3 in overgrowth syndromes   总被引:1,自引:0,他引:1  
Sotos syndrome is an overgrowth condition predominantly caused by truncating mutations, missense mutations restricted to functional domains, or deletions of NSD1. NSD1 is a member of a protein family that includes NSD2 and NSD3, both of which show 70-75% sequence identity with NSD1. This strong sequence similarity suggests that abrogation of NSD2 or NSD3 function may cause non-NSD1 Sotos cases or other overgrowth phenotypes. To evaluate this hypothesis, we mutationally screened NSD2 and NSD3 in 78 overgrowth syndrome cases in which NSD1 mutations and deletions had been excluded. Additionally, we used microsatellite markers within the vicinity of the genes to look for whole gene deletions. No truncating mutations or gene deletions were identified in either gene. We identified two conservative missense NSD2 alterations in two non-Sotos overgrowth cases but neither was within a functional domain. We identified three synonymous and two intronic variants in NSD2 and two synonymous base substitutions in NSD3. Our results suggest that despite strong sequence similarity between NSD1, NSD2 and NSD3, the latter genes are unlikely to be making a substantial contribution to overgrowth phenotypes and thus may operate in distinct functional pathways from NSD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号