首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Systemic administration of drugs is ineffective in the treatment of central nervous system disorders because of the blood-brain barrier. Nasal administration has been suggested as an alternative administration route as drugs absorbed in the olfactory epithelium bypass the blood-brain barrier and reach the brain within minutes. However, the nasal mucosa properties (e.g., tonicity, pH) are not constant because of physiological and environmental factors, and this might limit the therapeutic outcome of nanocarrier-based formulations. To shine light on the impact of environmental ionic strength on nanocarrier-based formulations, we have studied how liposomal formulations respond to the change of tonicity of the external environment. Large unilamellar vesicles loaded with 6 different drugs were exposed to different hypotonic environments, creating an osmotic gradient within the inner core and external environment of the liposomes up to 650 mOsm/kg. Both size and polydispersity of liposomes were significantly affected by tonicity changes. Moreover, the release kinetics of hydrophilic and lipophilic drugs were largely enhanced by hypotonic environments. These results clearly demonstrate that the environmental ionic strength has an impact on liposomal formulation stability and drug release kinetics and it should be considered when liposomal formulations for nose-to-brain targeted drug delivery are designed.  相似文献   

2.
The efficacy of many drugs is improved by liposomal formulations. The greatest improvements in therapeutic benefits are achieved if the drug is retained in the liposomes for several hours after administration. Many basic drugs can be concentrated efficiently into liposomes in response to a transmembrane pH gradient. However, the rate of release from liposomal formulations is drug-dependent; for example, doxorubicin is released slowly from liposomes whereas vincristine leaks out rapidly. The aim of this study was to identify the causes of the rapid release of drugs from liposomes and then to apply this knowledge to the development of more stable formulations. Our initial focus was to explore the influence of liposomal size on the rate of release of drugs. The retention of doxorubicin within liposomes was independent of the particle size as far as this experimental condition was concerned. However, the rate of release of vincristine varied in relation to the particle size of the liposomes; vincristine was retained more effectively in larger liposomes. Experimental data generated using (31)P-NMR analysis and trap volume measurements, indicated that the number of lipid bilayers in liposomes increased as the particle size was increased. Additional lipid bilayers are likely to present a more effective barrier thereby slowing the release of drugs.  相似文献   

3.
Liposomes as a drug delivery system provides a leading approach for the systemic (intravenous) administration of drugs. Several approaches to kill tumor cells specifically have been developed, but still there is dearth in their selectivity. Among all other nano-carrier systems, liposomal formulations of cytotoxic drugs have received an appreciable recommendation in the form of clinical approvals. Liposomal delivery provides the benefits of reduced toxicity and enhanced efficacy for the treatment of cancer. However, delivery of liposomes to desired cell type with its further trafficking to desired intracellular organelle is a challenging, yet a promising approach for safer cancer therapeutics. Several anatomical-physiological barriers starting from systemic to cellular to intracellular levels are required to be overcome to achieve efficient cancer therapy. This review discusses the barriers associated with the delivery of liposomes from the extracellular to intracellular compartments of a solid tumor and further summarizes the development of liposomal carrier system to overcome these barriers.  相似文献   

4.
Introduction: Currently available chemotherapy is hampered by a lack in tumor specificity and resulting toxicity. Small and long-circulating liposomes can preferentially deliver chemotherapeutic drugs to tumors upon extravasation from tumor vasculature. Although clinically used liposomal formulations demonstrated significant reduction in toxicity, enhancement of therapeutic activity has not fully met expectations.

Areas covered: Low drug bioavailability from liposomal formulations and limited tumor accumulation remain major challenges to further improve therapeutic activity of liposomal chemotherapy. The aim of this review is to highlight strategies addressing these challenges. A first strategy uses hyperthermia and thermosensitive liposomes to improve tumor accumulation and trigger liposomal drug bioavailability. Image-guidance can aid online monitoring of heat and drug delivery and further personalize the treatment. A second strategy involves tumor-specific targeting to enhance drug delivery specificity and drug internalization. In addition, we review the potential of combinations of the two in one targeted thermosensitive-triggered drug delivery system.

Expert opinion: Heat-triggered drug delivery using thermosensitive liposomes as well as the use of tumor vasculature or tumor cell-targeted liposomes are both promising strategies to improve liposomal chemotherapy. Preclinical evidence has been encouraging and both strategies are currently undergoing clinical evaluation. A combination of both strategies rendering targeted thermosensitive liposomes (TTSL) may appear as a new and attractive approach promoting tumor drug delivery.  相似文献   

5.
Phospholipids and other polar lipids can form liposomes and similar colloidal particles that can be used as drug carrier systems. The potential of liposomal delivery systems to increase the therapeutic index (efficacy to safety ratio) of clinically important drugs has been realised with the recent approval of liposomal oncologic and antifungal drugs. The application of liposomes to the treatment of infectious diseases initially focused on intracellular pathogens, based on the natural targeting of liposomes to phagocytic cells and on the antifungal drug amphotericin B, based on its unique affinity for lipids. Recent studies with small, low-clearance liposomes have shown that more specialised formulations may provide benefits over simpler ‘first generation’ liposomes for the treatment of infectious diseases, including prolonged residence in plasma, increased tissue exposure and targeting to sites of infection. These improved biopharmaceutical properties have been associated with both curative and prophylactic activity against a range of non-intracellular pathogens, including Staphylococcus and Klebsiella. These and other highly engineered liposome formulations may provide effective delivery systems for specific antibacterial, antifungal and antiviral indications in the future. Adequate patent protection will be crucial in fully exploiting these advanced liposome technologies and in maintaining market share for liposomal products. This review discusses some of the patent issues related to liposomes and their use in the treatment of infectious diseases.  相似文献   

6.
Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.  相似文献   

7.
Conventional liposomal drug delivery has been associated with obvious limitations, such as a rapid absorption by the recticulo-endothelial system in the liver and spleen, a short circulation time and a low therapeutic efficacy. Various modifications of liposomal drugs have been developed to prolong the duration of actions of the drugs at target sites, reduce its adverse effects and increase therapeutic index of drugs such as polymeric conjugation and polymeric fixation on the surface of a liposome. The lymphatic system is an important highway to spread the metastasis of most human cancers including breast, colon, and lung, ovarian and prostate. To eradicate those metastatic cancer cells from the lymphatic system, several efforts have been made to develop new and efficient lymphatic targeting drug delivery systems in order to achieve a high initial lymphatic uptake and lymph node localization. Recently, molecule targeting of liposome to lymphatic system may enhance therapeutic efficacy by improving the initial lymphatic uptake and the lymph nodal retention of liposomes such as the ligand-receptor and antibodies binding on the surface of liposome. This article aims to review the emerging liposomal drug, which is targeting the lymphatic system. The significant factors associated with targeting liposomal drugs will also be discussed in more detail in this review.  相似文献   

8.
Purpose Based on adherence to intestinal mucosa, intralumenally administered liposomal formulations of 5-aminosalicylate (5-ASA) and 6-mercaptopurine (6-MP) were studied for their potential to enhance local drug delivery to intestinal tissue for the treatment of inflammatory bowel disease.Methods 5-ASA was encapsulated in standard phospholipid liposomes while 6-MP required encapsulation in nonphospholipid liposomes to obtain equivalent drug loading. Encapsulation efficiency was measured by size-exclusion chromatography/high-performance liquid chromatogtaphy (HPLC). Liposomal formulations or solution of the drugs were injected into unligated jejunum to compare pharmacokinetics and into ligated loops of rat ileum and colon to evaluate local delivery. Dextran sulfate and acetic acid induced colitis were used as models of lower intestinal inflammation. Plasma, tissue and luminal drug and metabolite levels were measured by liquid scintillation counting or HPLC.Results Encapsulation efficiency of 6-MP was dependent on lipid content and composition. While liposomal encapsulation significantly reduced systemic absorption of 5-ASA this was not the case for 6-MP. Liposomal adherence to intestinal tissue resulted in increased tissue levels for 5-ASA; however, 6-MP local tissue levels were not improved compared to solution drug.Conclusions Nonphospholipid liposomes optimize encapsulation of 6-MP. While liposomal formulations show potential for local drug delivery to diseased bowel, drug physicochemical properties, absorption, and metabolic profiles dictate tissue-targeting potential. Liposomes reduce systemic availability from paracellular absorption of hydrophilic 5-ASA, but fail to improve local tissue delivery of 6-MP, a molecule absorbed by passive membrane permeation that undergoes extensive first- pass metabolism.  相似文献   

9.
Introduction: Liposomes represent a versatile system for drug delivery in various pathologies. Platinum derivatives have been demonstrated to have therapeutic efficacy against several solid tumors. But their use is limited due to their side effects. Since liposomal formulations are known to reduce the toxicity of some conventional chemotherapeutic drugs, the encapsulation of platinum derivatives in these systems may be useful in reducing toxicity and maintaining an adequate therapeutic response.

Areas covered: This review describes the strategies applied to platinum derivatives in order to improve their therapeutic activity, while reducing the incidence of side effects. It also reviews the results found in the literature for the different platinum-drugs liposomal formulations and their current status.

Expert opinion: The design of liposomes to achieve effectiveness in antitumor treatment is a goal for platinum derivatives. Liposomes can change the pharmacokinetic parameters of these encapsulated drugs, reducing their side effects. However, few liposomal formulations have demonstrated a significant advantage in therapeutic terms. Lipoplatin, a cisplatin formulation in Phase III, combines a reduction in the toxicity associated with an antitumor activity similar to the free drug. Thermosensitive or targeted liposomes for tumor therapy are also included in this review. Few articles about this strategy applied to platinum drugs can be found in the literature.  相似文献   

10.
Purpose  To compare systemic intravenous and local intratracheal delivery of doxorubicin (DOX), antisense oligonucleotides (ASO) and small interfering RNA (siRNA). Methods  “Neutral” and cationic liposomes were used to deliver DOX, ASO, and siRNA. Liposomes were characterized by dynamic light scattering, zeta-potential, and atomic force microscopy. Cellular internalization of DOX, ASO and siRNA was studied by confocal microscopy on human lung carcinoma cells. In vivo experiments were carried out on nude mice with an orthotopic model of human lung cancer. Results  Liposomes provided for an efficient intracellular delivery of DOX, ASO, and siRNA in vitro. Intratracheal delivery of both types of liposomes in vivo led to higher peak concentrations and much longer retention of liposomes, DOX, ASO and siRNA in the lungs when compared with systemic administration. It was found that local intratracheal treatment of lung cancer with liposomal DOX was more efficient when compared with free and liposomal DOX delivered intravenously. Conclusions  The present study outlined the clear advantages of local intratracheal delivery of liposomal drugs for the treatment of lung cancer when compared with systemic administration of the same drug.  相似文献   

11.
A major focus in translational cancer research is the study of nanocarriers as novel delivery systems for chemotherapeutics. Organic vesicular nanocarriers, such as liposomes and micelles, have the advantage of low toxicity and the versatility to carry diverse drugs and conjugate to targeting agents. This offers the potential for combining treatment and diagnosis (theranostics). Successful incorporation into these nanoformulations has been demonstrated for classical chemotherapeutic drugs that are mostly hydrophobic, small interfering RNA, biological therapeutics and specific nanoparticles, such as superparamagnetic nanoparticles. Liposomes and micelles appear to take advantage of the enhanced permeability and retention (EPR) effect in solid tumours to increase accumulation at the target site (passive targeting). This translates to the clinic, where liposomal drug formulations are reported to exhibit higher efficacy and less side effects. Multidrug formulations and combinations with other treatments, for example, radiation or radiofrequency ablation, to trigger drug release from the nanocarrier at the target site, are mostly at the pre-clinical stage. More complex formulations that incorporate treatment agents together with targeting (active targeting) and imaging molecules have also been investigated in in vivo models with encouraging results.  相似文献   

12.
A protein kinase inhibitor UCN-01 binds with high affinity to human alpha 1-acid glycoprotein (hAGP) which may compromise the drugs therapeutic effectiveness. Liposomal formulations of UCN-01 have been evaluated as a means of reducing the impact of binding to hAGP. However, in an initial study, UCN-01 was released rapidly from liposomes added to rat plasma containing hAGP. The purpose of this study was to develop a liposomal formulation of UCN-01 that only slowly released drug. Liposomes composed of lipids with a high phase transition temperature and having an average particle size of 120 nm and above reduced leaking of UCN-01 when the formulations were evaluated by adding to rat plasma containing hAGP. Furthermore, formulations composed of larger liposomes were also more effective in vivo; in tests in which liposomal preparations were injected together with hAGP into rats, more UCN-01 was retained in liposomes for 24h after administration of 155 nm liposomes as compared to 112 nm liposomes.  相似文献   

13.
Liposomal drug dry powder formulations have shown many promising features for pulmonary drug administration, such as selective localization of drug within the lung, controlled drug release, reduced local and systemic toxicities, propellant-free nature, patient compliance, high dose carrying capacity, stability and patent protection. Critical review of the recent developments will provide a balanced view on benefits of liposomal encapsulation while developing dry powder formulations and will help researchers to update themselves and focus their research in more relevant areas. In liposomal dry powder formulations (LDPF), drug encapsulated liposomes are homogenized, dispersed into the carrier and converted into dry powder form by using freeze drying, spray drying and spray freeze drying. Alternatively, LDPF can also be formulated by supercritical fluid technologies. On inhalation with a suitable inhalation device, drug encapsulated liposomes get rehydrated in the lung and release the drug over a period of time. The prepared LDPF are evaluated in vitro and in vivo for lung deposition behavior and drug disposition in the lung using a suitable inhaler device. The most commonly used liposomes are composed of lung surfactants and synthetic lipids. Delivery of anticancer agents for lung cancer, corticosteroids for asthma, immunosuppressants for avoiding lung transplantation rejection, antifungal drugs for lung fungal infections, antibiotics for local pulmonary infections and cystic fibrosis and opioid analgesics for pain management using liposome technology are a few examples. Many liposomal formulations have reached the stage of clinical trials for the treatment of pulmonary distress, cystic fibrosis, lung fungal infection and lung cancer. These formulations have given very promising results in both in vitro and in vivo studies. However, modifications to new therapies for respiratory diseases and systemic delivery will provide new challenges in conducting well-designed inhalation toxicology studies to support these products, especially for chronic diseases.  相似文献   

14.
In the lung, unchecked immune responses mediated predominantly by T-lymphocytes and concurrent inflammation can lead to the development of different pathological conditions such as parenchymal disease, interstitial fibrosis, hypersensitivity pneumonitis, bronchiolitis obliterans and bronchiolar asthma. Targeted modulation of uncontrolled T-cell activation and inhibition of cytokine production within different pulmonary compartments is the challenge for the development of novel methods for immunotherapeutic intervention. Utilization of aerosol technology for pulmonary drug delivery represents new potential opportunities for therapeutic application for such immune-mediated pulmonary diseases. For targeted aerosol pulmonary drug delivery, continuous-flow jet nebulizers have several advantages over metered dose or dry powder inhalers since they are the simplest and most effective for aerosol droplet deposition into the peripheral lung tissues. At the present, the major limitations for targeted pulmonary immunosuppression through effective utilization of nebulizer technology has been the conspicuous lack of suitable formulations. The development of liposomal formulations compatible with aerosol delivery with jet nebulizers has expanded the potential for more effective utilization with an array of potent and effective immunosuppressive drugs. For pulmonary therapy, the utilization of liposomes for aerosol delivery has many potential advantages, including universal carrier suitability for most lipophilic drugs, aqueous compatibility, sustained pulmonary release or depot and intracellular delivery. Drug liposomes may also prevent local irritation in the lung, and increase potency with reduced systemic toxicity. Successful utilization of potent immunosuppressive drugs, like cyclosporin, tacrolimus (FK-506), rapamycin, mycophenolate and budesonide, in a variety of immunopathological conditions for other indications demonstrates their potential efficacy for the treatment of many different immune-mediated pulmonary diseases. The route of delivery to the pulmonary tissues can potentially limit adverse effects and markedly affect localized immunosuppressive activity in the lung. Combination of liposomal formulations with topical aerosol delivery to the central and peripheral lung tissues has expanded potential for more effective utilization with these lipophilic immunosuppressive (and antiinflammatory) drugs. Synergistic combinations can also be developed for localized and sustained delivery of therapeutic drug concentrations within the lung to provide multisite immunosuppression. Drug liposome aerosol technology represents one readily available approach for more effective therapeutic intervention in the lung using cyclosporin, FK-506, rapamycin, mycophenolate, budesonide and other lipophilic drugs.  相似文献   

15.
The recent clinical successes experienced by liposomal drug delivery systems stem from the ability to produce well-defined liposomes that can be composed of a wide variety of lipids, have high drug-trapping efficiencies and have a narrow size distribution, averaging less than 100 nm in diameter. Agents that prolong the circulation lifetime of liposomes, enhance the delivery of liposomal drugs to specific target cells, or enhance the ability of liposomes to deliver drugs intracellularly can be incorporated to further increase the therapeutic activity. The physical and chemical requirements for optimum liposome drug delivery systems will likely apply to lipid-based gene delivery systems. As a result, the development of liposomal delivery systems for systemic gene delivery should follow similar strategies.  相似文献   

16.
Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.  相似文献   

17.
Within recent years the level of interest in both local and systemic vaginal drug delivery systems has increased considerably. The vagina offers numerous advantages as a site for drug delivery, such as convenient access, prolonged retention of formulations, a great permeation area, high vascularization, relatively low enzymatic activity, and the avoidance of first-pass metabolism. The development of novel products for female health, comprising therapeutic substances such as peptides, proteins, antigens, or antisense oligonucleotides, necessitates the design of high performance intravaginal drug delivery systems. In the case of local treatment, it is challenging to design delivery systems providing high drug concentrations in the vagina for a prolonged period of time, while in the case of systemic treatment, the major challenge is to gain high drug bioavailabilities. On the basis of knowledge of the relevant anatomical and physiologic features of the vagina, and on the fate of vaginal drug delivery systems after application, various auxiliary agents have been developed for vaginal use. They include permeation enhancers, such as bile salts, benzalkonium chloride, or palmitoylcarnitine chloride, solubility-enhancing agents, such as cyclodextrins, and enzyme inhibitors such as glycocholate, aprotinin or edetic acid (EDTA). Furthermore, multifunctional polymers exhibiting bioadhesive and/or in situ gelling properties, such as thiolated polyacrylates and poloxamer, represent useful tools for the design of vaginal drug delivery systems. Dosage forms comprising such auxiliary agents include vaginal tablets, inserts, microparticles, vaginal rings, suppositories/pessaries, hydrogels, creams, and liquid formulations. Vaginal administration of drugs, which are specifically used for the treatment of osteoporosis, hormone replacement therapy, contraception, infections, infertility, and other female-related conditions, is a feasible alternative to oral or parenteral administration.  相似文献   

18.
Upon repeated administration, empty pegylated liposomes lose long‐circulating characteristics, referred to as accelerated blood clearance (ABC) phenomenon. However, pegylated liposomal cytotoxic drug formulations could not elicit the phenomenon. In the study, it was found that repeated injection of pegylated liposomal topotecan could induce ABC phenomenon in Wistar rats, beagle dogs, and mice, which might be associated with the formation of empty liposomes in circulation because of the rapid drug release rate. In rats, the 9% polyethylene glycol (PEG) formulation induced more severe ABC phenomenon than 3% PEG formulation despite the similar anti‐PEG immunoglobulin M (IgM) levels following the first dose. Antibody neutralization experiments revealed that high PEG formulation was easily neutralized by IgM. Repeated administration of 3% PEG formulation in dogs could result in more severe ABC phenomenon. It seems that slow infusion was liable to cause ABC phenomenon. In all animal species, considerable intraindividual variability of IgM levels could be observed. Our observations may have important implications for the development, evaluation, and therapeutic use of pegylated liposomal cytotoxic drug formulations because using the current drug loading technology, most of the cytotoxic drugs could not be stably loaded in liposomes and rapid drug leakage from liposomes might occur in circulation. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3864–3876, 2012  相似文献   

19.
Drug delivery systems, offering controlled delivery of biologically active agents, are rapidly gaining importance in pharmaceutical research and development. To achieve controlled drug delivery, i.e., the administration of drugs so that optimal amount reaches the target site to cure or control the disease state, increasingly sophisticated systems containing different carriers have been developed. Macromolecules represent one of the carriers involved, and they have taken on a significantly prominent role in various modes of administration of therapeutic agents. Among macromolecules, for example, synthetic copolymers, polysaccharides, liposomes, polyanions and antibodies, as drug carriers, liposomes have proved most effective for diseases affecting the reticuloendothelial system and blood cells in particular. Liposomes, which are vesicles consisting of one or more concentrically ordered assemblies of phospholipids bilayers, range in size from a nanometer to several micrometers. Phospholipids such as egg phosphatidylcholine, phosphatidylserine, synthetic dipalmitoyl-DL-alpha-phosphatidylcholine or phosphatidylinositol, have been used in conjunction with cholesterol and positively or negatively charged amphiphiles such as stearylamine or phosphatidic acid. Alteration of surface charge has been shown to enhance drug incorporation and also influence drug release. Because of the multifold characteristics as drug carriers, liposomes have been investigated extensively as carriers of anticancer agents for the past several years. Liposomal entrapments include a variety of pharmacologically active compounds such as antimalarial, antiviral, anti-inflammatory and anti-fungal agents as well as antibiotics, prostaglandins, steroids and bronchodilators to name a few. The liposomal entrapment has been shown to have considerable effect on the pharmacokinetics and tissue distribution of administered drugs. Despite the potential value of liposomes as unique carriers, the major obstacles are the first order targeting of a systemically given liposomes, physical stability and manufacture of the liposomal products and these problems still remain to be overcome. Drug delivery systems evolving in the 1980s have become increasingly dependent on fundamental cell-biology and receptor-mediated endocytotic mechanisms. Drug delivery systems during the 1990s may take advantage of the specificity of receptor-mediated uptake mechanisms as well as polymer chemistry and cell-biology in order to introduce more precise and efficient target-specific delivery systems that are based especially on the liposome technology.  相似文献   

20.
眼睛中复杂的给药屏障使许多药物在眼部的生物利用度降低,治疗效果较差。已有研究表明,纳米载体介导的药物可与眼部黏膜相互作用,延长药物在眼部的保留时间并增加渗透性;纳米胶束、纳米粒、脂质体、纳米乳等新型纳米给药载体具有用于眼部给药的发展潜力。综述近年来眼部给药屏障、给药途径及新型纳米载体药物等方面的研究进展,以期为相关药物研发及临床治疗提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号